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Abstract. A new test is proposed for cointegration in a single equation framework
where the regressors are weakly exogenous for the parameters of interest. The test is
denoted as an error correction mechanism (ECM) test and is based upon the ordinary
least squares coef®cient of the lagged dependent variable in an autoregressive
distributed lag model augmented with leads of the regressors. The limit distributions of
the standardized coef®cient and t ratio versions of the ECM tests are obtained and
critical values are provided. These limit distributions do not depend upon nuisance
parameters but they depend on the number of regressors. Finally, we compare their
power properties with those of other cointegration tests available in the literature and
®nd the circumstances under which the ECM tests have a better performance.

Keywords. Cointegration tests; error correction models; power properties; common
factor restrictions.

1. INTRODUCTION

A new test for cointegration in a single-equation framework is proposed. The
new test is based on the coef®cient of the lagged dependent variable in an
autoregressive distributed lag (ADL) model advocated by Hendry and Richard
(1982) and Hendry (1987). This class of models has traditionally been used in
the empirical literature to seek a tentatively adequate data characterization that
encompasses rival models, displays parameter constancy, has martingale
difference errors with respect to a selected information set and parsimoniously
orthonormalizes the regressors. As proved by Engle et al. (1983), weak
exogeneity of the regressors for the parameters of interest is a suf®cient
condition for ordinary least squares (OLS) to provide asymptotically ef®cient
estimates of the parameters in the conditional ADL model.

Recent papers by Phillips and Loretan (1991), Saikkonen (1991) and Hendry
(1995) have extended the previous analysis to the case where regressors are I(1)
processes. A feature common to all of these papers is that they concentrate on
the case of cointegration among the variables, proposing new methods to
achieve asymptotically ef®cient estimates of the elements of the cointegrating
vector. This strategy, which consists of adding leads of the regressors and the
error-correction term to the conditional model, has proved quite successful
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since, in contrast to the fully modi®ed estimator of Phillips and Hansen (1990)
where a semiparametric correction is needed, the correction of the OLS
estimator and the computation of the ®nal estimator are accomplished
simultaneously in the time domain.

In this paper, instead of operating under the alternative hypothesis of
cointegration, we choose to work under the null hypothesis of non
cointegration. We derive a test for cointegration denoted the error correction
mechanism (ECM) test, which bene®ts from some of the advantages of ADL
models described above. The procedure depends upon the signi®cance of the
lagged dependent variable since this is equivalent to testing the signi®cance of
the error correction terms in the ECM reparameterization of the model. This
type of test has been previously suggested by Banerjee et al. (1986, 1993) and
Boswijk (1991). However, an extensive study of its properties is not yet
available in the literature.

The ECM test, in both its normalized bias and t ratio versions, has a limit
distribution that does not depend on nuisance parameters. However, it is not
dimension invariant since its limit distribution shifts with the number of
regressors. Alternatively, Hansen (1990) has proposed a cointegration test based
upon the Cochrane Orcutt (1949) estimation procedure whose limit distribution
is dimension invariant and follows the unit root distribution simulated by Fuller
(1976). Nevertheless, the latter test, along with other well known cointegration
statistics such as the Engle and Granger (1987) test, suffers in ®nite samples
from imposing potentially invalid common factor restrictions. Consequently, if
these restrictions are not satis®ed, the two latter types of test may have poor
power properties. Since the ECM test does not suffer from this problem, there
may be large advantages in its use.

Furthermore, as a by product of the power analysis undertaken under a
sequence of local alternatives of cointegration, we show that the t ratio form of
the ECM test may have better power properties than the normalized bias form,
particularly when the common factor restrictions are grossly violated.

Lastly, it is important to note that, although the framework of reference is
restricted to single equation conditional error correction models with a
potentially unique cointegrating relationship, empirical studies abound where
this is shown to be the case, e.g. money demand equations, consumption
equations etc. (cf. Hendry et al. 1984). Therefore, we believe that the
applicability of the ECM test in applied work may be quite important. We
therefore provide critical values based upon the limit distribution of the test for
a large range of the number of regressors.

The outline of the rest of the paper is as follows. In Section 2 we present the
data generation process (DGP) for the simpli®ed case where the regressors are
assumed to be strictly exogenous, and we derive the limit distributions of the
ECM test statistics under the null hypothesis of non cointegration. Section 3
gives the corresponding limit distribution under a sequence of alternatives
representing near non cointegration. Section 4 offers a comparison of the ECM
test with other cointegration tests often used in applied work, stressing the
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problem of imposing possibly invalid common factor restrictions. In Section 5
we consider generalizations of the ECM tests to more realistic cases where the
regressors are only assumed to be weakly exogenous. Section 6 provides Monte
Carlo ®nite sample evidence about the relative performance of the ECM tests
with respect to the other cointegration tests discussed in the paper. Concluding
remarks are given in Section 7.

In common with most of the literature in this ®eld, we follow sone notational
conventions: the symbol `Þ' denotes weak convergence of probability
measures; `!' denotes convergence in probability; `;' denotes equality in
distribution BM(Ù) refers to a Brownian motion with long run covariance
matrix Ù; xT � op(öT ) denotes that the sequence of random variables fxTg is
of smaller order in probability than öT . Arguments of functionals on the space
[0, 1] are frequently suppressed so that

� l

0
B2(r) dr is written as

�
B2 to reduce

notation. Proofs of important results are contained in the Appendix.

2. A SIMPLE DGP AND THE ECM TEST STATISTIC

By using a simple DGP, based upon a single equation ECM model, this section
describes the ECM testing procedure.

This DGP has been used elsewhere (cf. Hendry and Richard, 1982; Kremers
et al., 1992; Banerjee et al. 1993) and has the form

Äyt � á9Äxt � â(ytÿ1 ë9xtÿ1)� E t (1)

Äxt � ut t � 1, . . ., T (2)

where á, ë and xt are k 3 1 vectors of parameters and explanatory variables.
The regressand yt is a univariate process and â is a scalar; the initial conditions
are, without loss of generality, set to zero and T is the sample size. The elements
of xt correspond to different regressors. The more general case where lags of Äxt

and Äyt are allowed will be considered below. For the time being, we will
assume that xt is strictly exogenous, so that

1

k

E t

ut

� �
� i:i:d:

0

0

� �
ó 2
E 09

0 Óu

� �� �
� i:i:d:(0, Ó)

where Óu . 0 to avoid cointegration among the regressors (for a brief discussion
of the possibility of cointegrated regressors, see below). With this set up, the
partial sum processes ST (r) � Tÿ1=2Ó[Tr]

1 (E t, u9t)9 satisfy the multivariate
invariance principles (cf. Phillips and Durlauf 1986).

ST (r)) Ó1=2 B(r) � BM(Ó)

where Br � (BE(r), Bu(r)9)9 is a k � 1 vector standardized Brownian motion, i.e,
BM(I).

We further assume that 2 , â < 0. In this DGP, yt and xt are cointegrated
when 2 , â, 0, while they are non integrated when â � 0. Thus, tests of
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cointegration must rely upon some estimate of the parameter â. Under the
simplifying assumption that xt is strictly exogenous, non linear least squares
(NLS) can be applied to (1) yielding consistent and asymptotically ef®cient
estimates of á, â and ë. The ECM test statistic for cointegration, as suggested
by Banerjee et al. (1986) and Boswijk (1991), is based upon estimating (1) by
NLS and testing H0: â � 0. Alternatively, Banerjee et al. (1993), drawing upon
results from Kiviet and Phillips (1992), show that a parameter free distribution
for the estimator of â can be achieved if xtÿ1 is added to (1), which is then
estimated by OLS. This is so since, under the alternative hypothesis of
cointegration, the true cointegrating slope ë is implicitly estimated when xtÿ1 is
included as an additional regressor. Hence, according to this procedure, â is
estimated by OLS from the unrestricted dynamic model

Äyt � á9Äxt � âytÿ1 � è9xtÿ1 � E t � á9Äxt � ð9wtÿ1 � E t (19)

where w9t � (yt, x9t) and ð9 � (â, è9).
Since â(1, ë9) � ð9, the non cointegrating restriction â � 0 implies ð � 0

and so the ECM test can be based upon the OLS estimator of â in (19) or on
its t ratio, denoted â̂E and tE, respectively. Thus, letting y and Äy be T 3 1
vectors of observations on yt and Äyt, the ECM estimator and its t ratio are
de®ned by

â̂E � (y9ÿ1 Myÿ1)ÿ1 y9ÿ1 MÄy (3)

and

tE � (ó̂ÿ2
E y9ÿ1 M yÿ1)1=2â̂E (39)

where M � I V (V 9V )ÿ1V 9 and V is a T 3 2k matrix of observations on
v t � (Äx9t, x9tÿ1), ó̂ 2

E � T ÿ1
PT

1 Ê
2
t and Ê t is the OLS residual in (19).

Then, the following proposition holds.

PROPOSITION 1. For DGP (1) (2) under the null hypothesis of non
cointegration (â � 0)

T â̂E )
�

B
2

E

� �ÿ1�
BE dBE

and

tE )
�

B
2

E

� �ÿ1=2�
BE dBE

with

BE � BE

�
Bu BE

� �
9
�

Bu B9u

� �ÿ1

Bu:

Note that BE is the residual from the continuous time regression of BE on Bu.
Thus, although the previous limit distributions are free of nuisance parameters,
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they depend upon the number of elements (k) in xt, as re¯ected by the
presence of Bu in BE, implying that corresponding test statistics are not
dimension invariant.

3. DISTRIBUTION OF THE ECM TEST STATISTICS UNDER THE ALTERNATIVE HYPOTHESIS OF

COINTEGRATION

The alternative hypothesis is that of cointegration which, for DGP (1) (2), is
given by 2 , â, 0. Because the error correction term in (1) is stationary under
the alternative hypothesis, distributional results from conventional central limit
theorems, instead of functional central limit theorems, apply for ®xed
alternatives. In contrast, under a suitable sequence of local alternatives, the
non conventional asymptotic theory developed by Phillips (1987, 1988) for near
integrated time series can be applied to sharpen the results on the asymptotic
power of the ECM tests.

To proceed with the analysis of local power we consider the following
parameterization of the â coef®cient:

â � 1 exp (c=T ) � Tÿ1c: (4)

In (4), c is a ®xed scalar. We call time series that are generated by DGP (1) (2),
with â as in (4), near non cointegrated processes, following the terminology
introduced by Phillips (1988) for univariate processes. The scalar c represents a
non centrality parameter which may be used to measure deviations from the null
hypothesis H0: â � 0. When c . 0, (4) represents a local alternative to H0, so
that the rate of approach is controlled and the effect of the alternative hypothesis
on the limit distribution of the test statistics, based on the previous DGP, is
directly measurable in terms of the non centrality parameters c.

To develop the analysis of local power, it is also useful to de®ne the
disturbance

et � (á ë)9ut � E t (5)

such that, under the previous assumptions about ut and E t, E(e2
t ) �

ó 2
E � (á ë)9Óu(á ë). Then use is made of the diffusion process

K(r) �
� r

0

exp fc(r s)g dB(s) � B(r)� c

� r

0

exp fc(r s)g B(s) ds (6)

associated with the standarized disturbances E t, ut and et, denoted KE, Ku and
Ke, respectively. Note that, if c � 0, then K � B.

Using (5) and (6), it is possible to show the following result.

PROPOSITION 2. For DGP (1) (2) and (4), under the alternative hypothesis of
near non cointegration (c . 0)

5



T â̂E ) c� ó E
ó e

�
K

2

E

� �ÿ1�
Ke dBE � ÖE

tE ) óÿ2
E ó 2

e

�
K

2

e

� �1=2

ÖE

with Ke � Ke (
�

Bu Ke)9(
�

Bu B9u)ÿ1 Bu.

Since ó e Ke � (á ë)9Ó1=2
u Ku � ó EKE, note that, when c � 0, the non

centrality parameters of the two test statistics are zero, i.e. K � B and the
distributions under the null in Proposition 1 are recovered, i.e. power equals
size.

Although the comparison of the asymptotic distributions under the local
alternative hypothesis is cumbersome, given the complexity of the Wiener
functionals derived above, some results can be obtained using the relationship
in (5). To illustrate the main result, let us simplify the analysis by assuming
that there is a single regressor, i.e. k � 1. Then, given the relationship between
et, E t and ut that we repeat for convenience

et � (á ë)ut � E t

we will de®ne a signal to noise ratio q � (á ë)s, with s � ó u=ó E, correspond
ing to the ratio of the (square root of the) variance of (á ë)u, relative to E t.
This ratio will play a prominent role in the analysis since, as q " 1, it allows for
`small ó' approximations, i.e. sÿ1 " 0 (cf. Kadane, (1970, 1971). Making use of
this de®nition, the following proposition holds.

PROPOSITION 3. For DGP (1) (2) and (4), with k � 1, under the alternative
hypothesis of near non cointegration (c . 0)

T â̂E ) c� op(qÿ1)

and

tE ) c(1� q2)1=2

�
K

2

e

� �1=2

�
�

K
2

e

� �ÿ1=2�
Ke dBE � op(qÿ1):

Various interesting properties arise from Proposition 3. First, asymptotically,
as q " 1, i.e. á 6� ë and s " 1, the ECM test based upon the normalized bias
has a slope equal to (minus) unity; since the limit distribution of T â̂E is
independent of q under the null and degenerates around c under the local
alternative, the lower 5% tail of the distribution under the null will tend to be
to the left of c. Thus, we should observe very low power of the test based
upon the coef®cient when q is large. Second, the limit distribution of the ECM
test based upon the t ratio has a stochastic slope that depends upon q and does
not degenerate around a single value, as is the case of the test based upon the
normalized bias. Thus, when q is sizeable, the power of the t ratio test will be
greater than that of the normalized bias test. This is an interesting result since,
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as shown by Phillips and Ouliaris (1990), under a ®xed alternative hypothesis
the normalized bias test has non centrality which grows at rate T while the non
centrality parameter of the t ratio diverges at rate T 1=2. However, as shown in
Section 6, for reasonable sample sizes the power of the t test may be greater if
q is suf®ciently large.

4. COMPARISON WITH OTHER TEST STATISTICS FOR COINTEGRATION

Among the already very large collection of cointegration tests available in the
literature (cf. Banerjee et al., 1993), we wish to compare the power properties of
the ECM test statistics with those of two popular test statistics for cointegration
in a single equation framework. These are the Engle Granger (1987) test
statistic and Hansen's (1990) Cochrane Orcutt test statistic. In what follows, we
will denote these tests as EG and CO, respectively.

As is well known, the EG test is based upon a two step procedure. In the
®rst step a static OLS regression of yt on xt is implemented, yielding an
estimate of ë, say ë̂. Next, the cointegration test is based upon the normalized
bias or the t ratio of â in the regression

Äyt ë̂9Äxt � â(ytÿ1 ë̂9xtÿ1)� ~et (7)

where ~et is an error term such that ~et � et � op(1).
The CO test is similar in spirit to the EG test except that the estimation of ë

and the cointegration test are accomplished simultaneously, by estimating

Äyt ë9Äxt � â(ytÿ1 ë9xtÿ1)� et (8)

by NLS and testing for the signi®cance of the NLS estimate of â. Hansen (1990,
Theorem 2) proves that the normalized bias and the t ratio, denoted T â̂CO, and
tCO, have the limit Dickey Fuller distributions under the null hypothesis of non
cointegration. Thus, this test has the advantage over the ECM and EG statistics
that its limit distribution is independent of the dimension of the vector xt, a
feature which according to Hansen (1990) may improve its relative power
properties.

Nonetheless, as pointed out by Kremers et al. (1992) and Hansen (1995),
both the EG and the CO test suffer from the problem of imposing possibly
invalid common factor restrictions. This problem can be readily reviewed by
considering the alternative representation of equation (1)

Äyt � á9Äxt � â(ytÿ1 ë9xtÿ1)� E t � ë9Äxt � â(ytÿ1 ë9xtÿ1)� et (9)

with et de®ned as in (5). As an extreme example, let ó 2
E " 0 but á 6� ë and let

(á ë)9Óu(á ë) be `substantial'. In that case, the ECM regression has a near
perfect ®t with á, â and ë being estimated with near exact precision, and the
ECM test statistics will be (arbitrarily) large. However, since ó 2

e �
(á ë)9Óu(á ë)� ó 2

E , the estimation of â in the CO and EG procedures will
be much more imprecise, having an adverse effect on the power of both tests. In
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other words, where á 6� ë, invalid common factor restrictions are imposed in the
estimation procedure underlying the latter tests, a feature which could have
serious adverse effects on their power properties.

5. GENERALIZATIONS OF THE ECM TEST STATISTICS

In the previous sections, we have assumed for simplicity that the vector of
regressors xt is strictly exogenous in the conditional model (1). However, this is
a very strong assumption. As proved by Engle et al. (1983), all that is needed for
OLS to be an asymptotically ef®cient estimation method for the parameters in
(19) is that the xt are weakly exogenous for the parameters of interest
ø � (á9, â, è9). This weaker assumption is fairly well used in practice (cf.
Hendry et al., 1984) and allows for the presence of lags of Äxt and Äyt in the
conditional model (1). To extend the ECM test statistics to this more general set
up, we will consider an extended DGP consisting of the ADL conditional model

ã(L)Äyt � á(L)9Äxt � â(ytÿ1 ë9xtÿ1)� E t (1 0)

where ã(L) and á(L) are polynomials in the lag operator L; ã(L) is a scalar
polynomial of order m y and á(L) � (á1(L), . . ., ák(L)) is a vector polynomial
order of (m1, . . ., mk).

The marginal process for Äxt is as in (2) with ut being now a stationary
process with zero mean and continuous spectral density f uu(ù), whose
covariance function is absolutely summable. In this more general framework,
the partial sum process constructed from the k � 1 vector v t � (E t, u9t) will now
converge to a vector Brownian process BM(Ù) with long run covariance matrix
given by

Ù � ùEE ù9uE
ùuE Ùuu

� �
� Ó �Ë�Ë9 � Ä�Ë9; Ó � ó 2

E 09
0 Óu

� �
where ùEE � ó 2

E , ù9uE � E(E0u90)�P1s 1 E(E0u9s � Esu90) and Ùuu � E(u0u90) �P1
s 1 E(u0u9s � usu90).
Under the assumption of weak exogeneity of xt, we have that E(E t=xtÿi) � 0

for all i > 0. Thus, Ä21 �
P1

s 0 E(u0Es) � 0, but there is no guarantee thatP1
s 0 E(E0u9s) � 0. This would be implied by the stronger assumption that xt is

strictly exogenous for equation (1). Since Ä21 � 0, the `second order' biases
stressed by Phillips and Hansen (1990) will be absent in the distribution of the
ECM test statistics, as in Proposition 1. However, note that in this more general
case BE and Bu are no longer independent Brownian motions. To illustrate this
feature, consider the following example. For k � 1, let Äxt � ut �
ãÄytÿ1 � ç t � ã(áutÿ1 � E tÿ1)� ç t with E(E tçs) � 0 for all t and s. Then,
xt will be weakly exogenous for the parameters of interest in (1), but the long
run covariance between BE and Bu will be ã(1 áã)ÿ1ó 2

E , under the null
hypothesis of non cointegration. This is so since

P1
k 0 E(E0u9k) 6� 0, implying

that the limit distributions obtained in Proposition 1 will now depend on
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nuisance parameters (ùuE). Hence the corresponding tests will not be asymp
totically similar. Therefore, in principle, the computation of critical values in
this more general case is problematic.

To overcome the problem of lack of similarity, we follow the stratgey
proposed by Phillips and Loretan (1991) and Saikkonen (1991) of correcting
for serial correlation by augmenting the conditional model in (10) with future
values of Äxt. Given the stationarity of ut one would expect that the very
remote future values of Äxt only have a negligible impact on Äyt and can
therefore be ignored.

Under the previous conditions on the error terms, we may write

E t �
X1

1

a9jut� j � î t (10)

where
P1

1 ia ji ,1 and î t is a stationary process such that E(î tu9s) � 0 for all
t and s.

Since the sequence fa jg in (10) is absolutely summable, we have that a j � 0
for j jj. S and S large enough. Thus, the ECM statistics may be computed
from the model

ã(L)Äyt � á (L)9Äxt � âytÿ1 � è9xtÿ1 �
XS

j 1

a9jÄxt� j � _î t (11)

with _î t � î t �
P
j jj. S a9jÄxt� j and in agreement with the assumption previously

used by Said and Dickey (1984) we shall assume that

S3=T ! 0 and T 1=2
X

j

ia j i ! 0 for j jj. S:

Using similar arguments to those in Saikkonen (1991, Theorem 4.1) it is
straightforward to show that the limit distributions of T â̂E and tE, on the basis of
regression model (11), are identical to those derived in Proposition 1. In practice the
value of S should be large enough to ensure that the coef®cients a j are effectively
zero for j jj. S while, at the same time, respecting the constraint that the least
squares estimation of (11) is not feasible if S is too large compared with the sample
size. In empirical applications, some experimentation with a few values of S is
advisable. Although a thorough discussion of this issue is beyond the scope of this
paper, some experimentation along the lines of Stock and Watson (1993) seemed to
suggest that the choice S � 1 or S � 2 for T � 100 had good size properties.

Next, it is important to note that, although deterministic terms have been
ignored in the previous analysis for simplicity, the data may be demeaned, or
demeaned and detrended, before applying the ECM tests for cointegration. The
limit distributions of the various tests discussed in the paper in such cases are
of the same form as in Proposition 1, except that Brownian motions are
replaced by the appropriate Brownian bridges. Given the advantages of using
the t ratio for the ECM test, as discussed in Section 4, the asymptotic critical

9



values for the ECM t ratio are reported in Table I up to ®ve regressors. In
order to analyse the ®nite sample distribution of those tests, critical values for
four different sample sizes (T � 25, 50, 100 and 500) are also presented. Since,
as discussed in Section 1, there are many examples in applied work of single
equation conditional models with weakly exogenous regressors for the
parameters of interest, we think that the above critical values may be widely
applicable.

It is also noteworthy that the common factor problem of the EG and CO test
statistics for cointegration remains in this more general set up. Furthermore, the
augmented Dickey Fuller version of the EG test and the semiparametric
version proposed by Phillips and Ouliaris (1990) do not solve the problem.
Since this argument is similar to that given by Kremers et al. (1992) where the
potential cointegrating vector is assumed to be known a priori, we will simply
summarize it brie¯y in what follows.

TABLE I

CRITICAL VALUES OF THE (t-RATIO) ECM TEST WITH DIFFERENT NUMBERS OF

REGRESSORS

Size

T 0.01 0.05 0.10 0.25

A. With constant
k � 1 25 4.12 3.35 2.95 2.36

50 3.94 3.28 2.93 2.38
100 3.92 3.27 2.94 2.40
500 3.82 3.23 2.90 2.40
1 3.78 3.19 2.89 2.41

k � 2 25 4.53 3.64 3.24 2.60
50 4.29 3.57 3.20 2.63

100 4.22 3.56 3.22 2.67
500 4.11 3.50 3.10 2.66
1 4.06 3.48 3.19 2.65

k � 3 25 4.92 3.91 3.46 2.76
50 4.59 3.82 3.45 2.84

100 4.49 3.82 3.47 2.90
500 4.47 3.77 3.45 2.90
1 4.46 3.74 3.42 2.89

k � 4 25 5.27 4.18 3.68 2.90
50 4.85 4.05 3.64 3.03

100 4.71 4.03 3.67 3.10
500 4.62 3.99 3.67 3.11
1 4.57 3.97 3.66 3.10

k � 5 25 5.53 4.46 3.82 2.99
50 5.04 4.43 3.82 3.18

100 4.92 4.30 3.85 3.28
500 4.81 4.39 3.86 3.32
1 4.70 4.27 3.82 3.29
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For example, if we consider the conditional model (10), the error term in the
CO and EG testing procedures will be

et � [á(L) ã(L)ë]9ut � E t

which obviously need not be white noise. Indeed, in general it will follow a
moving average (MA) process, whose serial correlation could be accounted for
by means of the semiparametric corrections proposed by Phillips and Ouliaris
(1990). It is known, however, that when the roots of such MA processes are
close to being on the unit circle, these tests may suffer from severe size
distortions (cf. Schwert, 1989). This problem does not arise when using the ECM
statistics.

Finally, the possibility of cointegrated regressors may arise as a practical
matter (see Granger and Lee, 1990). If xt is correcting the errors of
cointegrating relationships involving only xtÿ1, then weak exogeneity still holds
(see Hunter, 1990). In that case, given that the cointegration vector does not

TABLE I

(continued)

Size

T 0.01 0.05 0.10 0.25

B. With constant and trend
k � 1 25 4.77 3.89 3.48 2.88

50 4.48 3.78 3.44 2.92
100 4.35 3.75 3.43 2.91
500 4.30 3.71 3.41 2.91
1 4.27 3.69 3.39 2.89

k � 2 25 5.12 4.18 3.72 3.04
50 4.76 4.04 3.66 3.09

100 4.60 3.98 3.66 3.11
500 4.54 3.94 3.64 3.11
1 4.51 3.91 3.62 3.10

k � 3 25 5.42 4.39 3.89 3.16
50 5.04 4.25 3.86 3.25

100 4.86 4.19 3.86 3.30
500 4.76 4.15 3.84 3.31
1 4.72 4.12 3.82 3.29

k � 4 25 5.79 4.56 4.04 3.26
50 5.21 4.43 4.03 3.39

100 5.07 4.38 4.02 3.46
500 4.93 4.34 4.02 3.47
1 4.89 4.30 4.00 3.45

k � 5 25 6.18 4.76 4.16 3.31
50 5.37 4.60 4.19 3.53

100 5.24 4.55 4.19 3.66
500 5.15 4.54 4.20 3.69
1 5.11 4.52 4.18 3.67
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include yt, the proposed test is still applicable, except that the dimension of Bu

in the ECM tests will be smaller than in the unrestricted version of the tests.
Thus, using the critical values for the latter type of tests will lead to a
conservative test. If, on the other hand, the cointegrating vector linking the xt is
known, then to achieve similarity, future values of the I(0) cointegrating error
may have to be added to the regression model in (11), choosing a value of k
corresponding to the number of non cointegrated regressors in Table I.

6. FINITE-SAMPLE EVIDENCE

To provide ®nite sample evidence on the advantages of the ECM test statistics in
comparison with the CO and EG tests, a small set of Monte Carlo experiments
was conducted with (1) and (2) as the DGP, using 25 000 replications generated
in GAUSS. A single exogenous regressor, i.e. k � 1, is used for illustrative
purposes. Data were generated with the normalization ó E � 1, without loss of
generality, with three parameters (s, á, â) and the sample size T as experimental
design variables. In this study we chose

s � (0:05, 1, 5, 20)

á � (0:1, 0:9)

â � ( 0:05, 0:10 (cointegration in both cases))

T � 100:

The implied range of the signal to noise ratio is broad, including values
potentially favourable and unfavourable for the relative power comparisons
among the different tests. In order to simplify the analysis, the value of the
cointegrating slope ë was ®xed equal to 1 under the alternative hypothesis of
cointegration. The choices of the short run coef®cient (á) attempt to capture a
smaller value (á � 0:1) and a similar value (á � 0:9) to the one chosen for ë;
the closer á and ë are, the closer the common factor restriction is to being
satis®ed. Combining the values of á and ë with those for s we obtain a wide
range of values q, ranging from 0.005 to 18.

Table II reports the power of the three tests for the selected range of values
for á and s, when â � 0:05 and â � 0:10. To control for ®nite sample
biases, critical values were simulated under the hypothesis H0: â � 0, and the
reported powers are size adjusted. The results seem to be consistent with the
discussion in Section 3. When q is low and c is small relative to T, c � 5
(â � 0:05), the ECM test, both in its normalized bias and t ratio versions,
seems to be slightly less powerful than the CO test, re¯ecting the problem of
dimensionality stressed by Hansen (1990). However, as q increases, either
because á becomes different from ë or because s rises, the ECM test becomes
the most powerful. Furthermore, in agreement with the degeneration of the

12



limit distributions of the coef®cient version of the tests, their absolute power
decreases as q increases. This is clearly not the case when we examine the t
ratio version of the tests, where the ECM test shifts its asymptotic distribution
to the left so as to achieve maximum power. For example, an extreme case is
when c � 5 (â � 0:05), á � 0:1 and s � 20, where the t ratio version of
the ECM test rejects 100% of the time while the CO test almost does not reject
at all. As regards the EG test, the results indicate that its power also decreases
as q increases, though at a lower rate than the power of the CO test. In
agreement with the results in Banerjee et al. (1986), it turns out to have lower
power than the ECM test, even when q is small, since in contrast to the CO
test the EG test is not dimension invariant.

Finally, although our testing procedure is designed in a single equation
framework, a comparison with Johansen's (1991) procedure would be helpful.
Indeed, the ECM procedure is a special case of Johansen's for a system in
which the cointegrating vectors appear only in the equation of interest.
Although an extensive study on the performance of Johansen's test is beyond
the scope of this paper, we have carried out a small Monte Carlo study for
the case â � 0:10 in the bivariate system consisting of equations (8) and
(2). The error variances have been normalized to unity, yielding a covariance
r � (1� q2)ÿ1=2q. The trace statistic LR(0) is asymptotically equal to
T ë̂1 � T ë̂2 where ë̂1 and ë̂2 are eigenvalues computed from a characteristic
equation such as (2.11) in Johansen (1991). Suppose ë̂1 . ë̂2. Johansen (1991)
shows that, if there is a unique cointegrating vector, T ë̂2 has an asymptotic
distribution while ë̂1 converges to a positive constant. It is easy to see that in
our model

TABLE II

SIZE-ADJUSTED POWERS OF 5% TESTS (PERCENTAGES)

Test s � 0:05 s � 1:00 s � 5:00 s � 20:00

â � 0:05
á � 0:1 CO 30 (30) 8 (7) 0 (0) 0 (0)

ECM 22 (18) 14 (23) 0 (88) 0 (100)
EG 14 (15) 11 (11) 5 (5) 4 (4)

á � 0:9 CO 30 (30) 28 (28) 16 (16) 1 (1)
ECM 21 (17) 21 (17) 18 (19) 5 (48)
EG 14 (14) 13 (14) 12 (12) 7 (7)

â � 0:10
á � 0:1 CO 69 (68) 8 (8) 0 (0) 0 (0)

ECM 53 (54) 44 (67) 8 (100) 0 (100)
EG 36 (36) 30 (30) 18 (18) 17 (17)

á � 0:9 CO 70 (70) 67 (67) 27 (26) 1 (1)
ECM 53 (54) 53 (55) 51 (53) 30 (94)
EG 37 (37) 37 (38) 34 (35) 22 (23)

Note: Rejection rates for the t-ratio version of the tests are given in parentheses.
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ë̂1 ! ë1 � f1 (1 r2)(2� â)=âgÿ1: (12)

This in turn implies that, for a ®xed T, LR(0) will (correctly) reject the null
hypothesis on non cointegration more easily if jrj is larger and that rejection
will be harder the smaller is â. Using the 5% critical value in Osterwald Lenum
(1992) with T � 100, we ®nd that, when s � 1, the rejection rate of LR(0) is
46% (16%) when á � 0:1 (0.9). When s � 5, it turns out to be 91% (18%).
Further experiments, available upon request, show that for high values of s the
LR(0) test performs slightly worse than the ECM t test and that the behaviour is
much worse for low values of s.

7. CONCLUSIONS

Testing for cointegration has become an important facet of empirical analysis of
economic time series in recent years and various tests are being used. In this
paper we propose a new test, denoted the ECM test, in a single equation
framework. The limit distribution of this test, in both its `normalized version'
and t ratio version, does not depend upon nuisance parameters but does depend
on the dimension of the system. Critical values are therefore provided. Its power
properties are compared with those of other popular tests of cointegration.
Speci®cally, we concentrate on the CO and EG testing procedures. The CO test
is dimension invariant whereas the EG test is not. However, both tests impose
possibly invalid common factor restrictions in the estimation underlying the
tests. We show that when the restrictions are invalid, the power properties of the
CO and EG tests may be very poor in comparison with the ECM test, which
does not impose those restrictions.

Moreover, as a by product of the analysis, we show that the t ratio form of
the ECM test may be preferable to the normalized bias form, under the
alternative hypothesis of cointegration, when the common factor restrictions do
not hold. The results are obtained for a simple DGP and are then shown to
extend to more general cases.

APPENDIX

The analysis contained in this appendix draws on a number of well known results in
Phillips (1987, 1988) and Phillips and Ouliaris (1990). Under the null hypothesis of non
cointegration the DGP(H0) is given by

Äyt á9Äxt � E t

Äxt ut

with

E t

ut

� �
� i:i:d:

0

0

� �
ó 2
E 09

0 Óu

� �� �
:
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The results do not depend on the initialization, so let us de®ne SE t ÓEi and
Sut Óui, where the sums run from 1 to t and SE and Su are T 3 1 and T 3 k matrices
of observations on SE t and Sut, respectively. Note that x Su and y Suá� SE. Let M1

be the projection matrix M1 I xÿ1(x9ÿ1xÿ1)ÿ1x9ÿ1.
Then, the following set of asymptotic results (R1) will be used in the proofs:

(a) Tÿ2S9Eÿ1 M1SEÿ1 ) ó 2
E

�
B

2

E

(b) T ÿ1S9Eÿ1 M1E ) ó 2
E

�
BE dBE

(c) Tÿ1S9Eÿ1 M1E ! 0

(d) T ÿ1
PT

1 E t u9t ! 0

where BE BE (
�

Bu BE)9(
�

Bu B9u)ÿ1 Bu.
Under the local alternative hypothesis of near non cointegration the DGP(Hla) is given

by

Äzt âztÿ1 � E t

Äxt ut

with â Tÿ1c; zt yt ë9xt, et (á ë)9ut � E t and z and e are T 3 1 vectors of
observations on zt and et.

In this case, the following additional asymptotic results (R2) are used

(a) Tÿ2z9z ) ó 2
e

�
K2

e

(b) T ÿ2z9M1z ) ó 2
e

�
K

2

e

(c) Tÿ1z9ÿ1 M1E ) ó eó E
�

Ke dBE

where Ke Ke (
�

Bu Ke)9(
�

Bu B9u)ÿ1 Bu.

PROOF OF PROPOSITION 1. Let V be a T 3 2k matrix of observations on v t

(Äx9t, x9tÿ1)9 and xÿ1 and Äx be T 3 k matrices of observations on xt and xtÿ1,
respectively. De®ne the projection matrix M I V (V 9V )ÿ1V 9 such that, by parti
tioned inverses, M M1 M1Äx(Äx9M1Äx)ÿ1Äx9M1, where M1 is de®ned above.

Then, â̂E is computed such that

T â̂E (T ÿ2 y9ÿ1 Myÿ1)ÿ1(Tÿ1 y9ÿ1 MÄy)

(T ÿ2S9Eÿ1 MSEÿ1)ÿ1(Tÿ1S9Eÿ1 ME)

since y Suá� SE, Äy uá� E and M is orthogonal to xÿ1 and Äx. Using parts (a) to
(d) of (R1) and the relationship between M and M1, we have

Tÿ2S9Eÿ1 MSEÿ1 (Tÿ2S9Eÿ1 M1SEÿ1) Tÿ1(T ÿ1S9Eÿ1 M1u)(T ÿ1u9M1u)ÿ1(Tÿ1u9M1SEÿ1)

Tÿ2S9Eÿ1 M1SEÿ1 � op(1)

and

T ÿ1S9Eÿ1 ME (Tÿ1S9Eÿ1 M1E) (T ÿ1S9Eÿ1 M1u)(Tÿ1u9M1u)ÿ1(Tÿ1u9M1E)

T ÿ1S9Eÿ1 M1E� op(1)

given (e) in (R1).
Next, using the limit distributions in (a) and (b) in (R1) yields the required result

T â̂E (S9Eÿ1 M1SEÿ1)ÿ1S9Eÿ1 M1E� op(1) )
�

B
2

E

� �ÿ1�
BE dBE: (A1)
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To prove that ó̂ 2
E ! ó 2

E , de®ne P as the T 3 (2k � 1) matrix of observations on
(Äx9t, x9tÿ1, ytÿ1)9 and the projection matrix Mp I P(P9P)ÿ1 P9. Then

ó̂ 2
E T ÿ1E9MpE Tÿ1E9E T ÿ1(Tÿ1E9P)(Tÿ2 P9P)ÿ1(T ÿ1 P9E)

T ÿ1E9E� op(1) ! ó 2
E :

(A2)

From (A1) and (A2), the distribution of the t ratio follows along the same lines,
leading to the required results.

PROOF OF PROPOSITION 2. Let zt yt ë9xt and ẑ t yt á̂xt where á̂ is the least
squares estimator of á in (19). Then

zt ẑ t � (á̂ ë)9xt ẑ t � (á ë)9xt � op(1)

since á̂ ! á at rate Tÿ1=2. Then

T â̂E (Tÿ2 y9ÿ1 M yÿ1)ÿ1(Tÿ1 y9ÿ1 MÄy) (T ÿ2z9ÿ1 M zÿ1)ÿ1(Tÿ1z9ÿ1 MÄy)

Tâ� (Tÿ2z9ÿ1 M1zÿ1)ÿ1T ÿ1z9ÿ1 M1E� op(1) (A3)

since M is orthogonal to xÿ1 and Äx, and the limit distribution of (Tÿ2z9ÿ1 Mzÿ1) is equal
to the limit distribution of (Tÿ2z9ÿ1 M1zÿ1), following the same arguments as in the proof
for Proposition 1.

Finally, using Tâ c and substituting results (a) to (c) of (R2) into (A3) yields the
required results. Since ó̂ E ! ó E and ó̂ e ! ó e, the proof for the limit distribution of the t
ratio follows along similar lines, leading to the required results.

PROOF OF PROPOSITION 3. For k 1, from the limit distributions in Proposition 2 we
have

T â̂E ) c� ó E
ó e

�
K

2

e

� �ÿ1�
Ke dBE:

Since ó E=ó e (1� q2)ÿ1=2, as q " 1, we have that ó E=ó e " 0 and

T â̂E ) c� op(qÿ1):

Furthermore, since ó̂ E ! ó E and ó̂ e ! ó e, the proof for the limit distribution of the t
ratio proceeds along similar lines.
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