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Summary In this paper, we extend the well-known Sims, Stock and Watson (SSW)
(Sims et al. 1990; Econometrica 56, 113–44), analysis on estimation and testing in vector
autoregressive process (VARs) with integer unit roots and deterministic components to a more
general set-up where non-stationary fractionally integrated (NFI) processes are considered. In
particular, we focus on partial VAR models where the conditioning variables are NFI since
this is the only finite-lag VAR model compatible with such processes. We show how SSW’s
conclusions remain valid. This means that whenever a block of coefficients in the partial VAR
can be written as coefficients on zero-mean I(0) regressors in models including a constant
term, they will have a joint asymptotic normal distribution. Monte Carlo simulations and an
empirical application of our theoretical results are also provided.

Keywords: Vector fractionally integrated processes, Fractional cointegration, Granger
causality, Permanent income hypothesis.

1. INTRODUCTION

Fractionally integrated (FI) processes have recently drawn a great deal of attention among
macroeconomists and econometricians with both theoretical and empirical research growing fast
and in parallel. Loosely speaking, a series xt is said to be FI of order d, in short I(d), if �d xt

is a weakly stationary or short memory I(0) process, with �d = ∑∞
k=0 πk (−d) Lk, πk (−d) =

k−1−d
k πk−1(−d) , π0 (−d) = 1, where d is a real number. The degree of integration or memory

parameter, d, determines the key dynamic or memory properties of the series. In particular, an
I(d) process is stationary if d < 1

2 . When 1
2 < d < 1, despite being non-stationary, the process is

non-persistent, i.e. any random shock has only a transitory influence on the series. Finally, when
d ≥ 1, the process is both non-stationary and persistent, i.e. any random shock has a permanent
effect on the future path of the series. Consequently, FI processes cover a wide range of dynamic
behaviour which is ruled out a priori if d is restricted to take integer values as in the literature on
unit roots.

Our goal in this paper is to analyse the properties of tests of hypotheses based on Ordinary
Least Squares (OLS) estimators of the parameters in reduced-form autoregressive distributive lag
(ADL) models whose variables include non-stationary FI (NFI) processes with a priori known
order of integration. These models, in which a set of endogenous variables are regressed on their
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own lags and lags of a set of conditioning variables, are often used in applied work to test relevant
economic hypotheses. A popular application is the test of the Rational Expectations Permanent-
Income Hypothesis of consumption which typically relies upon regressing (logged) consumption
on its own lags and lags of (logged) disposable income, to further test for the joint significance
of the latter set of coefficients.

In particular, we analyse whether the well-known guidelines proposed by Sims et al. (1990)
(SSW) and Stock and Watson (1993) for a vector autoregressive process (VAR) with integer
unit roots (d = 1, 2, . . . ) continue to be valid when variables are extended to be NFI processes.
In this respect, it should be stressed at the outset that dealing with NFI processes precludes
the analysis of full-system VARs with a finite number of lags in the levels of the series (as
in SSW) since finite-order VAR models with i.i.d. innovations cannot generate FI series. This
is so because the application of the filter �d to any vector of series gives rise to an infinite
number of parameters in its AR representation whenever d is a real number. Thus, the analysis
in what follows is restricted to partial VARs where the conditioning variates are NFI processes.
This set-up automatically implies that, if the roots of the ADL lag polynomial are outside the
unit circle, there will be a cointegrating relationship among the variables in the system. In
particular, the single-equation ADL model, which constitutes the focus of most of this paper,
can be interpreted as a specific representation of a partial VAR where only one of the variables is
modelled.

More concretely, we study reduced-form ADL models whose elements are individually I(0)
and I(d) with 1

2 < d < 3
2 processes, possibly around a linear time trend, since this range of

values is the most relevant one when modelling economic time series (see, e.g. Baillie 1996).
We show that SSWs main conclusions, drawn for the case of integer unit roots, remain valid
in our more general fractional set-up. This implies that whenever a block of coefficients can be
written as coefficients on zero-mean I(0) regressors in a model that includes a constant term,
they will have a joint asymptotic normal distribution. Therefore, linear restrictions on this set
of parameters can be tested using standard asymptotic chi-square distribution theory. Otherwise,
the associated test statistics will have non-standard limiting distributions. Moreover, we show
that the OLS estimator of the cointegrating vector is consistent with the individual coefficients
converging to their theoretical counterparts at different rates, depending on the memory
parameters.

The rest of this paper is structured as follows. In Section 2, we rely upon a multivariate
functional central limit theorem (FCLT) for NFI processes due to Marinucci and Robinson (2000),
based on the so-called Type-II definition of fractional Brownian motion, to derive some new
results concerning weak convergence of stochastic integrals having fractional integrands and
weakly stationary integrators. Next, in Section 3, we use these convergence results to extend
the SSW set-up allowing for partial VAR models with NFI processes. We introduce the relevant
partial VAR model and then provide the asymptotic representation of the OLS estimator by
transforming the regressors in the way suggested by SSW, namely, by isolating in different blocks
the various stochastic and deterministic trends. In Section 4, we illustrate how our asymptotic
results perform in finite samples by means of a small Monte Carlo study. Section 5, in turn, provides
an empirical application where some of the available evidence regarding the random-walk property
of consumption and its long-run relationship with disposable income is revisited in light of the
results of this paper. Finally, Section 6 concludes. Proofs of the main results are gathered in the
Appendix.
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2. PRELIMINARY THEORY

2.1. Definitions of NFI processes

Let {η t} be an n-dimensional i.i.d. sequence of random vectors with E(η1) = 0 whose covariance
matrix is the identity matrix of order n, In. Further, let at = ϒ(L) ηt , ϒ(L) = ∑∞

j=0 ϒ j L j (L
denotes the lag operator), and let xt = (x 1t , . . . , xnt)′ be an n-dimensional vector of NFI processes
with Wold representation given by

xt = � (L)−1 at 1 {t > 0} , t = 1, 2, . . . , (1)

where �(L) = diag{�d1 , �d2 , . . . , �dn }, �di = (1 − L)di = ∑∞
k=0 πki (−di )Lk, πki (−di ) =

k−1−di
k πki−1(−di ), π0i (−di ) = 1, 1

2 < di < 3
2 , i = 1, 2, . . . , n, and 1{·} is the indicator

function. Note that the assumption about the initial condition, i.e. at = 0 for t ≤ 0, is necessary
to cater for cases where d ≥ 1

2 , because otherwise the right-hand side of (1) do not converge in
mean square and hence xt is not well defined. Therefore (1) implies xt = 0, t ≤ 0, and it can be
verified that xt is non-stationary long-range dependent in the extended sense of Heyde and Yang
(1997) (cf . Robinson and Marinucci 2001, Lemma 3.4).

As pointed out by Marinucci and Robinson (2001), an alternative definition for an NFI process
with 1

2 < d < 3
2 could be

xt = �−1ζt 1 {t > 0} , t = 1, 2, . . . , (1′)

such that �= 1 − L and ζ t is a stationary I (d − 1), − 1
2 < d − 1 < 1

2 . The distinction between
definitions (1) and (1′) has been discussed at length in Marinucci and Robinson (1999) where it has
been shown that, for 1

2 < d < 3
2 , first differences of xt using either definition are asymptotically

equivalent in the mean square sense (see also Lemmae 1 and 2 in Dolado et al. 2002). However,
an appropriately scaled partial sum of xt defined according to (1′) converges in distribution to
the so-called Type-I fractional Brownian motion (fBM) whereas, if defined according to (1), it
converges to a Type-II fBM (cf Levy (1953) and Mandelbrot and Van Ness (1968)). As argued
by Marinucci and Robinson (2001), in common with the literature on integer unit- roots which
defines an I(d) process, d = 1, 2, . . . , as �d xt being I(0), definition (1) is adopted in the sequel
as the more natural one when considering the range 1

2 < d < 3
2 .

Next, in dealing with the more general case where d > 1
2 , the following assumptions are

introduced.

Assumption A
∑∞

j=0 j‖ϒ j‖ < ∞, where ‖ · ‖ denotes the Euclidean norm.
Assumption B ϒ (1) is non-singular.
Assumption C E‖η1‖q < ∞, q > max{4, 2

2d−1 }, d = min1≤i≤n di .

Assumption A is satisfied, among others, by all (asymptotically) stationary and invertible
ARMA processes. Assumption B ensures that the asymptotic limit process will have non-
degenerate finite dimensional distributions. Finally, Assumption C states that a larger amount
of persistence, i.e. a larger d, implies weaker moment conditions, at least for 1

2 < d < 3
4 .

Define the normalising matrix function T = diag{T 1/2−d1 , . . . , T 1/2−dn }, where T is the
sample size, and let xT (r ) = T x [Tr], for 0 ≤ r ≤ 1, where [·] is integer part, so that xT (r ) ∈ D[0,
1]n , the space of �n-valued vector functions on [0, 1] whose components are continuous on the
right and with finite left limit. Then, under Assumptions A–C, Marinucci and Robinson (2000)
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have proved that, as T → ∞,

xT (r ) ⇒ B (dx , r ) , (2)

where ‘⇒’ signifies convergence in the Skorohod J 1 topology of D[0, 1]n , dx = (d 1, . . . , dn) and
B(dx, r ) is a multivariate fBM for r ≥ 0, defined as

B (dx , r ) = (0, . . . , 0)′ a.s., r = 0, (3)

B (dx , r ) =
r∫

0

G (r , s) d B(s), r > 0, (4)

such that B(r) is an n-dimensional Brownian motion with covariance matrix � = ϒ (1) ϒ (1)′,
and the (n × n) matrix G(r, s) has (i, j)th element 1

(di )
(r − s)di −1 , i, j = 1, . . . , n, for 0 ≤ s ≤

r , and zero otherwise.  (·) stands for the gamma or generalised binomial function.
Formally, B(dx, r ) is a Gaussian process with almost surely continuous sample paths and

non-stationary (and non-independent) increments. As discussed above, B(dx, r ) corresponds to a
Type-II fBM in terms of Marinucci and Robinson’s (1999) terminology.

In the empirically relevant case where d 1 = d 2 = · · · = dn = d, (1) becomes

xt = �−dat 1 {t > 0} = ϒ(1) �−dηt 1 {t > 0} + ϒ∗ (L) �1−dηt 1 {t > 0}
= ϒ(1) ξt (d) + ϒ∗ (L) �1−dηt 1 {t > 0} , (5)

where use has been made of the well-known multivariate Beveridge–Nelson decomposition (cf,
Phillips and Solo 1992), with ξt (d) = ∑t−1

k=0 πk (d) ηt−k, ξt (1) = ξt , and ϒ∗(L) = ∑∞
j=0 ϒ∗

j ηt− j

is absolutely summable with coefficients ϒ∗
j = ∑∞

i= j+1 ϒi . Since T 1/2−dϒ∗(L) �1−dη[Tr] is op(1)
uniformly in r, (2)–(5) imply

T 1/2−d x[T r ] ⇒ B (d, r ) ≡ ϒ(1)W (d, r ) , (6)

and

T 1/2−dξ[T r ] (d) ⇒ W (d, r ) , (7)

where a standardised Type-II fBM is defined as W (d, r ) = 1
(d)

∫ r
0 (r − s)d−1 dW (s), r > 0, and

W(r) is an n-dimensional standard Brownian motion.

2.2. Weak convergence of sample covariance matrices

The use of the above multivariate functional central limit theorem, together with the continuous
mapping theorem (CMT), provides the necessary tools to ensure the convergence of most of the
relevant random matrices appearing in the estimation and testing of long-run relationships among
NFI processes considered in this paper. It should be noted that invariance principles for Type-I
fBM have been previously established, among others, by Davydov (1970) and Taqqu (1975), and
extended by Chan and Terrin (1995), Csörgo and Mielniczuk (1995) and Davidson and de Jong
(2000). Similarly, Akonom and Gourieroux (1987) and Marinucci and Robinson (1999) have
derived similar results using Type-II fBM. However, the available theory for NFI processes as
defined in (1) does not cover the very important case of the weak convergence of the sample
covariance matrices

∑T
t=1 xt a′

t since convergence cannot be obtained in this case from a routine
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application of the CMT and a multivariate invariance principle. As will be seen below, expressions
of the form

∑T
t=1 xt a′

t arise as key elements in the theory of cointegrating regressions with weakly
dependent error terms, where the numerator of the deviations of regression coefficients from their
true parameter values involves sample covariances of NFI series (regressors, xt) and weakly
stationary series (disturbances, at).

Nonetheless, there are related results concerning the weak convergence of
∑T

t=1 xt a′
t in a

different set-up to ours. In the integer case, with d = 1, 2, . . . , results have been provided,
inter alia, by Strasser (1986), Chan and Wei (1988), Phillips (1988), Hansen (1992) and de Jong
and Davidson (2000) under different assumptions on the innovation sequence. Moreover, the
fractional case has been studied by Fox and Taqqu (1987), Chan and Terrin (1995) and Marinucci
(2000), whose results are cast in the frequency domain, in terms of the Wiener–Itô calculus of the
spectral representation of such a covariance. As regards the results cast in the time domain, weak
convergence of

∑T
t=1 xt a′

t for NFI processes and weakly dependent innovations, has been derived
by Davidson and de Jong (2000) but using the Type-I definition of fBM given in (1′). Thus, our
first contribution here is to establish weak convergence of such a covariance term using definition
(1) and, therefore, the asymptotic theory based on Type-II fBMs.

From (5), the relevant cross sample moment turns out to be
∑T

t=1 ξt (d) [ϒ(L) ηt ]′. Asymptotic
results for the I(1) case have been previously provided by SSW (Lemma 1) who prove that, under
Assumptions A–C, as T → ∞,

T −1
T∑

t=1

ξt [ϒ(L) ηt ]
′ ⇒ ϒ(1)′ +

1∫
0

W (r ) dW (r )′ ϒ(1)′. (8)

In the following lemma we extend their result by providing the limiting distribution of∑T
t=1 ξt (d) [ϒ(L) ηt ]′ for d > 1

2 . Notice that we establish a more general result than that needed
for the range 1

2 < d < 3
2 which is the one considered below when dealing with partial VARs.

Lemma 1 Under definition (1) of an NFI process and assumptions A–C, as T → ∞,

T −d
T∑

t=1

ξt−1 (d) [ϒ(L) ηt ]
′ ⇒

1∫
0

W (d, r ) dW (r )′ ϒ(1)′, if d > 1, (9)

T −1
T∑

t=1

ξt−1 (d) [ϒ(L) ηt ]
′ p→

∞∑
j=0

π j (d − 1) ϒ∗′
j if

1

2
< d < 1, (10)

T −d
T∑

t=1

ξt (d) [ϒ(L) ηt ]
′ ⇒

1∫
0

W (d, r ) dW (r )′ ϒ(1)′, i f d > 1, (11)

and

T −1
T∑

t=1

ξt (d) [ϒ(L) ηt ]
′ p→

∞∑
j=0

π j (d − 1) ϒ̃ ′
j , if

1

2
< d < 1, (12)

where π j (d − 1) stands for the j-th element in the binomial expansion of �1−d , ϒ̃ j = ∑∞
i= j ϒi

and
p→ denotes convergence in probability.
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Lemma 1 states that, after proper normalisation,
∑T

t=1 ξt (d) [ϒ(L) ηt ]′ converges weakly to
a stochastic integral with respect to a Brownian motion for all d ≥ 1, plus a drift term in the
particular unit root (d = 1) case. By contrast, in the non-persistent case, with 1

2 < d < 1, as

long as
∑∞

j=0 π j (d − 1) ϒ̃ ′
j �= 0, it holds that

∑T
t=1 ξt (d) [ϒ(L) ηt ]′ is Op(T ) for all 1

2 < d < 1,
converging in probability to finite constants.

3. ESTIMATION OF COINTEGRATING VECTORS IN FRACTIONAL SYSTEMS

In order to apply the previous asymptotic results to scenarios of potential economic interest, we
assume that the relevant DGP has the following (reduced form) triangular representation

y1t = µ + θ ′y2t−1 + u1t , (13)

�∗(L)y2t = u2t , (14)

where xt = (y1t , y′
2t )

′ is an n-dimensional vector of variables (n = m + 1) such that y1t is a
scalar NFI process of order d 1, y2t is an m-dimensional vector of NFI time series with �∗ (L) =
diag{�d2 , . . . , �dn }, d1 ≥ d2 ≥ · · · ≥ dn, di ∈ ( 1

2 , 3
2 ), i = 1, 2, . . . , n, and θ = (θ 1, . . . , θ m)′. A

DGP like (13) and (14) appears in various set-ups relevant for economics. For instance, when
m = 1, a well-known application in finance is to check for efficient markets by regressing spot
returns (y1t ) on the lag of the forward premium (y2t−1) in order to test whether θ = 1.

However, before discussing in detail the previous DGP, it is convenient to digress briefly
on the role of timing when NFI processes are present in the model. In conventional models of
cointegration, where xt is a vector of I(1) processes and ut is a vector of I(0) disturbances, it
is well known that the cointegrating relation is preserved under mixed time translations of the
regressors, namely, the cointegrating relationship derived from (13) involving contemporaneous
values of all variables, instead of (y1t − θ ′y2t−1), remains I(0) since �y2t is I(0). However, this
is no longer the case when xt is a vector of NFI processes. In effect, assuming for simplicity that
d 1 = d 2 = · · · = dn = d, the structural form of (13) and (14) becomes

y1t = µ + θ ′y2t + v1t , (15)

�d y2t = u2t ,
1

2
< d <

3

2
, (16)

v1t = u1t − θ ′�y2t , (17)

where �y2t is I (d − 1). Thus, for instance, if 1 < d < 3
2 , v1t is a fractionally integrated process

of order d − 1. However, if 1
2 < d < 1, then v1t will be I(0) since u1t is an I(0) process and it

will dominate the behaviour of �y2t which is I (d − 1) with − 1
2 < d − 1 < 0. Hence, in the NFI

set-up, the transient dynamics of the system are affected by the transformation from reduced form
to structural form and conversely. Consequently, synchronisation issues may well be important
in cointegration with fractionally integrated processes, in contrast to conventional models with
I(1) variables. Moreover, v1t carries information about θ , so that synchronisation does also play
a role in the efficient estimation of long-run relationships among NFI processes.

Once this issue has been clarified, we proceed next to adapt our framework to SSW’s set-up.
To do so, we partition ut conformably with xt, so that ut = (u1t , u′

2t )
′, and assume that ut is
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generated by

ut =
p−1∑
j=1

A j ut− j + εt , (18)

where ε t is an n-dimensional i.i.d. sequence of random vectors with E(ε1) = 0 and covariance
matrix E(ε1ε

′
1) = � > 0, so that ε t =�1/2η t . Assuming that the determinant of the autoregressive

polynomial |In − A1z − A2z2 − · · · − Apzp−1| has all its roots outside the unit circle, where

A j =
 a11, j 0

a21, j a22, j

(1) (m)

 (1)

(m)
,

j = 1, 2, . . . , p − 1, then ut ∼ AR(p − 1) process. Therefore, (13) and (14) can be rewritten as

y1t = α + (
a11,1L + a11,2L2 + · · · + a11,p−1L p−1

)
y1t + −θ ′ (L + a11,1L2 + · · · + a11,p−1L p

)
y2t + ε1t ,

(19)

with α = µ (1 − a11,1 − a11,2 − · · · − a11,p−1) and such that ε1t = ω′ηt = η′
tω is the first element

of ε t , where ω′ = (ω1, ω2, . . . , ωn) is the first row of the covariance matrix �. Note that the
assumption that a12, j = 0, for all j = 1, 2, . . . , p − 1, is needed to ensure that no terms in �∗(L)
y2t appear in (19) in order to mimic the linear-in-levels reduced-form ADL model considered by
SSW in the context of I (d), d = 1, 2, . . . , variables.

For convenience, let us rewrite the reduced form of (19) in an unrestricted way as

y1t = α +
p∑

i=1

φ11,i y1,t−i +
p∑

i=1

�′
12,i y2,t−i + ε1t

= X ′
tβ + ε1t, (20)

where Xt = (1, x ′
t−1, x ′

t−2, . . . , x ′
t−p)′ is the (np + 1) vector of regressors and β denotes the

corresponding vector of regression coefficients, so that a finite lag length dynamic model among
NFI processes is a valid representation. To obtain the asymptotic behaviour of the OLS estimator
of β, β̂, it is convenient to transform the regressors in the way suggested by SSW, i.e. isolating the
various stochastic and deterministic components in different blocks. In particular, the regressors
can be transformed as Zt = DXt, where the non-singular square matrix D is chosen in such a
way that the g-dimensional (g = np + 1) vector Zt has a simple representation in terms of the
fundamental stochastic and non-stochastic components. Notice that X ′

t D′(D′)−1β = Z ′
tγ , with

γ = (D′)−1β, so that the OLS estimators of the original and transformed models are related by
the mapping D′γ̂ = β̂.

In the fractional case, the regressors Zt are related to a vector of so-called canonical regressors,
vt, of dimension g, by means of the moving-average transformation Zt = C(L) vt, where

vt = (η′
t , 1, ξ ′

t (d f ), ξ ′
t (d f −1), . . . , ξ ′

t (di ), . . . , ξ ′
t (d1), t)′, (21)
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so that vt has dimension h = 2 + n( f + 1), f = g − 3. By letting C(L) be a lower triangular
matrix such that (z1t , z2t , z3t , . . . , zg−1,t , zgt)′ equals

C11(L) 0 0 · · · 0 0

0 C22 0 · · · 0 0

C31(L) C32 C33 · · · 0 0
...

...
...

...
...

...

Cg−1,1(L) Cg−1,2 Cg−1,3 · · · Cg−1,h−1 0

Cg1(L) Cg2 Cg3 · · · Cg,h−1 Cgh





ηt

1

ξt
(
d f

)
...

ξt (d1)

t


, (22)

we allow for a model where its elements are individually I(0) or NFI with d ∈ ( 1
2 , 3

2 ), possibly
around a linear time trend. In (22) it is assumed that: (i) z1t contains k1 elements with∑∞

j=0 C11 j C ′
11 j being non-singular, (i i) zjt contains kj elements, j = 3, . . . , g − 1, and (i i i)

Cjj has full row rank kj (possibly equal to zero) for j = 3, . . . , g − 1. Finally, let us further assume
that 3

2 > d1 ≥ d2 ≥ · · · ≥ di ≥ 1 and 1 > di+1 ≥ · · · ≥ d f > 1
2 and define the scaling matrix

�T = diag
{
T 1/2 Ik1 , T 1/2, T Ik3 , . . . , T Ik f +2−i , T di Ik f +3−i , . . . , T d1 Ikg−1 , T 3/2

}
.

In this fashion, application of Lemma 1 leads to the following result concerning the asymptotic
analysis of the OLS estimators γ̂ and β̂.

Lemma 2 Under Assumptions B and C with C j1(L), j = 1, . . . , g, 1-summable, as T → ∞,

(a)

�−1
T

(
T∑

t=1

Zt Z ′
t

)
�−1

T ⇒ �, (23)

where, partitioning � conformably with Zt,

�11 =
∞∑
j=0

C11 j C ′
11 j , �22 = C2

22, �1 j = �′
j1 = 0, j = 2, . . . , g,

� jk = �′
k j =


0, j, k = 3, . . . , f + 2 − i,

C j j

1∫
0

W (d f +3− j , r )W (d f +3−k, r )′ drC ′
kk,

j, k = f + 3 − i, . . . , g − 1,

�gg = 1
3 C2

gh, �2g = �g2 = 1
2 C22Cgh,

�2 j = �′
j2 =


0, j = 3, . . . , f + 2 − i,

C22

1∫
0

W (d f +3− j , r )′ drC ′
j j , j = f + 3 − i, . . . , g − 1,

� jg = �′
g j =


0, j = 3, . . . , f + 2 − i,

CghC j j

1∫
0

r W (d f +3− j , r ) dr , j = f + 3 − i, . . . , g − 1,

� jk = �′
k j = 0, j = 3, . . . , f + 2 − i, k = f + 3 − i, . . . , g − 1.
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(b)

�−1
T

T∑
t=1

Ztη
′
tω ⇒ A, (24)

where, partitioning A conformably with Zt,

A1 = N {0, (ω′ω)�11},

A2 = C22

1∫
0

dW (r )′ω,

A j =



(
C j j +

∞∑
k=1

C j1,k

)
ω, j = 3, . . . , ( f + 2 − i) ,

C j j

1∫
0

W (d f +3− j , r )dW (r )′ω, j = ( f + 3 − i) , . . . , (g − 1) ,

Ag = Cgh

1∫
0

r dW (r )′ω.

(c)

�T (γ̂ − γ ) ⇒ �−1 A, (25)

and

�T (D′)−1(β̂ − β) ⇒ �−1 A. (26)

From Lemma 2, the following remarks apply. Firstly, γ̂ (and β̂) are consistent estimators
when there are deterministic time trends and an arbitrary number of NFI processes, such that the
individual coefficients converge to their theoretical counterparts at different rates. Secondly, when
some transformed regressors are dominated by stochastic trends, their joint limiting distribution
will be non-normal. However, when there are no Zt regressors dominated by stochastic trends,
γ̂ (and β̂) has an asymptotically normal joint distribution. Thirdly, the block diagonality of �

implies that T 1/2(γ̂1 − γ1) ⇒ N {0, (ω′ω)�−1
11 }. Moreover, Theorem 2.2 in Chan and Wei (1988)

applies in our context, implying that A1 is independent of Aj for j > 1, so that T 1/2 (γ̂1 − γ1) is
asymptotically independent of the remaining estimated coefficients.

Thus, as in the case of an integer d, the results above provide a very useful sufficient condition
for estimating coefficients with asymptotically normal limiting distributions. Like in the original
SSW set-up, all that is needed is that a block of coefficients can be written as coefficients on zero
mean I(0) regressors in a model that includes a constant term. As in SSW (pp. 124–127), it is
straightforward to obtain their same general result stating that restrictions involving subsets of
coefficients that can be written as coefficients on zero-mean I(0) regressors in regressions that
include constant terms, can be tested using standard asymptotic distribution theory. Otherwise, in
general, the test statistics will have non-standard limiting distributions.
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4. MONTE CARLO EVIDENCE

This section reports the results from a small Monte Carlo study carried out to examine how the
asymptotic theory derived above performs in finite samples. The following two DGPs have been
considered in order to illustrate the timing-synchronisation issue discussed above.

DGP 1: We have generated two NFI processes (y1t , y2t ) according to definition (1) with the
same memory parameter, d, such that

y1t = y2t + v1t , (27)

�d y2t = v2t (28)

�bv1t = ε1t , v2t = ε2t , (ε1t , ε2t )
′ ∼ N (0, I2), (29)

where b and d (b < d) are assumed to be known and take the values b = {0, 0.1, 0.4} and d =
{0.8, 1, 1.4}. Equations (27)–(29) taken together imply that y1t = y2,t−1 + et where et = v1t +
�1−dv2t . Thus, et is the sum of an I(b) and an I (d − 1) process. Hence, whenever d − 1 < b,
et will be I(b), whereas it will be I (d − 1) when b < d − 1. Hereby, et is I(0) for the following
parameter configurations: b = 0 and d = 0.8, 1. Similarly, it will be I(0.1) for b = 0.1 and d =
1. Finally, it will be I(0.4) for: b = 0, 0.1 and d = 1.4, and b = 0.4 and any of the four values of
d. Accordingly, DGP 1 allows us to generate cases where the variables are cointegrated CI(d, d)
and others where they are CI(d, c) with d − c = b for b > 0 and d − 1 < b, or d − c = d − 1 for
d − 1 > b. Note that, although the theoretical results derived in the previous section are restricted
to the CI(d, d) case, we have extended the simulations to include CI(d, c) processes in order to
check how robust are the results to small deviations from the ideal case where d = c or b = 0.

DGP 2: In this case, y1t and y2t are generated as I(d) processes such that

y1t = y2,t−1 + v1t , (30)

�d y2t = v2t , (31)

where v1t and v2t have the same properties as in DGP1 and the rest of assumptions hold as well.
Thus, in this case, y1t = y2,t−1 + et where now et (= v1t = �−bε1t 1 {t > 0}) is always I(b), for
any value of d.

For both DGPs, the sample size considered in the simulations is T = 100, and the number of
replications is N = 2000. In line with equation (19), the underlying regression model considered
here to carry out inference under each of the DGPs is

y1t − y2,t−1 = µ + β y1,t−1 + θ y2,t−1 + et , (32)

where θ = (π 1 − 1). Then, the following set of hypotheses is considered
CASE 1:

H0 : θ = 0, H′
0 : β = 0, (33)

CASE 2:

H′′
0 : β = 0 and θ = 0. (34)
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The interpretation of each test is as follows. In CASE 1, we tests for parameter restrictions giving
rise to a relationship of the form y1t = y2,t−1 + et, based on t-ratios of individual coefficients
(β and θ ) in a regression with CI(d, d) or CI(d, c) variables. Notice that, in accord with DGP 1,
β = 0 and θ = 0, and that the equilibrium relationship (y1t − y2t ) can be I(0), I(0.1) or I(0.4)
depending on the parameter configurations described above. By contrast, under DGP 2, (y1t −
y2t ) is I(0) when b = 0, and I(b) for b > 0, independently of the value of d. Since the regression
model (32) can be reparameterized so that θ and β become the coefficients on (y1,t−1 − y2,t−1),
that is

y1t − y2,t−1 = µ + (β + θ )y1,t−1 − θ (y1,t−1 − y2,t−1) + et ,

or

y1t − y2,t−1 = µ + β(y1,t−1 − y2,t−1) + (β + θ )y2,t−1 + et ,

then the corresponding t-ratios of H0 : θ = 0 and H′
0 : β = 0 will have a standard limiting

distribution when (y1t − y2t ) is I(0) and a non-standard distribution when (y1t − y2t ) is I(0.1) or
I(0.4).

The test considered in CASE 2 turns out to be a joint F-test for a long-run relationship between
y1 and y2 with cointegrating slope (= 1+θ

1−β
= π1

1−β
) equal to unity. Following a similar argument

as before, it is clear that while β and θ can be individually rewritten as coefficients on zero-mean
I(0) variables when b = 0 and d − 1 < b for DGP 1, and b = 0 for DGP 2, the test of H′′

0 : θ = 0
and β = 0 will always have a non-standard distribution since (β + θ ) is associated with y1,t−1 or
y2,t−1, which under both DGPs are I (d), 1

2 < d < 3
2 .

Table 1 reports both the percentage of rejections (for 5% nominal size) and the empirical
quantiles of the finite sample distributions of the t-test of H0: θ = 0 in CASE 1. The results
for H′

0: β = 0 are omitted since the conclusions drawn for this case are the same. As can be
observed, the results obtained by SSW (for d = 1) extend to the more general case where d >

1/2 and b = 0 for DGP 2. However, they only hold for DGP 1 when et is I(0). Notwithstanding,
the results when et is I(0.1) are not too different (given the standard error of the simulation
(= √

(0.05 ∗ 0.95)/2000 ≈ 0.005). By contrast, when et is I(0.4), the size distortions are very
large. Table 2, in turn, presents the percentage of rejections (for 5% nominal size) in an F-test for
H′′

0: β = θ = 0 in CASE 2. In all cases, the empirical size is significantly larger than the nominal
size. Thus, overall, the experimental evidence presented above is supportive of our theoretical
results.

5. AN EMPIRICAL ILLUSTRATION

In this section, we apply some of the previous results to one of the best known empirical
applications of cointegration, namely the relationship between (logged) consumption (c) and
(logged) disposable income (i d), which has been the subject of many studies over the last two
decades; cf Muellbauer and Lattimore (1995) for an excellent review of the relevant literature. In
particular we focus on the econometric implications of the permanent income hypothesis (PIH)
of consumption, as derived by Stock and West (1988). The PIH implies that ct is an I(1) variable,
more precisely a random walk whose error term is the innovation of permanent income. Further,
if i d

t is I(1) as well, the saving rate st ≈ i d
t − ct will be I(0), namely i d

t and ct will be cointegrated
CI(1, 1). Accordingly, one of the standard tests for PIH in the literature relies upon testing for
the absence of Granger causality of i d

t on ct when lagged consumption is allowed for in the
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Table 1. Tests on individual restrictions.

d\quantiles 0.025 0.05 0.50 0.90 0.95 0.975 Size(5%)

(a) b = 0, DGP 1, CASE 1

0.8 −2.094 −1.696 −0.142 1.193 1.586 1.914 5.6

1.0 −2.059 −1.683 −0.102 1.258 1.661 1.932 5.3

1.4 −2.654 −2.432 −0.761 0.632 1.025 1.203 22.8

(b) b = 0.1, DGP 1, CASE 1

0.8 −2.232 −1.882 −0.453 1.034 1.366 1.685 9.2

1.0 −2.183 −1.762 −0.212 1.114 1.496 1.813 6.9

1.4 −2.721 −2.462 −0.820 0.617 1.019 1.186 23.2

(c) b = 0.4, DGP 1, CASE 1

0.8 −2.812 −2.534 −0.853 0.649 1.123 1.227 22.0

1.0 −2.798 −2.502 −0.796 0.627 1.152 1.342 18.0

1.4 −2.808 −2.593 −0.813 0.597 1.125 1.263 20.6

(d) b = 0, DGP 2, CASE 1

0.8 −2.008 −1.677 −0.082 1.262 1.591 1.930 5.4

1.0 −1.987 −1.665 −0.071. 1.269 1.603 1.938 5.2

1.4 −2.045 −1.703 −0.112 1.245 1.578 1.904 5.7

(a) b = 0.1, DGP 2, CASE 1

0.8 −2.202 −1.765 −0.154 1.203 1.558 1.873 6.7

1.0 −2.121 −1.723 −0.164 1.197 1.576 1.889 5.9

1.4 −2.132 −1.709 −0.172 1.208 1.558 1.823 6.9

(a) b = 0.4, DGP 2, CASE 1

0.8 −2.834 −2.632 −0.796 0.632 1.232 1.286 19.0

1.0 −2.693 −2.567 −0.758 0.644 1.223 1.314 19.3

1.4 −2.815 −2.587 −0.823 0.612 1.143 1.264 20.7

Note: t-test on H0 : θ = 0; T = 100.

regression. Using SSW’s guidelines, t-ratios on the individual coefficients or F-statistics on the
joint significance of the π i ’s in the ADL model

ct = µ + βct−1 + π1i d
t−1 + · · · + πmid

t−m + et , (35)

will follow standard asymptotic distributions since (35) can always be reparameterised in such a
way that π i (i = 1, . . . , l) becomes the coefficient of (ct−1 − i d

t−i ), which is I(0) since it is the
sum of (ct−1 − i d

t−1) and (i d
t−1 − i d

t−i ) which are I(0) under the previous assumptions.
Indeed, using the unrestricted ADL model considered in (20) with m = 1

y1t = α +
p∑

i=1

φ11,i y1,t−i +
p∑

i=1

φ12,i y2,t−i + ε1t , (36)

the restriction that y2t does not Granger-cause y1t corresponds to the null hypothesis

H0 : φ12,1 = φ12,2 = · · · = φ12,p = 0. (37)
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Table 2. Tests on joint restrictions.

d\quantiles Empirical size

(a) b = 0, DGP 1, CASE 2

0.8 14.8

1.0 6.6

1.4 18.9

(b) b = 0.1, DGP 1, CASE 2

0.8 8.8

1.0 7.4

1.4 18.7

(c) b = 0.4, DGP 1, CASE 2

0.8 23.2

1.0 18.6

1.4 22.3

(d) b = 0, DGP 2, CASE 2

0.8 8.5

1.1 7.7

1.4 17.3

(e) b = 0.1, DGP 2, CASE 2

0.8 8.3

1.0 9.5

1.4 13.5

( f ) b = 0.4, DGP 2, CASE 2

0.8 16.8

1.0 15.3

1.4 23.2

Note: F-test on H′′
0 : β = 0 & θ = 0; T = 100. Nominal size 5%.

In general, when y1t and y2t are integrated, SSW and Toda and Phillips (1993) had proved that
the distribution of the test statistic depends on the location of unit roots in the system. If y1t is I(1)
and y2t is I(0), or if both y1t and y2t are cointegrated I(1) processes, then the test statistic has a
limiting chi-square distribution. Otherwise, i.e. if y1t and y2t are not cointegrated I(1) processes,
then the Granger-causality test statistic will not be in general asymptotically chi-square.

From the results in the previous sections we have shown that the same properties apply when y1t

and y2t are NFI processes. Thus, the Granger-causality test statistic will have a limiting chi-square
distribution whenever there is an I(0) linear combination of the variables, say υt = y2t − λy1t ,
so that (36) can be rewritten as

y1t = α̃ +
p∑

i=1

φ̃11,i y1,t−i +
p∑

i=1

φ12,i (υt−i − µc) + ε1t , (38)

where µc is the mean ofυt , α̃ = α + ∑p
i=1 φ12,iµc and φ̃11,i = φ11,i + φ12,iλ, i = 1, . . . , p. Now,

since the Granger-causality restriction in the transformed regression corresponds to the restriction
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that the terms υ t−i − µc do not enter the regression, being these terms zero-mean I(0) regressors
in a regression that includes a constant term, then the resulting test statistics will have a limiting
χ2

p distribution. On the contrary, when either the NFI processes y1t and y2t are not cointegrated or
υ t is not an I(0) process, in general, the resulting test statistics will not have a limiting chi-square
distribution and the appropriate asymptotic distributions need to be tabulated. In this vein, Hidalgo
(2000) has recently introduced a non-parametric Granger-causality test for covariance stationary
linear processes under, possibly, the presence of long-range dependence. The test is consistent
and has power against a sequence of local alternatives converging to the null at the parametric
rate T −1/2. This test has asymptotic relative efficiency greater than zero when compared to other
parametric tests based on a correct specification of the model.

In the sequel, we will test whether the implications of the PIH are verified in the more general
fractional set-up where ct and i d

t are considered to be I(d) variates and st is I(δ), with 1
2 < d < 3

2
and 0 ≤ δ ≤ d. We use real (1992 dollars) quarterly (seasonally adjusted) data of ct (non-durable
goods plus services) and i d

t for the U.S. economy, from 1947: 3 to 1998: 4. Data come from
the Bureau of Economic Analysis and is displayed in Figure 1. We also considered the sample
period 1953: 1–1986: 4 as in Campbell and Mankiw (1989), obtaining similar results which are
not reported for the sake of brevity.

In Tables 3–5 we present the ACF and PACF of the levels and first differences of the series.
As regards ct and i d

t , we observe in Tables 3 and 4 that the autocorrelations decline very slowly,
whereas the partial autocorrelations decline to zero after the first one. On the other hand, the
autocorrelations of the change in both series are small, specially in i d

t . With respect to st, Table 5
shows that the autocorrelations decay at a faster rate, but not so fast as would be expected for a
weakly stationary series. In fact, the first autocorrelation of �st is negative, albeit small in absolute
value.

Table 6 offers the results of applying the well-known ADF test statistic to ct and i d
t . As can

be observed, we cannot reject the null hypothesis of unit root at any conventional significance
level, whereas it is rejected for st. Thus, on the basis of the evidence reported in Tables 3–6,
one is tempted to conclude that ct and i d

t are CI(1, 1). Consequently, the Wald statistic for zero
coefficients on the lags of i d

t in model (35) will have a limiting chi-square distribution.
An OLS regression of ct on a constant, ct−1, and four lags of i d

t yields

ct = 0.0167 +
(0.006)

1.0198ct−1
(0.0237)

+ 0.1066i d
t−1 −

(0.0364)
0.0558i d

t−2
(0.0476)

−0.0809i d
t−3 +

(0.0464)
0.0096i d

t−4
((0.033)

+ res
,

(39)

where the Schwartz information criterion has been used to select the lag length (OLS standard
errors in parenthesis). In this model, the F-statistic for zero coefficients on the disposable income
variables is 4.28. As the (approximate) corresponding critical value is about 2.40, we reject the
joint null hypothesis H0: π 1 = π 2 = π 3 = π 4 = 0 (p-value equal to 0.002), providing evidence
against the PIH.

These findings, however, have been obtained under the assumption that the relevant series are
CI(1, 1). Let us now consider the more general fractional set-up envisaged in this paper. First, we
have estimated the memory parameters of ct, i d

t and st by means of the exact maximum likelihood
(ML) procedure using the package ARFIMA 1.0 in Ox (see Doornik and Ooms, 1999). As the
method is only well defined for stationary processes, we have fitted four ARFIMA(p, δ, q) models
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Figure 1. Consumption, disposable income and saving-rate series. Sample period:1947:1–1998:4.

(p, q = 0, 1) to �ct, �i d
t and �st, and hence d̂ = δ̂ + 1. For the three series, the Akaike and

Schwartz information criteria selected the ARFIMA(0, δ, 0) specification as the appropriate one.
The estimates of δ for �ct and �i d

t are δ̂�ct = 0.17(0.053) and δ̂�i d
t

= 0.08(0.054),
respectively, with standard errors given in parentheses. Therefore, whereas we reject at the 5%
significance level that ct is I(1), we cannot reject that i d

t is I(1). These results are broadly in
agreement with the previous ones (see Tables 3 and 4), namely, that i d

t seems to follows a
random walk process whereas ct is slightly more non-stationary. As δ�ct = δ�i d

t
is necessary

for cointegration in our fractional set-up, we also test for H0 : δ�ct − δ�i d
t

= 0 using the Wald test
proposed by Marinucci and Robinson (2001, p. 234) with estimates of d based this time on the
log-periodogram regression as in Geweke and Porter-Hudak (1983), which yielded very similar
estimates with a bandwidth parameter of 25. The test is asymptotically distributed as χ2(1), and
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Table 3. Autocorrelations of consumption.

Levels First differences

ACF

First 0.986 0.218

Second 0.973 0.147

Third 0.959 0.169

Fourth 0.945 0.026

Fifth 0.931 −0.027

PACF

First 0.986 0.218

Second −0.004 0.104

Third −0.010 0.125

Fourth −0.015 −0.047

Fifth −0.004 −0.060

Note: ACF = Autocorrelation Function; PACF = Partial Autocorrelation
Function.

Table 4. Autocorrelations of disposable income.

Levels First differences

ACF

First 0.986 −0.005

Second 0.972 0.065

Third 0.958 0.034

Fourth 0.944 −0.137

Fifth 0.930 −0.106

PACF

First 0.986 −0.005

Second −0.023 0.065

Third 0.004 0.034

Fourth −0.021 −0.142

Fifth 0.003 −0.115

Note: See Note to Table 3.

yields a value of 1.83 below 3.84, i.e. the 5% critical value. Thus the null hypothesis of equal δ’s
is not rejected.

On the other hand, the estimated δ�st for �st is −0.29 (0.049), i.e. the memory parameter of
st was found to be 0.71. To provide additional evidence on the null hypothesis that the memory
parameter of the saving rate series is d = 1 versus the alternative of d < 1, we make use of the so-
called Augmented Fractional Dickey-Fuller (AFDF) test proposed by Dolado et al. (2002), which
relies upon the statistical significance of the coefficient φ in the following auxiliary regression

�st = µ + φ�da st−1 +
k∑

i=1

ξi�st−i + ekt , (40)
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Table 5. Autocorrelations of saving rate.

Levels First differences

ACF

First 0.906 −0.244

Second 0.834 0.020

Third 0.772 0.034

Fourth 0.708 −0.137

Fifth 0.686 −0.106

PACF

First 0.906 −0.244

Second 0.072 −0.042

Third 0.004 −0.001

Fourth −0.241 −0.255

Fifth −0.015 −0.156

Note: See Note to Table 3.

Table 6. ADF test statistic.

Consumption −2.3040

Disposable income −2.008

Saving rate −3.829∗

Note: Lag-length selection using SIC. The asterisk (∗) denotes significance
at the 0.01 level.

where k = o(T 1/3) and da stands for the proposed value of d under the alternative hypothesis.
Dolado et al. (2002) prove that, provided da is estimated using a

√
T -consistent estimation

procedure, the AFDF test based on the t-ratio on φ asymptotically follows a normal distribution.
In our case, t φ = −4.5 so that we reject the null hypothesis that the saving rate follows an I(1)
process at any conventional significance level. Moreover, we also reject the I(0) null hypothesis
at the 1% significance level on the grounds of the corresponding ML t-ratio.

Further evidence on the fractional nature of st is heuristically provided in Figure 2, the
interpretation of which is as follows. With I(0) series, the log-periodogram should be scattered
near the origin around a constant. If d > 0 the points in the figure should be scattered near the
origin around a negative slope. By contrary, if we overdifferentiate so that d < 0, such a slope
should be positive near the origin. As the slope of the levels is negative and the slope of the changes
seems positive, Figure 2 reinforces our belief that st follows a (mean-reverting) fractional process
along the sample period.

Therefore, according with the results obtained in Section 4, for the specific sample period
considered above, the F-statistic for zero coefficients on the disposable income variables in model
(35) will not have a standard limiting distribution. Hence, the p-value reported just below (39) is
not correct. One possible route to compute the correct critical values of the F-statistic would be
to use bootstrap methods as in Davidson (2002), yet this computation goes beyond the scope of
this paper.
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Figure 2. Log periodogram of the saving-rate series. Part (a) shows the log periodogram of the levels of the
series. Part (b) shows the log periodogram of the first difference of the series. In both cases the periodogram
has been evaluated at natural frequencies.

6. CONCLUSIONS

In this paper we extend the SSW analysis on estimation and hypothesis testing in VAR models with
integrated processes and deterministic components to the more general fractional framework. In
particular, we have considered partial VARs where the conditioning variables are NFI processes
since this is the only finite-lag VAR model compatible with such processes. We show that
SSW’s conclusions remain valid in this more general case. This means that whenever a block of
coefficients can be written as coefficients on zero-mean I(0) regressors in a model that includes
a constant term, they will have a joint asymptotic normal distribution, so that the corresponding
restrictions can be tested using standard asymptotic chi-square distribution theory. Otherwise, in
general, the associated statistics will have non-standard limiting distributions. As in the integer
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case, d = 1, 2, . . . , notice that the statistical procedures analysed here require at least partial
knowledge of which variables are cointegrated and of the memory parameters of the individual
series.

In this respect, two restrictive assumptions made in this paper merit further research. On the one
hand, we have taken for granted that the memory parameters of the relevant NFI processes were
known. However, in practice one may need to estimate the memory parameters of the processes
at the same time that one tests for the null hypothesis. Fortunately, there currently exist a few
rigorous statistical procedures that can be used to extend our results to the less restrictive case
where d is taken to be unknown (cf. Marinucci and Robinson (2001) and Robinson and Hualde
(2003)).

On the other hand, it has been assumed that stationary variables in the partial VAR model
are all I(0). This could be again a clear limitation of our analysis and would be desirable to
extend our analysis to cover cases with stationary fractionally integrated error terms. Addressing
such an issue amounts to deriving weak convergence results for stochastic integrals having
multivariate fractional integrands and integrators. In this respect, recent results by Davidson
(2003), considering fractional integrands and integrators, with a Type-I definition of fBM could
shed light for future research on the corresponding convergence results with the Type-II definition
used in this paper.
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APPENDIX

Proof of Lemma 1. Define γt = ∑∞
k=0 (Et ut+k − Et−1ut+k) = ϒ(1) ηt and κt = ∑∞

k=1 Et ut+k =∑∞
j=0

∑∞
i= j+1 ϒiηt− j = ∑∞

j=0 ϒ∗
j ηt− j = ϒ∗(L)ηt , ϒ

∗
j = ∑∞

i= j+1 ϒi , so that ut = γ t + κ t−1 − κ t , where
Etut+k = E(ut+k |�t ), κ t is strictly stationary and square integrable (cf Phillips and Solo 1992) and �t is
the smallest sigma-field containing the past history of the innovation sequence. This decomposition allows
us to write

T∑
t=1

ξt−1(d) (ϒ(L)ηt )
′ =

T∑
t=1

ξt−1(d)η′
tϒ(1)′ −

T∑
t=1

ξt−1(d)
(
ϒ∗(L)�ηt

)′
. (A.1)

Let ℘T (r ) = T −1/2℘[T r ], ℘t = ∑t
i=1 ηi . Under the assumptions of the lemma,

(
T 1/2−dξt (d), ℘T (r )

) ⇒
(W (d, r ) , W (r )), and since {η t , �t} is a square integrable martingale difference sequence, it follows
from Hansen (1992, Theorem 2.1) that

T −d
T∑

t=1

ξt−1(d)η′
tϒ(1)′ ⇒

1∫
0

W (d, r ) dW (r )′ ϒ(1)′. (A.2)

Hence, to prove expressions (9) and (10) it only remains to show the convergence of "T =
T −d

∑T
t=1 ξt−1(d) (ϒ∗(L)�ηt )

′ = T −d
∑T

t=1 ξt−1(d − 1)κ ′
t−1 − T −dξt−1(d)κ ′

t = "1
T − "2

T , say. Since the
limit process is non-random, it is sufficient to consider the case where "T is scalar.

As regards the term "1
T , notice that for all d > 1

2 ,

sup
t≤T

T −d |ξt−1(d)κt | ≤ sup
t≤T

∣∣T 1/2−dξt−1(d)
∣∣ T −1/2 sup

t≤T
|κt | p→ 0 (A.3)

because supt≤T |ξt (d)| = Op(T d−1/2) and T −1/2 supt≤T |κt | p→ 0. See Hall and Heyde (1980, pp. 142–43).
Next, with regard to the term "2

T , we obtain the following results for different values of d in decreasing
order.

Firstly, for all d > 3
2 , we have that E |T −d

∑T
t=1 ξt−1(d − 1)κt−1| is upper bounded by

T −3/2
T∑

t=1

E
(∣∣T 3/2−dξt−1(d − 1)

∣∣ ∣∣ϒ∗(L)ηt−1

∣∣)
≤ T −3/2

T∑
t=1

(
E

(
T 3/2−dξt−1(d − 1)

)2
)1/2 (

E
(
ϒ∗(L)ηt−1

)2
)1/2

≤ T −1
T∑

t=1

(
E

(
T 3/2−dξt−1(d − 1)

)2
)1/2

T −1/2

(
E

(
η2

1

) ∞∑
j=0

∣∣ϒ∗
j

∣∣) → 0,

21



using Markov’s inequality, where the last line follows from

T −1
T∑

t=1

(
E

(
T 3/2−dξt−1(d − 1)

)2
)1/2

⇒
∫ 1

0
E

(
W (d − 1, r )2

)1/2
dr < ∞

and from ϒ∗(L) being absolutely summable.
Secondly, when d = 3

2 , ξt (d − 1) is an NFI process of order 1
2 for which the invariance principle (7)

does not apply. Nonetheless, in this case Liu (1998, Theorem 2.2) proved that, under the assumptions of
the lemma, (log−1/2T ) ξ [Tr](d − 1) ⇒ KrW(1) where K denotes a positive constant independent of r. Thus,
using again Markov’s inequality, it turns out that when d = 3

2 , E |T −3/2
∑T

t=1 ξt−1( 1
2 )κt−1| is upper bounded

by

(
log1/2 T

)
T −3/2

T∑
t=1

E

(∣∣∣∣log−1/2 T ξt−1

(
1

2

)∣∣∣∣ |ϒ∗(L)ηt−1|
)

≤ T −1
T∑

t=1

(
E

(
log−1/2 T ξt−1

(
1

2

))2
)1/2 (

log1/2 T
)

T −1/2

(
E

(
η2

1

) ∞∑
j=0

∣∣ϒ∗
j

∣∣) → 0,

since T −1
∑T

t=1(E(log−1/2 T ξt−1( 1
2 ))2)1/2 ⇒ ∫ 1

0 E(K 2r 2W 2(1))1/2dr < ∞.
Thirdly, for the range 1

2 < d < 3
2 , ξt (d − 1) becomes a stationary fractionally integrated process of order

δ := d − 1, say, with − 1
2 < δ < 1

2 . We proceed in this range by first considering the case where 1 < d < 3
2 .

Since 0 < δ < 1
2 , E |T −d

∑T
t=1 ξt−1(δ)κt−1| is upper bounded by

T −d
T∑

t=1

(
E (ξt−1(δ))2

)1/2

(
E

(
η2

1

) ∞∑
j=0

∣∣ϒ∗
j

∣∣) = O(T −δ). (A.4)

Consider now the other relevant range where 1
2 < d < 1, and hence − 1

2 < δ < 0. Define #t ≡ ξ t (δ)κ t −
E(ξ t (δ)κ t ). Given that #t = (

∑∞
j=0 π j (δ) ηt− j )(

∑∞
i=0 ϒ∗

i ηt−i ) − E(ξt (δ)κt ) = ∑∞
j=0

∑∞
i=0 π j (δ)ϒ∗

i

[ηt− jηt−i − E(ηt− jηt−i )], with π j (δ) standing for the j-th element in the binomial expansion of �−δ , it
turns out that

E |E(#t |�t−m)|

= E

∣∣∣∣∣ ∞∑
j=m

∞∑
i=m

π j (δ) ϒ∗
i [ηt− jηt−i − E(ηt− jηt−i )]

∣∣∣∣∣
≤ E

( ∞∑
j=m

∞∑
i=m

|π j (δ)ϒ∗
i ||[ηt− jηt−i − E(ηt− jηt−i )]|

)

≤ C1

∞∑
j=m

∞∑
i=m

∣∣π j (δ) ϒ∗
i

∣∣ = C1

∞∑
j=m

∣∣π j (δ)
∣∣ ∞∑

i=m

∣∣ϒ∗
i

∣∣ ,
where C 1 is a positive constant, m > 0. Define ζm := ∑∞

j=m |π j (δ)| ∑∞
i=m |ϒ∗

i |. As π j (δ) and ϒ∗ j are
absolutely summable sequences, limm→∞ζ m = 0. It follows that #t is an L1-mixingale with respect to �t .
Indeed,

E |#t | ≤ C1

∞∑
j=0

∞∑
i=0

∣∣π j (δ) ϒ∗
i

∣∣ = C2 < ∞,
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whence, for k > 0,

E (|#t | 1 {#t > k}) ≤
∞∑
j=0

∞∑
i=0

∣∣π j (δ) ϒ∗
i

∣∣ {E
∣∣[ηt− jηt−i − E

(
ηt− jηt−i

)]∣∣r}1/r

× {
k−1 E |#t |

}(r−1)/r ≤ C3

(
C2

k

)(r−1)/r ∞∑
j=0

∞∑
i=0

|π j (δ)ϒ∗
i |, (A.5)

where C 2, C 3 denote positive constants, r > 1, and the first inequality follows using Hölder’s inequality.
As

∑∞
j=0

∑∞
i=0

∣∣π j (δ) ϒ∗
i

∣∣ is finite, (A.5) can be made as small as desired by choosing k sufficiently large.
Thus, #t is uniformly integrable.

As ξ t (δ)κ t − E(ξ t (δ)κ t ) is an uniformly integrable L1-mixingale, it follows from Hansen (1992,
Corollary to Theorem 3.3) that

sup
t≤T

∣∣∣∣∣T −1
t∑

i=1

(ξi (δ)κi − E (ξi (δ)κi ))

∣∣∣∣∣ p→ 0, (A.6)

noting that

T −1 E

(
T∑

t=1

ξt−1(δ)
(
ϒ∗(L)ηt−1

)′
)

=
∞∑
j=0

π j (δ) ϒ∗′
j . (A.7)

Expressions (9) and (10) finally follow by collecting the previous results.
As regards (11) and (12), they follow from both (9) and (10) and the use of the identity ξ t (d) = ξ t−1(d)

+ ξ t (δ) so that

T∑
t=1

ξt (d) (ϒ(L)ηt )
′ =

T∑
t=1

ξt−1(d) (ϒ(L)ηt )
′ +

T∑
t=1

ξt (δ) (ϒ(L)ηt )
′ , (A.8)

and by noting that, as in (A.7),

T −1
T∑

t=1

ξt (δ) (ϒ(L)ηt )
′ p→

∞∑
j=0

π j (δ) ϒ ′
j . (A.9)

Notice also that in the particular unit root (d = 1) case, (A.7) and (A.9) become ϒ∗′
0 = ∑∞

j=1 ϒ ′
j and ϒ ′

0,
respectively, yielding (8). �
Proof of Lemma 2. Straightforward using Lemma 1, Lemma 2 in SSW and the relationships D′γ̂ = β̂ and
�T (γ̂ − γ ) = {�−1

T

∑T
t=1 Zt Z ′

t�
−1
T }−1{�−1

T

∑T
t=1 Ztη

′
tω

′}. �
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