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Abstract

The limit properties of the testing sequence underlying the Dickey-Pantula test for a double unit root in a time series are
derived when the true data generating process is assumed to be nonstationary fractionally integrated.  1997 Elsevier
Science S.A.
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1. Introduction

Although the stochastic behaviour of many economic time series has been reported in the literature
to be well approximated by integrated processes of order one, denoted I(1), there are some series,
especially nominal ones (e.g., money holdings, prices, wages, etc.) which appear to be potentially
better described as I(2) processes. Considering the problem of testing for a double unit root, Dickey
and Pantula (1987) and Pantula (1989) have suggested a popular sequential testing procedure in
applied work which takes the largest number of unit roots under consideration as the first maintained
hypothesis and then decreases the order of differencing each time the current null hypothesis is
rejected.

In general, I(1) and I(2) processes can be considered as particular cases of the more general family
of fractionally integrated processes, denoted FI(d). As is well-known, a stochastic process y is calledi

dFI(d) if D y | I(0), where d is allowed to be a real number rather than just an integer one. Whent
1
]d $ , the series is nonstationary, denoted NFI(d). Sowell (1990) derived the limit distribution of the2

standard Dickey-Fuller (DF) for a single unit root, based upon the t-statistic when the true process is
1 3
] ]NFI(d) with d[( , ), showing that it diverges to 2`(1`) when d,1 (d.1). Hence, the t-test is2 2

1 3
] ]consistent for d[( , 1) and has zero power for d[(1, ).2 2
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In this paper we extend the previous arguments to the sequential testing procedure advocated by
Dickey and Pantula (DP), allowing the analysis to cover the case of I(2) processes. We find that
Sowell’s results can be generalized to these higher integrated processes. In fact, the properties of the
testing sequence are derived for all values of d within the nonstationary range and thus can be
extended to testing for three or more unit roots in the presence of NFI(d) alternatives. Sketches of the
proofs are relegated to Appendix A.

2. The model and the Dickey-Pantula test

Throughout the paper, we shall assume that the true data generating process (DGP) of y is thet

following NFI process

d
D y 5 ´ , (1)t t

21
]where d$ , ´ |iid(0, d ) and y 50 for t#0. Noticing that d can always be decomposed as d5a 1d,t 02

1
]where a 51, 2, 3, . . . and ud u, , (1) can be reparameterized as2

a d
D y 5h , D h 5 ´ , (2)t t t t

that is, any NFI(d) process can be expressed as an integer I(a) process with stationary and ergodic
fractionally integrated SFI(d ) innovation.

2 tLet s 5var(S ), where S 5o h . The growth rate of this partial sums’ variance was proved byhT T t j51 j

Sowell (1990) to be equal to

2
p s G(1 2 2d )2122d 2 2
]]]]]]]]T s → ;u , (3)hT h(1 1 2d )G(1 1 d )G(1 2 d )

say, where G(?) denotes the gamma or generalized factorial function. Furthermore, under the
gadditional assumption that ´ verifies Eu´ u ,` for g$maxh4,28d /112d j, the following functionalt t

central limit theorem applies to this type of process:

r

121 d
]]]s S ⇒ E(r 2 s) dW(s), ( ; W (r)) , (4)hT [Tr] dG(1 1 d )

0

where W(r) is a standard Brownian motion on [0,1] associated with the ´ sequence and the symbolstp
‘‘⇒’’ and ‘‘ →’’ denote weak covergence and convergence in probability, respectively.

ˆConsider now the two steps involved in the DP sequential tests. In the first stage, the t-ratio of b in1

the following regression

2 ˆD y 5 b Dy 1 res. , (5)t 1 t21

is compared with the corresponding DF critical value in a one-sided lower-tail test in order to test the
null hypothesis of two unit roots ( y |I(2)) against the alternative of a single unit root ( y |I(1)). Then,t t

the following theorem holds.
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ˆTheorem 1. Under DGP(2), the t-test of b in Eq. (5) verifies that1

p1 / 2(i) if 0.5#d,1.5, t 5O (T ) and t → 2 `,b p b1 1
p22d(ii) if 1.5#d,2, t 5O (T ) and t → 2 `,b p b1 1

(iii) if d52, t 5O (1),b p1 pd22(iv) if 2,d,2.5, t 5O (T ) and t →`, andb p b1 1
p1 / 2(v) if d$2.5, t 5O (T ) and t →`.b p b1 1

As expected, these properties mimic those obtained by Sowell (1990) in the test of the null of a
single unit root versus the alternative of stationarity. Thus, the t-ratio only has a well-defined
asymptotic distribution when d52, it is a consistent test for d,2 and has zero power when d.2.

Next, if the null hypothesis above is rejected, the second stage in the DP procedure proceeds to test
ˆthe null of y |I(1) against the alternative of y |I(0) computing the t-ratio of b in the regressiont t 2

model

2 ˆ ˆD y 5 b Dy 1 b y 1 res. , (6)t 1 t21 2 t21

and comparing it with the DF critical value in a one-sided test. In this case, the following theorem
applies.

ˆTheorem 2. Under DGP (2), the t-test of b in (6) verifies that2

p12d(i) if 0.5#d,1, t 5O (T ) and t → 2 `,b p b2 2

(ii) if d51, t 5O (1),b p2 pd21(iii) if 1,d,1.5, t 5O (T ) and t →`, andb p b2 2
p1 / 2(v) if d$1.5, t 5O (T ) and t →`.b p b2 2

The most remarkable feature of this result is that it mimics the findings in Theorem 1. The relevant
t-statistic has only a well-defined limiting distribution when d51. If d,1, the test will be consistent
and if d.1, it will have zero power. Finally, if 1,d,2, the sequential testing procedure will classify
the process as an I(1) one. For instance, if d51.8, then, following Theorem 1, the null hypothesis of
two unit roots is asymptotically rejected in a one-sided test whereas, following Theorem 2, the null of
a single unit root is not rejected. Consequently, the DP test classifies a NFI(1.8) as an I(1) process as
the sample size gets sufficiently large.

To check these results, we generated such a process based on 5000 replications with T5100 and
T5250 observations, with standard Gaussian innovations. For T5100 and considering one-sided tests

1with level 0.05, the percentage of rejections in the first stage of the DP procedure is 39.3% whilst the
corresponding proportion in the second stage is 17.7%. For T5250, the rejection rates are 68.1% and
4.3%, respectively. In line with the Monte Carlo evidence reported in Diebold and Rudebusch (1991)

1All computations were done in S-plus.
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and Hassler and Wolters (1994), the previous results point out that asymptotic considerations can be
severely misleading in finite samples, since the power of unit root tests can be very low within the
Euclidean interval ud21/2u of the corresponding null hypothesis. As Sowell (1990) conjectures, this
is because the limit distributions of the t-statistics depend upon two underlying random variables
(expressions (7)-(9) in Appendix A) with a slow rate of convergence to its asymptotic distribution for
a plausible range of d values.

3. Concluding remarks

Theorems 1 and 2 characterize the asymptotic behaviour of the DP testing sequence under
fractional alternatives, extending previous results on the properties of DF unit root tests.

Our basic conclusion is that mechanical application of the DP procedure can lead to misleading
results. Moreover, this conclusion can be extended to other testing approaches within the same family,
such as those proposed by Hasza and Fuller (1979), Sen and Dickey (1987) and Haldrup (1994).

Finally, although, for the sake of brevity, we have confined the results to a maximum of two unit
roots, the above findings can be easily generalized to the more general sequential procedure consisting
of testing a null hypothesis of k unit roots against an alternative of k21 unit roots. Namely, as T↑`

the sequence will stop when the true d verifies the inequality k21,d,k.

Appendix A

Since the proofs of the results are lengthy in detail we shall only report their main steps and the
relevant rates of convergence. Full detailed derivations are available from the authors upon request.

Proof of Theorem 1. Under model (5), the least squares slope estimator and its corresponding t-ratio
have the following expressions:

2O(Dy )(D y )t21 tˆ ]]]]]b 5 ,1 2O(Dy )t21

and

2O(Dy )(D y )t21 t
]]]]]]t 5 ,1 / 2b 21 F Gŝ O(Dy )t21

2 21 2 2 T 3 5ˆˆ ] ]where s 5T o(D y 2b Dy ) and with the symbol o denoting o . When d[[ , ), d521dt 1 t21 t51 2 2

and Dy |NFI(d21). Consequently, using (3), (4) and the continuous mapping theorem (CMT), wet
2 2d22 2have that o(Dy ) 5O (T ). In the same manner, it is rather direct to prove that o(Dy )(D y )5t21 p t21 t

2 2 2 21 1
] ](Dy ) 2 o h . Hence, u 5s , W (r)5W(r) andT t h d2 2

1 121 2 2 2 2
] ]T O(Dy )(D y ) ⇒ s [W(1)] 2 s , (A.1)t21 t 2 2
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when d52,

1122d 2 2 2
]T O(Dy )(D y ) ⇒ u [W (1)] , (A.2)t21 t h d2

5
]when 2,d, , and2

2
p s G(1 2 2d )21 2

]]]]T O(Dy )(D y ) → 2 , (A.3)t21 t 22G (1 2 d )

21 322d3 ˆ ˆ]when #d,2, meaning that, when d$2 b 5O (T ), whereas b 5O (T ) in the case where1 p 1 p2

d,2.
p2ˆWith regard to the t-Student statistic, first notice that it is straightforward to prove that s →

d221 1
] ]var(h ) for all d [(2 , ), from which it follows that t 5O (1) when d52, t 5O (T ) if d.2t b p b p2 2 1 1p p22dsuch that t →` given that (A.2) is a positive random variable, while t 5O (T ) with t → 2 ` ifb b p b1 1 1

d,2, since (A.3) is negative.
25

]When d$ , then a $3, Dy |NFI(d21) and D y |NFI(d22). In this case, using (3), (4) and thet t2
12a 21 aCMT, it can be proved that T s S ⇒W (r), a $1. Hence, some manipulation yieldshT [Tr] d

2 2d22 2 2d23 21 2 2d25ˆ ˆo (Dy ) 5O (T ) and o(Dy )(D y )5O (T ), meaning that b 5O (T ), s 5O (T )t21 p t21 t p 1 p pp1 / 2and t 5O (T ) with t →`.b p b1 1
21 3

] ]Finally, when d[[ , ), Dy 5h |SFI(d ) so that D y becomes a non-invertible (but stationary)t t t2 2
2ˆ ˆfractionally integrated process. In this case, it is straightforward to prove that b 5O (1), s 5O (1)1 p pp1 / 2and t 5O (T ) with t → 2 ` jb p b1 1

Proof of Theorem 2. Under model (6),the least squares slope estimate of y and its correspondingt21

t-ratio have the following expressions:

2 2 2F GF G F GF GO y D y O (Dy ) 2 O y Dy O Dy D yt21 t t21 t21 t21 t21 tˆ ]]]]]]]]]]]]]]]]]]]]b 5 ,22 2 2F GF G F GO y O (Dy ) 2 O y Dyt21 t21 t21 t21

and

b̂2
]t 5 ,b2 ŝb2

with

2F GO (Dy )t212ˆ ˆ ]]]]]]]]]]]]]]s 5 s .2 2b 2 22 F GF G F GO y O (Dy ) 2 O y Dyt21 t21 t21 t21

d2 25
]Now, proceeding as in Theorem 1, it can be proved that, when d$ , o y 5O (T ),t21 p2

2d21 2 2d21 21ˆ ˆo y Dy 5O (T ) and o y D y (T ), meaning that b 5O (T ) and b 5O (1). Hence,t21 t21 p t21 t 2 p 1 p
2 21 2 2 2 2d23ˆ ˆˆ ˆgiven that s 5T o(D y 2b Dy 2b y ) , it follows that s 5O (T ) which, in turn,t 1 t21 2 t21 pp2 23 1 / 2ˆimplies that s 5O (T ), and hence, t 5O (T ) such that t →`.b p b p b2 2 2
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2 2d223 5
] ]When d[[ , ), D y |SFI(d ) and then o y h 5O (T ). Consequently, it is direct to provet t21 t p2 2 p
22 2 2d23 23 1 / 2ˆ ˆ ˆthat b 5O (T ), s 5O (T ), s 5O (T ) and t 5O (T ) such that t →`.2 p p b p b p b2 2 2

1 3
] ]Lastly, in the case where d[[ , ), Dy |SFI(d21). Therefore, after some direct but tedioust2 2

21 2ˆ ˆ ˆcalculus it can be deduced that when d51, b 5O (T ), b 5O (1), s 5O (1) and t 5O (1),2 p 1 p p b pp 2
21 2 d213 ˆ ˆ] ˆwhereas if 1,d, , b 5O (T ), b 5O (1), s 5O (1) and t 5O (T ) with t →`. Converse-2 p 1 p p b p b2 2 2

2 122d1 ˆ ˆ] ˆly, when #d,1, b 5O (1), s 5O (1) and b 5O (T ) with nonpositive support so that1 p p 2 p2
p12dt 5O (T ) and t → 2 `. This last statement completes the proof of the theorem. jb p b2 2
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