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CLUSTERING AND CLASSIFYING IMAGES WITH LOCAL AND
GLOBAL VARIABILITY

ANDREA GIULIODORI, ROSA LILLO AND DANIEL PEÑA

Abstract. A procedure for clustering and classifying images determined by
three classification variables is presented. A measure of global variability based

on the singular value decomposition of the image matrices, and two average

measures of local variability based on spatial correlation and spatial changes.
The performance of the procedure is compared using three different databases.

1. Introduction

One of the goals in exploratory image analysis is to classify images. We are
interested in finding characteristic variables in an image which are fast to compute
and can be used for classification and clustering. Some classification techniques
used in this area include the linear discriminant functions proposed by Liu et al.
(1993), the nearest neighbors method applied by Hastie and Simard (1998), the
support vector machine proposed by Vapnik (1995) and improved by Marron and
Todd (2002), and principal component analysis proposed by Turk and Pentland
(1991). Additionally, other interesting studies in this field are those by Hastie and
Tibshirani (1996), Vailaya et al. (1998), Le Cun Y. (1995), Vailaya et al. (1998)
and Herwig et al. (1999). The purpose of this paper is to propose a new way to find
distinctive features in the image to build clusters. We introduce three classification
variables. The first one is a measure of the global variability, based on the singular
value decomposition of the image as a matrix, the second and third are average
measures of local variability, one based on spatial correlation and the other on
spatial changes.

A color digital image can be represented by 3 matrices of N rows and M columns.
These matrices represent the three primary colors produced by the light, which are
red (R), green (G) and blue (B). Each matrix depicts one dimension of a picture
and consists of elements xij , with i = 1, ..., N and j = 1, ...,M , that represent color
intensity of a pixel (picture element) extracted from digitized images. Therefore, the
color of a pixel is the combination of the three elements that constitute the vector
[R(x, y), G(x, y), B(x, y)]. Then, each pixel can be defined as a function f(x, y)εR3.
All the elements xij are in the range [0,255], where the value 0 represents the black
color and the value 255 the white color. In order to facilitate data manipulation,
this range is turned into the interval [0,1].

A preliminary visual inspection of an image provides an idea of its color vari-
ability. For instance, a picture of the blue sky has low variability; conversely an
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image of a rainbow has higher variability in its structure. This variation in colors
can be used as a criterion to classify images. The forgoing representation of an im-
age allows to calculate different correlation and variability measures in a particular
matrix.

The paper is organized as follows. In the next section we review briefly the
statistical structure of an image. Section 3 introduces the variables we propose
as summaries of the image, and comment on their properties and expected dis-
criminant power. Section 4 presents the experimental results of the application of
classification and grouping techniques through two illustrative examples. Section 5
extend these results to other data sets. Finally, Section 6 concludes and proposes
some future research.

2. Classification variables

Classification represent one of the most important applications in Digital Images
Processing which require the definition of discriminant variables. In this paper we
propose to use three variables which describe the variability and spatial correlation.

The first variable is the local variability (δ), performed by Benito and Peña
(2004). The δ(X) is a smoothing measure that represents the spatial dependence
within pixels. The measure is obtained through the bi-dimensional derivative and
is defined as follows. Given a pixel xij , the derivative of the intensity in this point
is equal to

∇ij(X) = xi+1,j+1 − xi+1,j − xi,j+1 + xi,j

and the local variability is given by

(1) δ(X) =
1
d̃

m−1∑
n−1

J−1∑
j=1

|∇ij(X)|

where d̃ = (I − 1) × (J − 1) and the notation | • | represents the absolute value.
The coefficient δ assumes a value equal to 2 for the most complex image, since the
maximum value of ∇ij(X) is 2 when xij is standardized values of pixels. Images
with variability in colors show high local variability.

The second variable is the effective variance denoted as Ve(X). This concept
is introduced by Peña and Rodriguez (2003) to compare the variability of sets of
variables with different dimensions. The measure can be defined as follows. Let X
be a matrix of n×m, then Ve is given by

(2) Ve(X) = (φ1φ2....φre
)1/re

where φi are the singular values of the matrix XTX or XXT . Besides, the value
of re denote the effective range of X and represents the number of eigenvalues for
which a relative error is less than ε; that is,

re = {]φ/ ||X − X̂k||
||X||

< ε}
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where X̂k is given by the singular decomposition of X, using only the k greatest
singular values and theirs respective eigenvectors

X̂k = VkD
1/2
k UT

k

where V and U are orthogonal matrices and theirs columns are the eigenvectors of
matrices XXT and XTX, respectively. D is a diagonal matrix and its elements are
the singular values of XXT or XTX. Then,

(3) ||X − X̂k|| =

√√√√ n∑
i=1

m∑
j=1

(xij − x̂ij)2

Solving (3), the final value of k will be the effective range re. To compute Ve(X)
we include the greater singular values 1 for which the relative error are less than a
sufficiently small value denoted as ε. As a result, of applying this measure to im-
ages, we observe that pictures with variability in colors show high effective variance.

The third variable to be considered is the correlation (ρh) between one pixel and
its neighborhood located to a h distance, letting h=1,....15. The values of h were
defined in accordance with the size of images. For greater values of h we would
have a large proportion of zeros when calculating the correlation for edge pixels, in
small-sized images. The calculation was done for each pixel, taking into account
the ordination per row. In the simplest version, ρ is defined by:

(4) ρh =

∑n
i

∑m
j

∑
neigh

(Xij − X̄)(Xneigh
− X̄)∑n

i

∑m
j

∑
neigh

(Xij − X̄)2

where Xij is the element ij of the correspond matrix in the selected image. Its
value is between [0,1]. X̄ is the total mean of all pixels in the matrix X. Xneigh

corresponds to the value of the pixel located to distance h of the element Xij

(neighbor h). The values n and m are the number of rows and column respectively,
in the matrix X. And h is the order of the spatial correlation, that is the distance
between Xij and its neighbors.

In all cases the correlation decrease as we move away from the central pixel.
Some images present a high correlation at the first order and decrease slowly along
the h-order. Others show a smaller spatial correlation at the first order (h = 1)
and even smaller value at greater order of h. As a generalization, each image has a
similar spatial correlation structure for the three RGB matrices.

3. Methodology

In order to illustrate the classification power of the variables proposed in Section
2, we apply classification and grouping methods to three different datasets. The
first one is a subset of 379 color images, already analyzed in Wang et al. (2001). To
classify, we select images of same size (128×96) in order to avoid possible distortions
in the selected measures. The set contains different types of pictures such as foods,

1The singular value is the square root of the eigenvalue. φi =
√

λi.
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buildings, monuments and landscapes (see Appendix 7.1). To simplify, this dataset
is called as WWL.

The second dataset is collected from “google images” section. We collect 379
heterogeneous google color images (landscapes, ID cards, babies, animals, paintings,
and the like) with approximately the same size than the previous one, i.e. (128×96).
This dataset is denoted as GOOGLE (see Appendix 7.2).

The third database is a set of digits that were clipped from images of handwritten
ZIPCODES. The original dataset was treated and improved by Bottou et al. (1994)
and Le Cun Y. (1995), removing the unrecognizable digits from the set. Our subset
is comprised for 7291 digits from 0 to 9 (10 classes), represented as a graycolor image
of 16×16 dimension (see Appendix 7.3). We labelled this database as ZIPCODES.

Considering the measures proposed in Section 2, we obtain the following infor-
mation for each image. First, we calculate the Local Variability (δ). Calculations
are done for each RGB matrix obtaining one vector of three elements per variable
for every image. In symbols, the vector is: δ = [δR, δG, δB ].

To calculate the Effective Variance (Ve) we use matrix Xdev, instead of the
original matrix X, as the deviation of the mean per row (or column, the smaller) in
order to remove the mean effect. That is, Xdevi = Xi−Xmean where the resulting
values of Xdev correspond to each value of the matrix X minus the mean of its
row (or column). Besides we choose a norm equal to

√∑
(diag(X ′X)), ε = 0.01

and the initial value of k = 0.3× [min(n,m)]. Those values were chosen in order to
include in the calculation the greater non-null eigenvalues. Calculations are done
for each RGB matrix, obtaining one vector of three elements per variable for every
image. In symbols, Ve = [VeR, VeG, VeB ].

The Spatial Correlation (ρ) is obtained for each RGB matrix, taking the h-order
from 1 to 15. As result, we have a vector of 15 elements (h = 1, ..., 15) for each
RGB matrix of every image. That is,

ρR = [ρR1, ρR2, ..., ρR15]
ρG = [ρG1, ρG2, ..., ρG15]
ρB = [ρB1, ρB2, ..., ρB15]

We calculate and analyze the selected variables in all databases, observing the
same characteristics in the three. However, the following results correspond to
WWL one. There exists a high correlation among ρi of all orders given by the
presence of spatial dependence. The application of principal component analysis
technique (PCA) shows redundancy among ρ of different orders. The variability in
the set is explained largely by ρ1, with minimum contribution of spatial correlation
of order 2 to 15. Consequently, superior orders of ρ are excluded from the analysis.
Moreover,the analysis of variance to contrast the equality of means among ρR1, ρG1

and ρB1 indicates that at least one ρi1 mean is significative different to the other
(see Appendix Table A.2). Hence, we propose to use the Mean Spatial Correlation
of order 1 ρ̄1 and ∆ρ1 as variables to be included in classification and grouping
images. Where,

ρ̄1 = (ρR1 + ρG1 + ρB1)/3
∆ρ1 = max(ρR1, ρG1, ρB1)−min(ρR1, ρG1, ρB1)
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By the analysis of variance, Ve and δ evidence no meaningful difference among RGB
matrices (see Appendix Table A.2). Therefore, we use the average of each variable to
make the classification; that is, Average Local Variability (δ̄) and Average Effective
Variance (V̄e). Where,

δ̄ = (δR + δG + δB)/3
V̄e = (VeR + VeG + VeB)/3

The previous variables will be used in cluster procedure to the whole image. Ho-
wever, in classification we also obtain the variables to pieces of images. This tech-
nique will be explained in Section 5.

4. Clustering images

The method consists on the classification of objects into different groups through
the partitioning of a data set into subsets (clusters). The data in each subset share
some common trait, often proximity, according to some defined distance measure.
The exploratory analysis carried out in the previous section suggests a way to build
groups, due to the discriminant power the analyzed variables exhibit in the set
(see Fraiman et al. (200)). In cluster formation we use the WWL database of color
images. Based on classification variables and because of the high dimension of data,
we performed the ”k-means” algorithm method to form the groups. The calculated
measures suggest a way to split up groups of pictures with homogeneity in color
(small variability and high correlation) from others. By visual inspection of WWL
dataset we can deduce that there are approximately three groups of pictures clearly
defined: 213 landscapes, 41 buildings and 125 foods. Then, in order to apply the
k-means algorithm we initially choose an arbitrary number of groups, i.e. k = 3,
trying to identify the exact number which shows differences between images.

In order to check the results obtained in Section 2, at the beginning we try
to group, by considering all variables belonging to each RGB matrix. We confirm
empirically the fact that there exists redundancy among Vei, δi and ρi for each RGB
matrices. Then, the variables used to perform cluster technique are the V̄e, the δ̄, the
ρ̄1 and the ∆ρ1. The classification begins considering the fourth selected variables
and forming 3 groups. The results suggest that we have 2 mains groups and another
one comprised of only fifteen pictures which, according to the variables, do not
constitute a cluster by itself. Then, we consider k = 2 and the resulting groups
are well differentiated. One of them, identified as cluster 1, mainly constituted
by landscapes. The other one, identified as cluster 2 is constituted by the rest
of pictures. Interpreting the outcomes we can note in the groups the following
features: cluster 1: broadly speaking, landscapes have more homogeneity in color.
Consequently, they show a high spatial correlation (ρ̄1 and ∆ρ1), a low average local
variability (δ̄) and a low average effective variance (V̄e), and Cluster 2: high (δ̄) and
(V̄e). Low ρ̄1 and ∆ρ1. However, according to visual inspection, there are some
pictures that do not belong to the assigned cluster. Out of 214 landscape pictures,
nine of them were grouped in the class mainly formed by foods and buildings (cluster
2). Moreover, out of 165 pictures of foods and buildings, eight were grouped with
the landscapes (cluster 1). Images wrongly grouped with landscapes have similar
characteristics than them, that are uniformity of colors and high correlations. In
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Table 1. k-means algorithm- 2 and 3 groups

number of cases number of cases
for k=3 for k=2

cluster 1 200 214
cluster 2 164 165
cluster 3 15

N 379 379

contrast, images wrongly grouped with foods and buildings present great variability
in color intensities, may be not perceived by simple visual inspection (see Appendix
7.4).

We are also interested in analyzing the results in a gray color image to contrast
them with RGB results. Then, the gray transformation is applied to the WWL
color image database. The conversion from RGB to gray is established by the
international norm for digital TV (CCIR-601). Each gray pixel can be obtained
from RGB pixels through the equation below:

GRAY pixeli = 0, 299·Ri + 0, 587·Gi + 0, 114·Bi

where Ri, Gi and Bi are the values of the pixel i in red, green and blue matrices re-
spectively. Given that our interest is to compare the grouping results between RGB
and Gray images, the methodology applied is the same in both cases. However,
a gray image has only one matrix instead of the three RGB. Then, the resulting
variables are the Effective Variance (Ve), Local Variability (δ) and Spatial Correla-
tion of order 1 (ρ1). Following the methodology used with color images, we try the
k-means algorithm for 2 groups. The clusters formed have similar characteristics
than in RGB case. Cluster 1 mainly comprised by landscape has 216 pictures. The
other one has 163 pictures. The solution includes ten landscape pictures wrongly
grouped in cluster 2 and six foods and buildings images wrongly grouped in land-
scapes cluster (See Appendix 7.5).

Table 2. Percentage of success in Cluster Analysis: WWL database

RGB images GRAY images
for k=3- for k=2-

cluster 1 95.79 95.37
cluster 2 95.15 96.31

The Table above shows the percentages of images well grouped in their belonging
cluster.

5. Classifying images

Discriminant analysis is a technique for classifying a set of observations into
predefined classes. The purpose is to determine the class of a new observation
based on a set of variables known as predictors or input variables belongings to the



7

known groups. Lets x1, x2, ..., xn a set of elements (images), and c1, c2, ...ck: “k”
the classes or population in which the images are classified. Then, the probability
to classify a new observation is given by:

p(ck|xn+1)

We apply a linear discriminant technique to WWL database in RGB and GRAY
colors. The procedure consists on dividing the database in two classes according
to visual observation of pictures. Group 1 is comprised by landscapes and group 2
consisted of foods and buildings. The variables obtained in Section 3 are considered
to make the classification in RGB images, i.e., V̄e, δ̄, ρ̄1 and ∆ρ1. Then, it is fitted
a multivariate normal density to each group, with a pooled estimate of covariance.
The classification procedure begins by splitting up one picture from the rest of the
database. Then, ignoring its membership group, it is classified in one of the existing
classes, according to the probability of belonging. The process continues until all
observations are classified in some class. Defining the misclassification error as
the probability of classifying wrongly a particular picture, in RGB images we the
error is 4, 22%. Applying exactly the same procedure to gray WWL set, taking the
three corresponding variables, we obtain a misclassification error of 4, 49%. It can
be observed that previous results do not show clear differences between RGB and
GRAY images neither in cluster, nor in discriminant analysis. As a consequence of
this, we henceforth use the databases in gray color.

With the purpose of proving the effectiveness of the proposed variables we apply
a nearest neighbor classification method (K-NN method). By means of k-nearest-
neighbor algorithm, one set denoted as training set is used to classify each member
of another set called sample. The structure of the data is given by a classifica-
tion (categorical) variable of interest (e.g.,“landscape”, or “non-landscape”), and
a number of additional predictor variables (e.g., local variability, effective variance
and spatial correlation). In general, the process is carried out as follows. Step 1:
for each case (image) in the sample set, the k closest members are located (the k
nearest neighbors) in the training set. The euclidean distance measure is used to
calculate how close each member of the training set is to the each case in sample.
Step 2: an object is classified by a majority vote of its neighbors, being assigned
to the class most common amongst its k nearest neighbors (majority rule). The
value of k is a positive integer, typically small and even, to avoid tie. Step 3:
the procedure is repeated for the remaining cases in the sample set. Therefore,
the classification is performed by using the nearest neighbor method considering
the Euclidean distance and applying the majority rule. There is no consensus in
defining the adequate number k of nearest neighbors. Hall et al. (2008) propose
some properties to motivate new methods for choosing the value of k. However,
in most previous work on nearest-neighbor classifiers, the value of k is held by
cross-validation, which is the method that we used.

To illustrate this approach, we present two examples. First, we use WWL data-
base as our training set, to classify the GOOGLE database, both in gray color.
Second, we apply the nearest method to classify the ZIPCODES database. We use
the discriminant variables V̄e, δ and ρ1 to perform the K-NN method. Besides, we
also we include ρ2 and ρ3, in order to analyze their discriminant power in the K-NN
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method. Then, we consider five variables per image: Ve, δ, ρ1, ρ2 and ρ3.

Specifically, the aforementioned WWL set is used to classify the GOOGLE group
using the K-NN method, considering the classification variables and the number of
neighbor equals to k = 7 and 9. Table 3 shows the results obtained to GOOGLE
dataset. The lower misclassification error (8, 97%) is obtained by considering 9
neighbors and only three variables (Ve, δ, and ρ1).

In order to improve the classification, we consider appropriate dividing the im-
ages sections. We first divide the number of rows and columns by 2, resulting in
four equally-sized sections. For instance, let X an image of dimensions 128 × 96,
each section of the image will have a dimension 64× 48. Graphically,

Afterwards, we recalculate the classification variables for each section. They are
Ve, δ, ρ1 for sections A, B, C and D. Due to the dimensionality reduction, we omit
the calculation of ρ2, ρ3, because they become zero for high order of distance (high
h).Consequently, there are 12 values of the variables for every image. We perform
the K-NN method, obtaining a higher misclassification error, regardless the vari-
ables we choose. The lower error obtained for 4-sections classification is 12, 14%.

Second, we divide the image in 8 sections, dividing the number of rows by 4 and
the number of columns by 2. Graphically,

Then, we recalculate our three classification variables (Ve, δ, ρ1) for all 8 sections of
every image. As a result, we have 24 values of the variables per picture. The error
is increased with respect to the previous analysis. Then, the technique of divide
the image in sections seem no to be good enough for this dataset.

We also apply the same techniques to the ZIPCODES database. This database
was already analyzed by Hastie et al. (2001). We begin the study of this dataset, by
calculating the statistics measures for every classification variable (see Appendix
Table A.3). Then, we analyze the means of the classification variables for every
number class.
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Table 3. Means by classes: ZIPCODES database

true class
variable 0 1 2 3 4 5 6 7 8 9

Ve 1.11 0.22 1.29 1.16 1.14 1.22 1.38 1.30 1.32 1.31
δ 0.34 0.07 0.33 0.34 0.24 0.33 0.34 0.24 0.37 0.29
ρ1 0.54 0.60 0.51 0.50 0.50 0.51 0.52 0.54 0.50 0.51
ρ2 0.19 0.24 0.17 0.19 0.17 0.16 0.16 0.22 0.18 0.19
ρ3 -0.02 0.09 -0.01 0.05 0.01 0.02 -0.03 0.04 0.07 0.07

The Table above shows that the number one presents a differentiated behavior
with respect to the rest of numbers, specially considering the Ve and δ.

The K-NN method is performed by dividing the ZIPCODES dataset (7291 im-
ages) in two halves. As a training set we use the first half which allow as to classify
the second half (sample set). Then, we apply the K-NN method considering 13
and 15 nearest neighbor, numbers chosen by cross-validation. To classify we use
the same procedure than in the previous example. The results are shown in the
following table

Table 4. K Nearest Neighbor Method: Results

GOOGLE database ZIPCODE database
Image Variables K-nearest misclassification K-nearest misclassification

Neighbors error % Neighbors error %

Whole Ve, δ ρ1 7 10.55 13 60.66
9 8.97 15 60.08

Ve, δ ρ1 ,ρ2 and ρ3 7 10.29 13 52.46
9 10.03 15 52.13

4-sections Ve (4 values per image) 7 13.46 13 66.98
9 12.66 15 63.79

Ve and δ (8 values per image) 7 13.46 13 41.81
9 13.19 15 42.44

Ve, δ ρ1 (12 values per image) 7 12.66 13 37.94
9 12.14 15 38.60

8-sections Ve ( 8 values per image ) 7 21.64 13 36.08
9 20.58 15 36.16

Ve and δ (16 values per image ) 7 22.16 13 27.85
9 20.84 15 27.43

Ve, δ ρ1 (24 values per image) 7 21.90
9 19.26

Considering the image as a whole, we obtain a misclassification error of 52, 13%,
taking into account five classification variables and 15 neighbors. However, when
dividing the image in 4 sections, the error significantly decreases down to 37, 94%,
considering three variables per section (12 per image) and 13 neighbors. In order
to improve the classification even more, we divide the whole image in 8 sections2.
Now, the lower misclassification error is 27, 43% taking two variables (V e and δ)

2Given that images in ZIPCODES database have dimension 16 × 16, the calculation of ρ1

is omitted. This is because each section of image has dimension 8 × 2 and ρ1 is in many cases
undetermined.
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and 15 neighbors. The division of image in 8 sections improves the classification
considerably.

A final analysis is conducted by including a new variable. This variable is cal-
culated over the image divided in four sections. Given sections A, B, C and D, we
obtain the correlation pixel to pixel, among the four parts. This new correlation is
obtain as follows,

(5) %pq =

∑n
i

∑m
j (XijP

− X̄P )(XijQ
− X̄Q)

σP ∗ σQ

Where, %pq is the correlation between section P and Q; XijP
and XijQ

are the
pixels contended in sections P and Q. Finally, X̄P and X̄Q are the general means of
sections P and Q. Then, we obtain six new variables per image. They represent all
possible correlations among the four sections, that is %AB , %BC , %CD %DA %AC %BD.
We add these new variables to those used in the 8-sections analysis, making a total of
22 variables. We obtain a new classification result shown in the following table. The

Table 5. K-NN method:ZIPCODE database

K-nearest misclassification
Neighbors error %

11 20.63
13 21.02
15 21.24

best classification rate is obtained considering 11 neighbors, obtaining an error of
20.63%. The final classification frequencies are shown in the following contingency
table. The predicted classes are those estimated by the forgoing procedure, and the
true classes correspond to the real belonging group of ZIPCODES images.

Table 6. Predicted vs True class: ZIPCODES database

Predicted class Total
True class 0 1 2 3 4 5 6 7 8 9 0

0 537 0 3 3 2 1 6 1 6 6 565
1 0 469 1 0 0 0 0 0 0 1 471
2 36 0 268 42 4 9 20 4 2 2 387
3 31 2 13 306 1 38 6 5 8 7 417
4 27 8 23 7 161 4 12 53 1 76 372
5 28 0 5 45 2 206 17 2 4 15 324
6 11 0 1 0 0 3 289 0 1 0 305
7 2 2 1 0 1 0 6 247 0 34 293
8 12 5 3 6 0 8 7 4 185 22 252
9 5 1 0 2 2 1 3 19 1 225 259

Total 689 487 318 411 173 270 366 335 208 388 3645

6. Final Remarks

The goal of this research is to propose an alternative method to classify and group
images. The performance of our proposal is given by the application of cluster and
discriminant techniques using three discriminant variables.
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In k-means method we obtain good grouping levels without significant differences
between RGB and GRAY images. In nearest neighbor technique, we achieve the
lower misclassification error in GOOGLE database, by considering only two of the
proposed variables. However, in ZIPCODES database, the best results are obtained
when dividing the images in 8 sections and including the correlations among 4 bigger
sections.

Cutting images in sections improves the classification error considerably in the
ZIPCODES database. However, this procedure does not improve the results for
the GOOGLE database. One potential reason that may explain these differences
across databases may lay in the complexity of images. Images within ZIPCODES
database are single traces on a solid background. Our measures seem to work
better as these images are subdivided in smaller sections. Alternatively, the reasons
may lay on the size of the images. GOOGLE database contained big-sized images
that, even after divided them, remained large compared to those images within the
ZIPCODES database. Future research should try disentangle the conditions under
which dividing images offer a better classification rate.
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8. Appendix

8.1. Typical images from the WWL set.

8.2. Typical images from the GOOGLE set.

8.3. Typical images from ZIPCODES set.
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8.4. Some misclassified RGB pictures.

Grouped as landscape Grouped as food or building

8.5. Some misclassified gray pictures.

Grouped as landscape Grouped as food or building
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Table A.1. Descriptives Statistics- WWL dataset

Variable matrix Mean St. Dev St.Error

Effective Variance R 0.343 0.2862 0.0147
G 0.34 0.287 0.015
B 0.33 0.278 0.014

Total 0.39 0.284 0.008

Local Variability R 0.04 0.0345 0.0017
G 0.04 0.035 0.002
B 0.04 0.034 0.002

Total 0.04 0.034 0.001

Spatial Correlation 1 R 0.79 0.093 0.005
G 0.77 0.103 0.005
B 0.76 0.12 0.006

Total 0.78 0.106 0.003

Table A.2. ANOVA -WWL dataset

Variable Sum of squares df Mean square F Sig.

Effective Variance within-groups 0.028 2 0.014 0.175 0.839
betw-groups 91.357 1134 0.081

Total 91.385 1134

Local Variability within-groups 0.000 2 0.000 0.053 0.949
betw-groups 1.339 1134 0.001

Total 1.339 1134

Spatial Correlation within-groups 0.191 2 0.095 8.523 0.000
betw-groups 12.686 1134 0.011

Total 12.876 1134

Table A.3. Descriptive Statistics: ZIPCODES database

Variable N Min Max Mean Standard Variance Skewness Standard
Deviation Error

Ve 7291 0.00 2.28 1.10 0.42 0.18 -1.44 0.03
δ 0.02 0.56 0.28 0.11 0.01 -0.82 0.03
ρ1 0.22 0.74 0.53 0.08 0.01 -0.22 0.03
ρ2 -0.13 0.56 0.19 0.09 0.01 0.55 0.03
ρ3 -0.25 0.41 0.03 0.09 0.01 0.57 0.03
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