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Abstract

In this paper we present a new kernel, the Railway Kernel, that works properly
for general (nonlinear) classification problems, with the interesting property that
acts locally as a linear kernel. In this way, we avoid potential problems due to the
use of a general purpose kernel, like the RBF kernel, as the high dimension of the
induced feature space. As a consequence, following our methodology the number
of support vectors is much lower and, therefore, the generalizacion capability of the
proposed kernel is higher than the obtained using RBF kernels. Experimental work
is shown to support the theoretical issues.

1 Introduction

Support Vector Machines (SVM) have proven to be a successful method for the solution
of a wide range of classification problems [3], [13]. The best available techniques use
kernel combinations to produce another kernel matrix [13, 15], for training the SVM.
Kernel combinations can be linear [10] or functional [13]. In the first case it is possible
to obtain positive definite combiantion by restricting the combination to belong to the
cone of the positive definite matrices. The resulting optimization problem can be solved
by quadratic programming [10]. In the second case, for some kernel combinations the
definite positiveness cannot be guaranteed and a transformation of the final kernel has to
be done. Even though, these combinations work better in real examples that the simpler
linear schemes [13].

Linear SVMs are optimal in the classical setting in which two normally distributed popu-
lations have to be separated. This assertion is supported by the fact that SVM classifier
approaches the optimal Bayes rule and its generalization error converges to the optimal
Bayes risk [11]. Our aim in this paper is to build a functional global kernel for general
nonlinear classification problems that locally behaves as a linear (optimal) kernel and that
do not require any posterior transformation to be positive definite. Within this approach
we expect to avoid the problems due to the use of a general purpose kernel like the RBF
kernel: in this latter case, the data are embedded in a high dimensional feature space and
problems of overfitting and poor generalization may appear. Since the proposed kernel
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Figure 1: Illustration of the Railway Kernel performance.

behaves locally as a linear kernel, the good properties of the SVM classifier will be in-
herited by our method. In particular, the number of support vectors will be much lower
and, therefore, the generalizacion capability will be higher than the obtained using RBF
kernels.

To motivate our approximation, consider the situation presented in Figure 1. The decision
function is clearly nonlinear. However, this function can be approximated locally by linear
functions. For instance, a linear SVM (with kernel K3) solves the classification problem
in the oval area. We build a global kernel that will behave locally as the linear kernels
whose decision functions are shown in the figure. We denote this kernel by ‘Railway
Kernel’. The name for this kernel has been choosen because it is build like a railway
where their wagons are the local decision functions.

This new Railway Kernel is presented as a particular case of a wider type of combinations
where the kernels in the local areas are more complex. We focus here in the linear case
because of its interesting properties we have already mentioned.

The paper is organized as follows. In Section 2 we briefly review the main concepts of
Reproducing Kernel Hilbert Spaces and Support Vector Machines. The general frame-
work for the proposed kernel is presented in Sections 3 and 4. The experimental setup
and results on various artificial and real data sets are described in Section 5. Section 6
concludes.

2 Support Vector Machines in a nutshell

2.1 Reproducing Kernel Hilbert Spaces

There are several ways to introduce RKHS (see[1, 5, 21, 13]). In a nutshell, the essential
ingredient for a Hilbert function space H to be a RKHS is the existence of a symmetric
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positive definite function K : X×X → IR named Mercer Kernel or reproducing kernel for
H [1]. The elements of H, HK in the sequel, can be expressed as finite linear combinations
of the form h =

∑
s λsK(xs, ·) where λs ∈ IR and xs ∈ X.

Consider the linear integral operator TK associated to the kernel K defined by TK(f) =∫
X K(·, s)f(s)ds. If we impose that

∫ ∫
K2(x, y)dxdy < ∞, then TK has a countable se-

quence of eigenvalues {λj} and (orthonormal) eigenfunctions {φj} and K can be expressed
as K(x, y) =

∑
j λjφj(x)φj(y) (where the convergence is absolute and uniform).

2.2 Regularization and Support Vector Machines

The the starting point in this work is a two-class classification problem. Let S =
{(xi, yi)}ni=1 be a sample of n observations with xi ∈ X (some input space) and yi ∈
Y ≡ {1,−1}. Then, the classification problem can be solved by the Regularization The-
ory seeking the function f ∗ that solves the following functional optimization problem
[5, 13] :

arg min
f∈HK

1

n

n∑
i=1

(yi, f(xi))+ + γ‖f‖2K . (1)

where γ > 0, L(yi, f(xi)) = (|c(xi) − yi| − ε)+, ε ≥ 0 and ‖f‖K is the norm of the
function f in HK , a Reproducing Kernel Hilbert Space of Kernel K. Since f ∈ HK it
holds that, for every x ∈ X, f(x) =

∑n
i=1 αiK(xi,x), for appropriate xi ∈ X and αi ∈ IR.

Thus, calling α = (α1, . . . , αn)T , S = {x1, . . . ,xn} a given data set of points in X, and
K(S) = (K(xi,xj))i,j, then we will have ‖f‖2K =

∑n
i=1

∑n
i=1 αiαjK(xi,xj) = αTKα. This

approach is equivalent to the Support Vector Machines (SVM) originally proposed in [2].

Expression (1) measures the trade-off between the data error and the complexity of the
solution (measured by ‖f‖2K). For details, proofs and generalizations, refer to [7], [19],
[6]. By the Representer Theorem ([7, 19]), the solution f ∗ to the functional optimization
problem (1) exists, is unique and admits a representation of the form

f ∗(x) =
n∑
i=1

αiK(xi,x), ∀x ∈ X where αi ∈ IR . (2)

In practice the solution to (1) is obtained by solving and quadratic problem and efficient
methods specific for SVMs have been developed in the literature. In addition, due to
the definition of the loss function, the solution to 1 generally depends on a small number
of data called support vector. This implies that {α1l, ..., αnl} generally contains a large
number of zeros.

The relation kernel-RKHS is one to one. There exists a unique Hilbert space HK of
functions on X with reproducing kernel K [5]. This makes the election of the kernel K
to be crucial to obtain the appropiate space to find the solution to (1).
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3 Railway Kernel

In this section we will study our new type of locally linear kernel, the Railway Kernel.
We define this kernel as a particular case of a more general class of local kerenls. We
proceed as follows: First, the kernel is defined on ‘simple’ areas where the linear SVM
works. Then the kernel is extended to the intersection of such ‘pure’ areas.

Next we introduce a special kernel that acts as an indicator function on the proccess.
based on the use of an special type of indicator functions that help to determine which
space area a point belong to, we show the kernel performance in an example with non
intersection areas. Then, we analyze the case when intersection areas appear. Finally
we propose a method to build the global kernel to solve the classification problem under
consediration.

3.1 Indicator kernel functions

Given a data set, let assume that we are able to identify specific space areas where
the problem can be solved using a linear SVM (see [13] for studing the convergence of
SVMs with linear kernels to the optimal Bayes rule in a linear case). In this section
we define a special indicator function to identify such areas. For the sake of simplicity
only spherical areas are considered in this paper. The generalization to more elaborated
shapes is straightforward. The indicator kernel function takes value 1 if the point under
consideration is in the circular area defined by a given center and a radius, and decreases
to zero quite fast as the distance to the center grows. Assumming smoothness in the
boundary of the areas, we can define the following indicator kernel function λ(x):

λ(x) =

{
1 if‖x− c‖1/2 ≤ r

e−γ(‖x−c‖
2−r2) if‖x− c‖1/2 > r

, (3)

where ‖ · ‖ denotes the Euclidean distance, x ∈ Rd is a sample point, c ∈ Rd is the center
of the sphere and r > 0 is the radius. Parameter γ > 0 is fixed in order to obtain a
fast transition from 0 to 1 and, in this case, λ(x) will aproximate an indicator function.
It is immediate to check that λ(x) is a kernel. The two dimensional case is shown in
Figure 2a. Figure 2b represents a two-class classification problem in one dimension and
the corresponding indicator function. If a SVM kernel built from this indicator function
is used to solve the classification problem, points outside the indicator influence will not
be considered.

These indicator kernel functions will help us to identify space areas where a type of kernel
works. We concentrate on the linear case. As first approach, only circular areas are
considered and we assume that there is no intersection among them. The use of a smooth
contour is justified by theoretical properties of the final kernel to construct.
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(a) (b)

Figure 2: Indicator kernel funcions. (a) 2D case. (b) 1D case for a two-class classification
problem. Class density functions are shown.

3.2 Railway Kernel for a two areas problem

First consider the case of two areas without intersection. Kernel K1 solves the classifica-
tion problem in area A1 and so does K2 in area A2. Let x and y be two sample data points.
We define two functions: H1(x, y) = λ1(x)λ1(y) and H2(x, y) = λ2(x)λ2(y), where λ1 and
λ2 are indicator kernel functions (with appropriate c and r parameters). The functions
H1 and H2 take the value 1 when x and y belong to the same area, and 0 otherwise. In
this particular case, we define the global Railway Kernel KR as follows:

KR(x, y) = H1(x, y)K1(x, y) +H2(x, y)K2(x, y) . (4)

Notice that the new kernel is obtained as a functional combination of linear kernels.

The Railway Kernel will approximate piecewise a global non-linear function by local linear
functions. that guaranties that K(x, y) is semidefinite positive. As consequence, if the
computed kernel has an interesting structure. Notice that KR(x, y) is a block-diagonal
matrix. This fact can be used to improve the optimization method used to solve the SVM
problem (see [20] for details about the SVM optimization problem).

By the Representer Theorem, the SVM solution takes the form: f(x) =
∑
i αiK(x, xi)+b.

In this case, due to the particular Railway Kernel structure the solution is given by:

f(x) =
∑
xi∈A1

αiK1(x, xi) +
∑
xj∈A2

αjK2(x, xj) + b (5)

Notice that KR behaves like K1 in the domain of indicator function H1 and like K2 in the
domain of indicator function H2.
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We have not yet studied neither a multiarea problem, nor intersection between areas.
These issues will be considered in Sections 3.4 and 3.5 .

3.3 A first example

Now we ilustrate the performance of this kernel in a simple example. In this example
we generate four groups of observations (50 observations per group) corresponding to
four bivariate normal distributions: N(µi,Σi) for group i, with µ1 = (3, 5), µ2 = (7, 5),
µ3 = (15, 17), µ4 = (15, 13) respectively, and Σ1 = Σ2 = diag(0.5, 1.5) and Σ3 = Σ4 =
diag(1.5, 0.5). Points in groups 1 and 3 belong to class +1 and points in groups 2 and 4
belong to class −1. Consider two areas defined by indicator kernel funcions with centers
c1 = (5, 5), c2 = (15, 15) and radii r1 = r2 = 5 respectively. The point in this example is
that the classes are linearly separable in each of these areas; however there is no a global
proper linear kernel. In this case, the problem could be solved with a RBF kernel (σ = 1).
Nevertheless when the Railway Kernel is used several advantages appear. The number of
support vector is significatively lower than in the RBF case (13.5% vs. 73.5%). Figure
3a and 3b show the decision functions for the Railway and RBF kernels respectively. In

(a) Local linear kernels solution. (b) Global RBF solution.

Figure 3: Two solutions for a modified XOR problem (support vectors are highlighted).

addition, the number of positive eigenvalues of the kernel matrix is clearly lower using the
Railway Kernel (2.0% vs. 25%). Therefore, the manifold induced by the Railway Kernel
is of lower dimension than the obtained using the RBF kernel. Figures 4a and 4b show
the eigenvalues for the Railway and RBF kernels respectively.

The resulting Railway Kernel matrix for this two areas problem is block diagonal. A
graphical represetantion of the RK matrix for that example is shown in Figure 5. The
two block correspond to two linear kernel applied to to the data of the two areas of the
problem.

6



(a) Local linear kernel. (b) RBF kernel matrix.

Figure 4: Eigenvalues of the kernel matrices for the modified XOR problem.
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Figure 5: The Railway Kernel performance in an simple example with intersection.
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3.4 Building the Railway Kernel in the intersections

In previous sections we have worked with very simple areas corresponding to different
space areas. Next we deal with the problem of intersection between areas. Let A1 and A2

the areas under consideration. In this case, the Railway Kernel is built as follows:

KR(x, y) =


K1(x, y) if x, y ∈ A1 ∩ Ac2 ,
K2(x, y) if x, y ∈ Ac1 ∩ A2 ,
1
2
(K1(x, y) +K2(x, y)) if x, y ∈ A1 ∩ A2 ,

0 otherwise ,

(6)

where Aci represents the complementary set of Ai.

Intersections between areas can be seen as areas where both kernels achieve the same
performance, and should be equally weighted. Thus, the average of the kernels (which
is a kernel [4]) is computed for points in the intersection. Figure 6a shows graphically
the idea of intersection, and Figure 6b shows the Railway Kernel perfomance in a simple
example.

Figure 6: The Railway Kernel performance in an simple example with intersection.

The matrix computed in (6) is a semidefinite positive and block diagonal matrix. Thus,
it comes from a Mercer kernel. It is possible to find an analytical expression for (6).
Consider the example given in Figure 6a). Without loss of generality suppose that our
sample is distributed in 3 zones: Hc

1, Hc
2 and H1 ·H2, where Hc

1(x, y) is the region of the
space where the funcion H1 vanishes and it is given by Hc

1 = (1−λ1(x))(1−λ1(y)). Thus,
it represents those points in A2 and not in A1. H

c
2 represents those points in A1 and not

in A2. The final kernel (KR) will be the sum of three matrices. KR(x, y) = 0 when x and
y belong to different zones. In other case, KR(x, y) is exactly the kernel that works on
the zone x and y belong to. The expression for the kernel is as follows:

KR(x, y) = Hc
1(x, y)K2(x, y) +Hc

2(x, y)K1(x, y) +

(H1(x, y)H2(x, y))
1

2
(K1(x, y) +K2(x, y)) . (7)
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As before, the matrix corresponding to the kernel KR aplied to any sample X is a block-
diagonal matrix where each block is a kernel matrix. Then, KR is a positive semidefinite
matrix and thus a kernel. The generalisation of (7) to the case of more than 2 areas is
straightforward.

Notice that, to compute the Railway Kernel it is enough to use the areas information and
the local linear kernels on that areas. We have built a method to compute an aproximation
to a nonlinear decision function with a sum of local linear hiperplanes.

3.5 Multiple areas Railway Kernel

In practical cases, the Railway Kernel is defined for multiple areas. Following eq. (7) a
generalisation of KR to a problem with a number p or ares is given by

KR(x, y) =
p∑
i=1

Hi(x, y)Ki(x, y) +

+
1

2

p∑
i 6=j

(Hi(x, y)Hj(x, y)(Ki(x, y) +Kj(x, y)) (8)

where Hi(x, y) for i = 1, ..., p are the areas indicator functions and, Ki(x, y) = xTy (in our
piece-wise kernel definition). When Ki(x, y) = K(x, y), that is the same kernel is used
in all the areas, the intersections can be considered as new independent zones. Therefore
we can consider, without loss of generality, the Railway Kernel to be formed by p + q
independent zones, for q the number of intersections.

Proposition 1 Let the Railway Kernel defined in eq. (10) for p non overlapped areas .
Let Ki(x, y) =

∑d
j=1 µiφj(x)φj(y) for i = 1, ..., p the kernel functions considered in the p

areas. Then,

KR(x, y) =
p∑
i=1

d∑
j=1

µiφ̃j(x)φ̃j(y) (9)

where φ̃j(x) = φj(x)λi(x), being the dimension of the space induced by KR equal to p× d.

Proof 1 Let Ki(x, y) = K(x, y) =
∑d
j=1 µiφj(x)φj(y) for i = 1, ..., p the local kernels of

the p areas an their expansions via the Mecer’s theorem. Since the areas are independent
we can rewrite KR as

KR(x, y) =
p∑
i=1

Hi(x, y)Ki(x, y) +

=
p∑
i=1

Hi(x, y)
d∑
j=1

µiφj(x)φj(y) (10)

=
p∑
i=1

λi(x)λi(y)
d∑
j=1

µiφj(x)φj(y) (11)
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=
p∑
i=1

d∑
j=1

µiφj(x)λi(x)φj(y)λi(y) (12)

being φ̃j(x) = φj(x)λi(x) and the number of different eigenfunctions p× d.

Remark 1 This proposition is valid for any H(x,y) separable. That is for any H(x,y)
such that

H(x, y) = λ(x)λ(y) (13)

for any x, y two sample points.

Example 1 The railway kernel, for p areas, and K(x, y) = xTy is given by

KR(x, y) =
p∑
i=1

λi(x)xλi(y)y. (14)

If the problem is originally in dimension 2 then x = (x1, x2) and y = (y1, y2). Then

KR(x, y) =
p∑
i=1

λi(x)λi(y)(x1y1 + x2y2). (15)

4 Areas Location

In Section 3 we have assumed that each point in the sample belongs to one or more
previously defined areas. Now we present a local algorithm to detect such areas in a
classification problem. The algorithm works in two main steps. First, single labelled
areas are created. Second, the closest areas of different labels are joined in order to define
the zones described in Section 2.1.

Following the ideas in [14], the procedure is based on the iteration of the K-means algo-
rithm with increasing number of centroids until a condition is satisfied. This generates a
partition of the space in M areas A1, . . . , AM . The condition reflects the pureness of the
regions found by K means. Interesting zones will be characterised by containing small (or
zero in the case of pure areas) number of homogeneously distributed data with different
label to the others. We apply a χ2 -test to detect this situation. If the null hypothesis
(small number of data of one class are randomly distributed among the data of the other)
is not rejected for all the zones, the splitting procedure stops and the areas A1, . . . , AM
automatically created.

Once the areas A1, . . . , AM have been built, the final areas are obtained by joining the
nearest areas with different labels. This is done by comparing the minimum distances
between the points of every single area to those of the areas with different label. This given
rise to the zones defined by the functions H(x, y). In order to obtain the indicator function
kernels needed to build the Railway Kernels, centers and radii are needed. Centers are
computed as the centroids, and radii in each area are computed as the maximum distance
between the center and the farthest point in this area.
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An example to illustrate of the performance of the algorithm is presented in Figure 7.
Figure 7a presents a two class problem in two dimensions. In Figure 7b the result of
applying the areas location algorithm is shown. The procedure is as follows. The K-
means iteration stops when six centroids are used (since six perfect pure areas are found).
After this, the final zones are obtained by joining the previous areas as is described above.
Figure 7b shows the six final spherical areas detected.

(a) Initial problem. (b) One Step of the algorithm.

Figure 7: An example of the Areas Location algorithm performance.

5 Experiments

To test the performance of the proposed method, a SVM (with the upper bound on the
dual variables fixed to 1) has been trained on artificial and real data sets using the Railway
Kernel matrix previously constructed.

We have compared the proposed methods with several techniques. In both experiments
we have compared the Railway Kernel with two SVM classifiers built using RBF kernels in
which the parameter has been tuned in two different ways. For the first classifier (SVM1)
the parameter σ is choosen as a function of the data dimension (see [17] and [15] for
details). For the second (SVM2), σ and the upper bound on the dual variables of the
optimization problem are choosen following the ideas in [8]. We have also included the
results for other 5 RBF kernels of parameters σ = 0.5, 2.5, 5, 7.5 and 10

In the second experiment we also used the same set of five kernels but we only included
the values for the best and the worst test error case. We also included the average of
them (AKM).

In order to compare the results with other techniques we estimated the test errors for a
K-nn classifier, SVM of linear kernel, and the MARK-L procedure. Results are shown in
Table 2.

11



5.1 Two areas with different scattering matrices

The first data set under consideration is presented in Figure 8 and corresponds to 400
points in IR2. There are two areas of points (80% of the sample is in area A1 and 20% is in
area A2). Each area Ai corresponds to a normal cloud. The first area center is (0, 1) and
the second group center is (1, 1), while the diagonal covariance matrices are σ2

i I where
σ1 = 10−2σ2, and σ2 = 1. The first area center is (0, 1) and the second group center
is (1, 1). The point on this example is that the areas do not coincide with the classes
{−1,+1} that are to be learned. Half of the points in each class belongs to area A1, and
the other half to area A2. Within each area, the classes are linearly separable. Therefore,
the only way to build a proper classifier for this data set is to take into account the area
each point belongs to. We use 50% of the data for training and 50% for testing.

Figure 8: Two areas with different scattering matrices. The first area center is (0, 1) and
the second area center is (1, 1). The areas do not coincide with the classes {−1,+1}.

To compare the performance of the Railway Kernel, consider a set of three RBF kernels
with parameters σ =0.5, 5 and 10 respectively.

Table 1 shows the performance of our proposal for this data set. The results have been
averaged over 10 runs. Given the geometry of the data, it is clear that is not possible to
choose a unique best σ for the whole data set. As σ grows, the test error increases for
the data contained in area A1, and decreases within area A2. The Railway Kernel clearly
improves the best RBF kernel.

5.2 The breast cancer data set

In this section we have dealt with a database from the UCI Machine Learning Repository:
the Breast Cancer data set [12]. The data set consists of 683 observations with 9 features
each. We use 80% of the data for training and 20% for testing.
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Table 1: Percentage of missclassified data and percentage of support vectors for the two
different scattering data set: A1 stands for the less scaterring group, A2 stands for the
most dispersive one.

Train Test Support
Error Error Vectors

Method Total A1 A2 Total A1 A2 Total

RBFσ=0.5 2.4 3.0 0.0 13.4 4.1 51.0 39.2
RBFσ=2.5 3.0 3.8 0.0 12.6 6.5 41.5 62.1
RBFσ=5 4.6 5.8 0.0 13.6 8.6 35.0 82.6
RBFσ=7.5 14.9 18.4 0.5 18.7 22.6 20.5 94.6
RBFσ=10 29.1 36.2 0.5 36.0 44.1 10.0 94.4

Railway Kernel 3.7 3.6 15.6 4.2 0.1 20.6 14.1
SVM1 2.1 2.6 0.0 13.5 4.1 51.0 39.6
SVM2 2.1 2.6 0.0 11.0 3.3 41.5 37.6

Table 2 shows the performance of the Railway Kernel on this data set. Again, the results
have been averaged over 10 runs. Our method clearly improve the RBF kernel with σ
parameter choosen as a function of the data dimension. Our method does not take into
account the penalization parameter of the SVM. However, our results are similar to the
classification results obtained when both parameters, σ and the upper bound on the dual
variables of the optimization problem, are choosen, but using significantly less support
vectors.

6 Comments and Conclusions

In this paper we have presented a new kernel, the Railway Kernel. This global kernel takes
advantage of the good generalization properties of the local linear kernels for classification
tasks. We have shown that the potential problems due to the use of a general purpose
kernel like the RBF kernel have been avoid. The generalization capability of the proposed
kernel is higher than the obtained using RBF kernels. The method could be generalized
by using alternative nonlinear local kernel. Further research will focus on the theoretical
properties of the Railway Kernel and extensions.
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