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Abstract

This paper introduces a new class of stochastic unit root (STUR) processes, where the

randomness of the autorregresive unit root is driven by a threshold variable. These new

models, the threshold autorregresive stochastic unit root (TARSUR) models, are stationary

in some regimes and mildly explosive in others. TARSURmodels are not only an alternative

to fixed unit root models but present interpretation, estimation and testing advantages with

respect to the existent STUR models. The paper analyzes the stationarity properties of

the TARSUR models and proposes a simple t-statistic for testing the null hypothesis of a

fixed unit root versus a stochastic unit root hypothesis. It is shown that its asymptotic

distribution (AD) depends on the knowledge we have about the threshold values: known,

unknown but identified, and unknown and unidentified. In the first two cases the AD is

a standard Normal distribution, while in the last one the AD is a functional of Brownian

Motions and Brownian Sheets. Monte Carlo simulations show that the proposed tests

behave very well in finite samples and that the Dickey-Fuller test cannot easily distinguish

between an exact unit root and a threshold stochastic unit root. The paper concludes with

applications to stock prices and interest rates where the hypothesis of a fixed unit root is

rejected in favor of the threshold stochastic unit root.
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1. INTRODUCTION

It is well established that many economic series contain dominant, smooth components, even

after removal of simple deterministic trends. Since the influential work of Nelson and Plosser

(1982), this characteristic has been adequately captured by unit root (UR) models and unit

roots have become a “stylized fact” for most of the macroeconomic and financial time series.

This has produced an extensive literature on econometric issues related to unit root models

(see Phillips and Xiao (1998) for a recent survey).

Trying to get away from the very tight constraints that an exact unit root imposes in

a process, and to be able to generate more flexible models and of a more realistic kind, the

research has recently evolved in two directions. The first one generalizes UR models by allowing

for fractional roots: ARFIMAmodels (see Granger and Joujeux (1980), Beran (1994), Robinson

(1994), and Baillie (1996)). The second one makes the UR models more flexible by allowing the

unit root to be stochastic (see Leybourne, McCabe and Tremayne (1996), Leybourne, McCabe

and Mills (1996), McCabe and Tremayne (1995), and Granger and Swanson (1997)) instead

of a fixed parameter. With both extensions more general forms of nonstationarity are allowed

than the ones implied by the standard exact unit root autoregresive models. This paper forms

part of the second line of research.

Stochastic unit root models (STUR) are seen to arise naturally in economic theory, as well

as in many macroeconomic applications (see Leybourne, McCabe and Mills (1996), Granger

and Swanson (1997)). STUR models can be stationary for some periods or regimes, and mildly

explosive for others. This characteristic makes them not to be difference stationary. If a series

shows evidence of a nonstationarity not removable by differencing, it is inappropriate to es-

timate conventional ARIMA or cointegration/error-correction models because the properties

of the estimators and the tests involved are not the same as those in the standard difference-

stationary case. For instance, two series generated by two independent STUR models will be

wrongly detected to be cointegrated according to some of the most commonly used cointe-

gration tests (see Gonzalo and Lee (1998)). This problem is not detected with standard unit

root tests, such as the Dickey-Fuller test, because they cannot easily distinguish between exact

unit roots and stochastic unit roots. In order to obtain a better statistical distinction between

these two type of unit roots, McCabe and Tremayne (1995) proposes a locally best invariant

test (assuming gaussianity) for the null hypothesis of difference stationary versus a stochastic

unit root. The application of this constancy parameter test to the macroeconomic variables

analyzed in Nelson and Plosser (1982) suggests that about half of them are not difference sta-
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tionary, opposite to what it has been widely believed (see Leybourne, McCabe and Tremayne

(1996)). Hence, the notion that some economic time series are nonstationary in a rather more

general way needs to be considered and, consequently, more elaborate techniques of modelling

and estimation need to be explored.

From a statistical point of view, a suitable justification for using time varying parameter

models to approximate or represent nonstationary processes is provided by Cramer’s (1961)

extension of Wold’s theorem (see Granger and Newbold (1986), page 38). This extension

implies that any nonstationary stochastic process, with finite second order moments, may be

written as an ARMA process with coefficients that are allowed to vary with time. Most of the

literature previously cited above considers that the time varying unit root varies as a sequence

of independent and identically distributed (i.i.d.) random variables. This assumption is not

necessarily the most appropriate in economics, because it implies that the model structure will

change too often between states corresponding to stationary and explosive roots, whereas in

reality, we might suppose that the transition between these two states occurs in a more gradual

fashion. One way of introducing this gradual behavior is by allowing the unit autoregressive

root itself to follow a random walk (see Leybourne, McCabe and Mills (1996)). In this case

the change is smoother than in the i.i.d. case, but it has again the inconvenience that it occurs

regularly at every moment of time. In this paper it is assumed that the economy stays in

a ”good” or ”bad” state for a number of periods of time until certain determining variables

overpass some key values. When this occurs the economy jumps from one state to the other

type of state. This assumption is perfectly captured by modelling the evolution of economic

variables via threshold models. In particular to model the random behavior of the largest

root of an ARMA process, we propose a threshold autoregressive (TAR) model where the

largest root is less than one in some regimes, and larger than one in others, in such a way that

on average is equal to one. These threshold autorregresive stochastic unit root (TARSUR)

models present several advantages with respect the previously mentioned approaches. First,

its computational simplicity. The estimation of all the parameters is done by least squares

(LS) regressions. Second, the t-statistic used to test the hypothesis of exact unit root versus

stochastic unit root, in some cases follows asymptotically a standard distribution and therefore

there is not need to generate new critical values. Third, we are able to introduce deterministic

components with threshold effects. Fourth, the threshold variable is suggested by economic

theory and it will be providing a possible explanation or cause for the existence of a unit root,

something that to the best of our knowledge it is still absent in the econometric literature.

And fifth, in many situations threshold models are easier to use for forecasting than random
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coefficient models. This is the case when the threshold variable is an observable variable with

past time dependency.

The rest of the paper is organized as follows. In Section 2 we define the TARSUR model

and examine its properties: strict stationarity, covariance stationarity and impulse response

function. In Section 3, we present a t-test for testing the null hypothesis of an exact unit root

versus a stochastic unit root. The asymptotic distribution of this test is developed under three

different situations: when the threshold value is known, when the threshold value is unknown

but identified and when the threshold value is unknown and unidentified. The finite sample

performance (size and power) of the tests developed in this paper is analyzed in Section 4.

Section 5 presents two empirical applications of our model: U.S. stock prices and international

interest rates. The conclusions are found in Section 6. Proofs are provided in the Appendix.

2. TARSUR MODEL

Consider the following threshold first order autoregressive model

Yt = [ρ1I(Zt−d ≤ r1) + · · ·+ ρnI(Zt−d > rn−1)]Yt−1 + εt

= δtYt−1 + εt, t = 1, 2, · · · , (1)

where δt = ρ1I(Zt−d ≤ r1) + · · · + ρnI(Zt−d > rn−1), I(·) is an indicator function, and εt

is an innovation term. Zt is the threshold variable and in this paper will be a predetermined

variable (E (εt+j|Zt) = 0, ∀j ≥ 0). d is the delay parameter, and r1 < r2 < · · · < rn−1 are the
threshold values determining the n different regimes.

Definition 1 A first order TARSUR process is defined by equation (1) with E(δt) =
Pn
i=1 ρipi =

1, where pi is the probability of Zt−d being in regime i, and V (δt) > 0.

For simplicity and without loss of generality, in this section where the properties of the

TARSUR model are analyzed, no deterministic terms are included. They will be taken into

account in the testing section, that is where they can really make a difference.

The variables {εt} and {Zt} satisfy the following assumptions.
Assumptions

(A.1) {εt, Zt} is strictly stationary, ergodic, adapted to the sigma-field =t def= {(εj, Zj) , j ≤ t}.
(A.2) {εt, Zt} is strong mixing with mixing coefficients αm satisfying

P∞
m=1 α

1/2−1/r
m <∞

for some r > 2.
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(A.3) εt is independent of =t−1, E(εt) = 0 and E |εt|4 = k <∞.
(A.4) Zt has a continuous and increasing distribution function.

(A.5) E(max(0, log |ε1|)) <∞.
(A.6) ess. sup ε1 <∞1.

Assumptions (A.1) and (A.3) specify that the error term is a conditionally homoskedastic

martingale difference sequence. (A.3) also bounds the extent of heterogeneity in the condi-

tional distribution of εt. (A.1), (A.2), (A.3), and (A.4) are needed to obtain the asymptotic

distributions of the statistics proposed in this paper. Assumptions (A.1) and (A.5) are required

for strict stationarity of Yt, and (A.6) is needed for weak stationarity of Yt. In many cases,

(A.6) can be relaxed. For instance, if {εt} and {Zt} are mutually independent, (A.6) can be
replaced by ||ε1||p = [E|ε1|p]1/p <∞, ∀p <∞ (see Karlsen (1990)).

It is important to notice that if we limit the analysis to self exciting threshold autorregresive

models (Zt = Yt), then it is not possible to handle the issue of stochastic unit roots (unless we

introduce deterministic components with size and sign contraints). This is so because if any

of the parameters ρi is larger than one, the process Yt will not be stationary and ergodic (see

Petrucelly and Woolford (1984)) and therefore assumption (A.1) will not hold.

Equation (1) represents a particular case of a stochastic difference equation, where δt is a

discrete random variable that takes different values depending on the location of the threshold

variable Zt−d. In the next subsection we present the results from the theory of stochastic

difference equations, that are useful to analyze the stationary properties and the impulse

response function of a TARSUR process. The section concludes examining the consequences

of differencing a TARSUR process.

2.2. Some preliminary results

Consider the following general first order stochastic difference equation

Yt = ωtYt−1 + εt, t = 1, 2, · · · , (2)

where {(ωt, εt)} is a R2-valued stochastic process on a probability space (Ω,=, P ) .
Iterating backwards the stochastic difference equation (2), we obtain

Yt = εt +
n−1X
j=1

Ã
j−1Y
i=0

ωt−i

!
εt−j +

Ã
n−1Y
i=0

ωt−i

!
Yt−n

1The essential supremum of X is ess sup X = inf {x : P (|X| > x) = 0} = ||x||∞ .
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= C1,t(n) +C2,t(n), (3)

where C1,t(n) = εt +
Pn−1
j=1

³Qj−1
i=0 ωt−i

´
εt−j, and C2,t(n) =

³Qn−1
i=0 ωt−i

´
Yt−n.

From (2) and (3) the following results are obtained:

(a) if C1,t(n) converges, as n→∞ in Lp for p ∈ [0,∞] 2, then C1,t = εt+
P∞
j=1

³Qj−1
i=0 ωt−i

´
εt−j

is a strictly stationary solution of the stochastic difference equation defined by (2).

(b) if C2,t(n) converges in probability to zero, then the above solution is unique.

(c) if p > 0 in result (a), then {Yt} has a finite pth order moment.
The problem of finding conditions on {(ωt, εt)} such that {Yt} has a strictly or second-order

stationary solution has been studied by several authors. Vervaat (1979) and Nicholls and Quinn

(1982) assume {(ωt, εt)} to be i.i.d. and mutually independent. Pourahmadi (1986, 1988) and
Tjφstheim (1986) allow {ωt} to be a dependent process. More general conditions are given in
the following theorem based on Brandt (1986) and Karlsen (1990).

Theorem 1 If the sequence {εt, Zt} satisfies assumptions (A.1), (A.5), and

−∞ < E log |ω1| < 0 (4)

holds, then process (2) is strictly stationary. Moreover, if (A.6) is satisfied and

∞X
j=0

³
E
¯̄
ψt,j

¯̄2´12
<∞, (5)

where ψt,0 = 1 and ψt,j =
Qj−1
i=0 ωt−i for j ≥ 1, then process (2) is second-order stationary.

Theorem 1 provides sufficient conditions for (a) and (b) to hold when p = 0, 1, or 2. It

shows that strict and covariance stationarity will depend on the type of convergence of the

infinite sequences
©
ψt,j

ª∞
j=0

. In fact, if condition (4) is satisfied,
©
ψt,j

ª
will converge absolutely

almost sure to zero as j goes to infinity, and this implies the strict stationarity of process (2)

(see Brandt (1986)). Mean square convergence of
©
ψt,j

ª∞
j=0

is obtained provided condition (5)

holds, and in this case, process (2) is also second order stationary.

Note that there is a trade off between (A.6) and (5). For instance, assumption (A.6) can be

relaxed by imposing ||ε1||p <∞, ∀p <∞; but in this case, we need to modify (5) requiring a
stronger condition

∞X
j=0

³
E
¯̄
ψt,j

¯̄2+δ´ 1
2+δ

<∞, for a δ > 0. (6)

2L0 is equivalent to converge in probability.
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Also, as it is mentioned before, if it is assumed that {εt} and {Zt} are mutually indepen-
dent with ||ε1||p < ∞, ∀p < ∞, then condition (5) is a sufficient condition for second-order
stationarity.

For the impulse response function (IRF) of Yt, we need to derive itsMA(∞) representation.
This is possible from the conditions of the first part of Theorem 1 and it can be written as

Yt = εt +
∞X
j=1

Ã
j−1Y
i=0

ωt−i

!
εt−j =

∞X
j=0

ψt,jεt−j . (7)

From this representation, it is seen that the response of Yt to a shock,
δYt+h
δεt

= ψt,h, becomes

now stochastic in contrary to the fixed root case. For this reason, we define the impulse response

function (IRF) as

ξh = E

µ
δYt+h
δεt

¶
= E

¡
ψt,h

¢
= E

Ã
h−1Y
i=0

ωt−i

!
, h = 0, 1, 2, · · · . (8)

Theorem 1 produces explicit conditions for strict stationarity. However, no moments need

to exist and to the best of our knowledge, there are not explicit conditions for second-order

stationarity or for the convergence of the IRF (8), and therefore we must study each particular

case. In order to obtain explicit expressions, in this Section 2, we work with the following

representative case:

ωt is a 1 st-order stationary Markov Chain with two regimes or states ( v1 and v2).

This case can be generalized to an N-order stationary Markov Chain with N > 1, and to

more than two regimes, but nothing is gained on the understanding of the process and the

algebra become very tedious.

Sufficient conditions for second-order stationarity are presented in the following proposition.

Proposition 1 Let ωt be a 1st-order stationary Markov Chain with two regimes (v1 and v2).

Define the following 2× 2 matrix

F2 =

 v21p11 v21p21

v22p12 v22p22

 ,
where pji denotes the conditional probability P (ωt = vi | ωt−1 = vj), i, j = 1, 2. If the spectral
radius of F2, ρ(F2), is less than one, the process is covariance stationary.

Notice that if we consider ωt to be an i.i.d. process, the sufficient condition for covariance

stationarity can be formulated in terms of the marginal probabilities:
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ρ(F2) < 1⇐⇒ E(ω2t ) = v
2
1p1 + v

2
2p2 < 1.

This is the necessary and sufficient condition used in Nicholls and Quinn (1982) for the

stationarity of random coefficient autoregressive models (RCA).

Proposition 2 Under conditions of Proposition 1, the IRF of the process Yt is given by

ξh =
³
1 1

´
Fh1

 v1p1

v2p2

 , h = 1, 2, · · · ,

where F1 =

 v1p11 v1p21

v2p12 v2p22

 . Shocks have transitory effects ( lim
h→∞

ξh = 0) if and only if the

spectral radius of F1, ρ(F1) is less than one.

Proposition 1 together with Proposition 2 establish that the covariance structure and the

convergence of the IRF depend on the transition probabilities pji, and on the regime parameter

values vi.

2.3 Stationarity properties, covariance structure and impulse response function of

a TARSUR model

As we mentioned before, a TARSUR process is a particular case of a stochastic difference

equation. In order to present its properties we will make constant use of the results obtained

in the previous subsection.

Corollary 1 A TARSUR process with ρi ≥ 0, ∀i, is strictly stationary.

Corollary 1 follows from Theorem 1, and it establishes sufficient conditions, easy to check, for

a TARSUR process to be strictly stationary. It covers the most appealing TARSUR model from

an empirical point of view, that is to say, the model with ρi values around unity: stationary

for some regimes and mildly explosive for others. Notice that fixed unit root models are not

stationary, but if we allow the root to be stochastic around unity we can achieve at least strict

stationarity.

In order to present the second-order properties of a TARSUR process, we adapt the particular

representative case previously considered to the threshold framework. More concrete
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Yt = [ρ1I(Zt−d ≤ r) + ρ2I(Zt−d > r)]Yt−1 + εt

= δtYt−1 + εt, (9)

where E(δt) = 1, and δt is a two regimes 1 st-order stationary Markov Chain.

Proposition 1 determines that the covariance stationarity of a TARSUR process depends on

the transition probabilities p21 and p11, and on the parameter values ρ1 and ρ2. For instance,

for values of the parameters ρ1 = 1.1, ρ2 = 0.9, p21 = 0.8, and p11 = 0.2 the TARSUR process

is covariance stationary. More general, it is straightforward to show that a necessary condition

for ρ(F2) < 1 is p21 > p11 (or equivalently p12 > p22). In other words, the transition probability

of being in the same regime has to be strictly smaller than the probability of changing regimes.

The idea behind this condition is to avoid staying in the explosive regime for too long.

It is worthwhile to mention that a TARSUR process with an i.i.d. threshold variable is not

covariance stationary, since E(δ2t ) > 1.

With respect to the IRF, Proposition 2 establishes that depending on the transition proba-

bilities, shocks can have transitory or permanent effects. It is easy to check that for a TARSUR

process, the following implications hold:

1. If p11 > p21 : lim
h→∞

ξh =∞, as it happens in an explosive model.

2. If p11 = p21 : ξh = 1, ∀h, as it happens in a random walk model. Note that in this case

Zt is an i.i.d. process.

3. If p11 < p21 : lim
h→∞

ξh = 0, as it happens in a stationary model.

Proposition 1 together with Proposition 2 show that TARSUR processes are more flexible

than fixed unit root models, in the sense of being able to produce a richer set of plausible

scenarios. If p11 ≥ p21 the process is not covariance stationary and shocks have permanent
and even increasing effects in mean; but if p11 < p21, shocks will have only transitory effects in

mean and depending on the parameter values, it can be stationary or not. This latter case of

non covariance stationarity but transitory effects resembles, in this sense, the ARFIMA models

with a long memory parameter between 0.5 and 1 (see Dolado, Gonzalo and Mayoral (2002)).

Figure 1, a-c, displays simulated realizations from TARSUR and Random Walk (RW) mod-

els. The TARSUR series are generated by model (9), for t = 1, ..., 550, with εt as i.i.d. Normal

(0,1) and Zt as a standard stationary AR(1) process. The random walk series is generated

from the same set of innovations. The first 50 observations of each series have been disregarded
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to avoid any initial conditions dependency. For comparison reasons, each figure shows a ran-

dom walk versus three different types of TARSUR processes, that depends on the relationship

between the conditional probabilities: p11 > p21, p11 = p21 and p11 < p21. Each figure differs

by the value taken by the variance of the stochastic unit root coefficient. More specifically,

in figure 1a ρ1 = 1.01 and ρ2 = 0.99 (V (ρt) = 0.0001), in figure 1b ρ1 = 1.03 and ρ2 = 0.97

(V (ρt) = 0.0009), and in figure 1c ρ1 = 1.1 and ρ2 = 0.9 (V (ρt) = 0.001). It can be seen that

for small values of V (ρt) the RW and TARSUR series are indistinguishable. As V (ρt) increases

the TARSUR series becomes more volatile than its corresponding RW. It is worth to mention

that even in the most unstable case (see figure 1c) the “explosive” TARSUR series ( p11 > p21)

does not look like a standard AR(1) with a fixed explosive root.

2.4 Differencing a TARSUR process

Differencing model (2) we obtain

4Yt = (ωt − 1)Yt−1 + εt. (10)

Proposition 3 Assume that Yt follows model (2). If ωt has a strictly positive variance, ∆Yt

is strictly (covariance) stationary if and only if Yt is strictly (covariance) stationary.

In contrast to fixed unit root models, stochastic unit root models are not difference stationary,

in the sense that if the process is not stationary in levels, its differences will not be stationary

either. Alternatively, if the process is strictly stationary (i.e., conditions of the first part of

Theorem 1 are satisfied), its difference will also be strictly stationary. In this case we can

express model (10) as a MA(∞)

∆Yt =
∞X
j=0

Ψt,jεt−j (11)

where Ψt,0 = 1 and Ψt,j = (ωt − 1)ψt−1,j−1, j ≥ 1.
In order to obtain the covariance structure and the IRF of ∆Yt, the representative case of

subsection 2.2 needs to be assumed again.

Proposition 4 Under the conditions of Proposition 1, ∆Yt is covariance stationary if the

spectral radius of F2 is less than one. Moreover, the IRF of ∆Yt , Υj = E
³
δ∆Yt+j
δεt

´
, is given

by

Υj =
³
1 1

´
G1F

j−2
1

 v1p1

v2p2

 , j ≥ 2, (12)
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with G1 =

 (v1 − 1)p11 (v1 − 1)p21
(v2 − 1)p12 (v2 − 1)p22

 .
From these general results it is straightforward to conclude that a TARSUR process is not

difference stationary. Nevertheless, under the scenario of Corollary 1 (i.e., stochastic root

around unity), the TARSUR model is strictly stationary and therefore by Proposition 3 its

difference will be too.

With respect the IRF, as it is expected, the long-run effect of the shocks on ∆Yt depends

on the transition probabilities:

1. If p11 > p21 : lim
j→∞

Υj =∞, and ∆Yt is not covariance stationary.

2. If p11 = p21 : Υj = 0, ∀j ≥ 1, and ∆Yt is not covariance stationary.

3. If p11 < p21 : lim
j→∞

Υj = 0, and ∆Yt could be covariance stationary.

The expression of the covariance function is omitted since we consider that its contribution

to the analysis does not compensate its complexity. In any case, the covariance function of

∆Yt does not always exist, it depends on the spectral radius of F2. In spite of this, for many

of the cases ∆Yt resembles a white noise process.

3. STOCHASTIC UNIT ROOT TESTS

The goal of this section is to construct a test for the null hypothesis of an exact unit root

versus the alternative of an stochastic unit root. It is worthwhile to emphasize that under both

hypotheses E(δt) = 1.

The data generating process (DGP) considered is the following model:

Yt = [µ1 + ρ1Yt−1] I(Zt−d ≤ r) + [µ2 + ρ2Yt−1] I(Zt−d > r) + εt. (13)

Rearranging terms this DGP can be rewritten as

∆Yt = (µ1I(Zt−d ≤ r) + µ2I(Zt−d > r))
+ ((ρ1 − ρ2)I(Zt−d ≤ r) + (ρ2 − 1))Yt−1 + εt, (14)

and imposing E(δt) = 1, it is obtained

∆Yt = (µ1I(Zt−d ≤ r) + µ2I(Zt−d > r)) (15)

+γUt(r)Yt−1 + εt,
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where γ = (ρ1 − ρ2) and Ut(r) = I(Zt−d ≤ r)− p(r), with p(r) = P (Zt−d ≤ r).
Assuming 0 < p(r) < 1 and given that V (δt) = γ2p(r)(1 − p(r)), the null hypothesis of an

exact unit root (V (δt) = 0) versus the alternative of a stochastic unit root (V (δt) 6= 0) is tested
by testing

H0 : γ = 0 (16)

against

H1 : γ 6= 0 (17)

in model (15).

As it occurs with the Dickey-Fuller (DF) t-test, in order to obtain asymptotic distributions

that are invariant to the deterministic terms contained in the DGP, the regression model (RM)

used to implement our tests will contain a threshold constant term as well as a threshold

deterministic trend:

∆Yt = (µ1I(Zt−d ≤ r) + µ2I(Zt−d > r)) (18)

+(β1tI(Zt−d ≤ r) + β2tI(Zt−d > r))

+γUt(r)Yt−1 + εt.

The asymptotic distribution of our tests will basically depend on whether the threshold value

is known or unknown, and in the latter case on whether is identified or unidentified. In the rest

of the paper “ ⇒ ” denotes weak convergence as T → ∞ with respect to the uniform metric

on [0, 1]2.

3.1 Threshold value known

The case of a known threshold value becomes relevant for pedagogical or explanatory reasons

as well as for cases where the regimes are determined by the sign of the threshold variable (see

Enders and Granger (1998) momentum TAR model). In this situation the test proposed is the

t−statistic for bγ, tγ=0, in regression model (18), and its asymptotic distribution is shown in
the next proposition.

Proposition 5 Suppose that the threshold value is known and that assumptions (A.1), (A.2)

(A.3) and (A.4) hold. Under the null of no threshold the tγ=0 statistic in the regression model

(18) has the following asymptotic distribution
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tγ=0(r)⇒ N(0, 1).

3.2 Threshold value unknown

When the threshold value r is unknown it is assumed that this parameter lies in a bounded

interval R∗. The LS estimate of r is the value that

min
r∈R∗

bσ2(r),
where bσ2(r) = T−1

PT
t=1 bεt2 denotes the residual variance from the LS estimation of model

(18) for a fixed r. This estimator br coincides with the one obtained by maximizing the Wald
statistic

WT = sup
r∈R∗

WT (r)

of the null hypothesis of no threshold (µ1 = µ2 and γ = 0).

For statistical reasons (different AD) when r is unknown we need to distinguish whether this

threshold parameter is identified or not under the null hypothesis. In the first case we assume

that there exists a threshold effect under the null hypothesis of exact unit root, that is, γ = 0

but µ1 6= µ2 in DGP (15). In the second case we assume that µ1 = µ2, so the test statistic of
the null hypothesis of exact unit root is the same as the test statistic of no threshold at all.

3.2.1 Threshold value unknown but identified

When the DGP has a threshold effect in the drift term we can identify this threshold value

before testing for a stochastic unit root. In this case it is enough to use the t−statistic for γ = 0
evaluated at br, tγ=0(br). This is so because r is estimated super-consistently (T−consistent) by
LS in a first step, and it can be taken as known, getting back into Proposition 2.

Proposition 6 Suppose that assumptions (A.1), (A.2), (A.3) and (A.4) hold. Under H0 : γ =

0, µ1 6= µ2, the tγ=0 statistic in regression model (18) has the following asymptotic distribution

tγ=0(br)⇒ N(0, 1).

3.2.2 Threshold value unknown and unindentified

In this subsection we consider models with no threshold effect in the constant term under

the null (µ1 = µ2 = µ). The appropriate test statistic is the supremum of the Wald statistic

WT introduced in section 3.2,

13



WT =sup
r∈R∗

WT (r), where WT (r) = t
2
γ=0(r).

The asymptotic distribution ofWT turns out to be different, as it happens with the DF tests,

depending on the deterministic components introduced in the regression model and whether

the DGP is characterized by a nonzero drift or not.

Proposition 7 Suppose that assumptions (A.1), (A.2) (A.3) and (A.4) hold.

1. Consider DGP (15) with µ1 = µ2 = 0, and regression model (18) with no deterministic

terms. Then under H0 : γ = 0

WT ⇒ sup
r∈R∗

¡R
B(s)dV (s, p(r))

¢2
p(r)(1− p(r)) R B(s)2ds,

where B(·) is a standard Brownian motion and V (s, p(r)) is a Kiefer-Müller process3 on
[0, 1]2 .

2. Consider DGP (15) with µ1 = µ2 = 0, and regression model (18) with a threshold constant

term. Then under H0 : γ = 0

WT ⇒ sup
r∈R∗

¡R
B∗(s)dV (s, p(r))

¢2
p(r)(1− p(r)) R B∗(s)2ds,

where B∗(·) = B(·)− R 10 B(s)ds.
3. Consider DGP (15) with µ1 = µ2 = µ 6= 0, and regression model (18) with a threshold
constant term. Then under H0 : γ = 0

WT ⇒ sup
r∈R∗

³R 1
0 f(s)dV (s, p(r))

´2
p(r)(1− p(r))µ212

,

where f(s) = µs− µ
2 .

4. Consider DGP (15) with µ1 = µ2 = µ, and regression model (18) with a threshold

constant term and a threshold deterministic trend. Then under H0 : γ = 0

WT ⇒ sup
r∈R∗

¡R
B∗∗(s)dV (s, p(r))

¢2
p(r)(1− p(r)) R B∗∗(s)2ds,

where B∗(s) = B(s)− R 10 B(a)g(a)0da³R 10 g(a)g(a)0da´−1 g(s) and g(s) = (1 s)0.
3A Kieffer-Müller process V on [0, 1]2 is given by V (t1, t2) = B(t1, t2) − t2B(t1, 1) where B(t1, t2) is a

standard Brownian sheet. The standard Brownian sheet B(t1, t2) is a zero-mean Gaussian process indexed by

T = [0, 1]2 and covariance function Cov[B(s, t), B(u, v)] = (s
V
t)(u

V
v).
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In general it will not be known whether µ1 = µ2 = 0 or not under H0. For this reason, as

in the standard DF test, it is recommended for practical purposes to use the regression model

and critical values corresponding to case 4 of last proposition. Critical values (5% significant

level) for cases 1, 2 and 4 are tabulated in Table 1. The data are generated under DGP (13),

with ρ1 = ρ2 = 1, and εt as i.i.d. N(0, 1). The regression model considered is model (18) with

Zt an i.i.d. U(0, 1).

4. A MONTE CARLO EXPERIMENT AND A TESTING STRATEGY

Using Monte Carlo methods we now examine the performance of the proposed stochastic unit

root tests. The power of the Dickey Fuller t test against TARSUR alternatives is also analyzed.

The Monte Carlo experiment consists on 10,000 replications with sample sizes T = 100, 250

and 500. The error term εt is generated as i.i.d. N(0, 1) and the threshold variable Zt follows,

without loss of generality, an U(0, 1) independent of Yt .

Tables 2 and 3 show the empirical size of the proposed test for different values of the threshold

effect in the drift term, ∆µ = µ1−µ2, under the null hypothesis. From Table 2 it can be seen

that, when the threshold parameter r is known, the empirical and nominal sizes coincide.

Table 3 shows the empirical size for r unknown. As it is expected the asymptotic Normal

approximation to the finite sample distribution improves with the sample size as well as with

the size of ∆µ. When ∆µ = 0, the threshold parameter is not identified and the Normal

distribution is not the correct asymptotic distribution. In brackets we report the empirical size

based on the critical values of the supremum Wald statistic.

In order to study the power we analyze several TARSUR alternatives that allow for different

values of |γ| = |ρ1 − ρ2| = (0.02, 0.06, 0.2), and |∆µ| = (0, 0.3, 0.6, 1, 2). Results are

presented in Table 4 for r known and in Table 5 for r unknown. In both tables it is observed

that the power increases with the sample size as well as with the size of the threshold effect

|γ| = |ρ1 − ρ2| .
Table 6 shows the power of the DF t-test against the same TARSUR alternatives previously

considered. The t-statistic is calculated from the regression

∆Yt = π1 + π2t+ π3Yt−1 + vt. (19)

The conclusion is that the DF unit root tests can not easily distinguish between a pure unit

root and a threshold stochastic unit root.

Finally, we have also studied the power against alternative models with different values of
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E(δt) = 0.3, 0.5, 0.7, 0.9. For each value of E(δt), the V (δt) is allowed to vary from 0 to 0.3,

and the threshold effect in the drift term (∆µ = µ1−µ2) goes between −2 and 2. A summary
of these results are available upon request. As it is expected the power increases with the

V (δt), the size of ∆µ and with the value of E(δt).

In the light of these results we propose the following two steps strategy for empirical work:

(1) Test for a fixed unit root using a standard test like the DF t-test.

(2) If the null hypothesis of fixed unit root is not rejected then test for a TARSUR model.

5. EMPIRICAL APPLICATIONS

In order to provide an empirical illustration of how the estimation and testing of a TAR-

SUR model can be applied in practice, we present two applications where there exists some

theoretical and/or empirical controversy about the randomness of the unit root in the AR

representation. The first example is the modelling of the U.S. stock prices and the second one

analyzes interest rates from Japan, UK, U.S. and West Germany.

5.1 U.S. stock prices

In this application we investigate via our TARSUR model the link between asset prices and

real activity, as well as the predictability in stock returns. The data analyzed is the quarterly

series of Standard and Poor Composite Stock Price Index from 1947:1 to 1999:4. The threshold

variable representing the real activity is the increment of GDP. Both variables are deflated by

the implicit GDP price deflator (1996=100). More information about the data on stock prices

can be found in Shiller (www.econ.yale.edu/~shiller) and about the GDP (S.A.) series in the

U.S. Department of Commerce, Bureau of Economic Analysis (www.bea.doc.gov).

Since the work by Samuelson (1965) asset prices have been modeled as a martingale process

considering returns to be unpredictable. Following LeRoy (1973) and Lucas (1978) the mar-

tingale property is obtained from the Euler equation that describes the optimal behaviour of

the representative consumer:

ptU
0
t = (1 + ρ)−1Et(pt+1 + dt+1)U 0t+1, (20)

where pt is stock price at time t, dt the dividends, ρ a discount factor, and U 0 the marginal

utility. Assuming risk neutrality, ρ = 0, and removing the dividends from equation (20),

the martingale model holds. Relaxation of these strong restrictions, for instance, assuming

risk aversion, will lead to a departure from the martingale model. Note that the random
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walk specification is still more restrictive and it can not be derived within the framework of

competitive price theory.

In order to generalize the martingale model we propose a stochastic unit root specification.

The stochastic unit root model could be a martingale or not depending on the type of process

followed by the stochastic coefficient δt. It will be a martingale if and only if E(δt|=t−1) = 1.
The estimated model for the stock prices is the TARSUR model

∆Yt = (µ1I(Zt−d ≤ r) + µ2I(Zt−d > r))
+ (β1tI(Zt−d ≤ r) + β2tI(Zt−d > r))

+γ (I(Zt−d ≤ r)− p(r))Yt−1 + εt,

where Yt is the real stock price index and Zt corresponds to the changes in the real GDP

(∆rgdpt). Dickey-Fuller unit root tests suggest that real stock prices as well as the real GDP

contain a unit root, while Zt clearly rejects the null hypothesis of a unit root.

Figure 2 presents a plot of both variables and Table 7 summarizes the estimation results

of the TARSUR model. The null hypothesis of exact unit root versus the alternative of a

threshold stochastic unit root is clearly rejected at 5% significant level, WT = 13.61 versus

the critical value of 7.41 (see Table 1). For comparative purposes we have also estimated the

following linear model, where the returns ∆Yt, are explained in terms of their own lagged

values and lagged values of changes in GDP:

∆Yt = µ+ βt+ ρ∆Yt−1 + α1∆rgdpt−1 + α2∆rgdpt−2 + α3∆rgdpt−3 + νt.

From Table 8 it can be seen that our simple TARSUR model is superior to the linear

model. The TARSUR model does not only capture a clearly positive relationship between

the stock market and the real activity, but it does find a candidate (Zt) to explain the cause

of why stock prices may have a unit root. From the maintained hypothesis of unit root

(ρ1p(r) + ρ2(1− p(r)) = 1) and the estimated parameters, bγ and dp(r), it is straightforward to
obtain the estimates of ρ1, ρ2 and conditional probabilities p22 and p12 (see Table 9).

The results in Tables 7 and 9 show that when the increment of real GDP is less than

0.71 (corresponding approximately to a growth rate of 1.6%), the stock price index is in the

stationary and mean reverting regime (autoregresive parameter equal to 0.98). The estimated

probability of being in this regime is 0.8. On the other hand, when the increments of real

GDP are larger than 0.71, prices follow a mildly explosive model (autoregresive parameter
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equal to 1.05), and this occurs with probability 0.2. On the overall, the stochastic root of the

autoregresive representation is on average unity.

Moreover, looking at the transition probabilities, the stochastic coefficient δt seems to follow

an AR(1) process with positive parameter (the correlogram of∆rgdpt also suggests this result).

Therefore stock prices will not be a martingale process with respect the information set formed

by past values of Yt and∆rgdpt. In other words, if∆rgdpt is considered a plausible explanation

of the stochastic unit root, future returns could be predictable in the sense that

Et−1
µ
Yt − Yt−1
Yt−1

¶
= Et−1 (δt − 1) 6= 0. (21)

From (21) and the results in Tables 7 and 9 we conclude that if we were in a “recession” state

at time t−1 (∆rgdpt−1 < 0.71), the expected value of the returns at time t would be negative.
On the contrary, if we were in an “expansion” state (∆rgdpt > 0.71) the expected value would

be positive. In that way, we find that there exists a positive non-linear relationship between the

expected stock returns and the real activity of the economy. Linear links between stock returns

and macroeconomic variables have already been found in the finance literature although with

a clear smaller R2 (Chen et al. (1986), Fama (1990)) than the one in our TARSUR model.

5.2 Interest rates from different countries

The data analyzed is the same as in Leybourne, McCabe and Mills (1996). This data

set corresponds to international U.S. (BUS), U.K. (BUK), Japan (BJP) and West Germany

(BWG) bond yield data. The series are daily close of trade observations from April 1st 1986

to December 29th 1989 and can be obtained from Mills (1993). The four variables are plotted

in Figure 3.

Leybourne, McCabe and Mills (1996) find that the null hypothesis of a fixed unit root versus

the alternative of a stochastic unit root is clearly not rejected for U.S. bond yields. However,

the fixed unit root null is mildly rejected for the U.K. and West Germany bond yield data,

and strongly rejected for the Japanese series.

In order to apply our TARSUR model we need a candidate for a threshold variable. The fact

that there is evidence of U.S. bond yields Granger causing the other yields, but not the other

way around, together with the fact that U.S. bond yields do not reject the null hypothesis of

exact unit root, makes the changes in the U.S. bond yields a perfect candidate for threshold

variable.

The results obtained for the U.K., Japan and West Germany bond yield series are in Table
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10. The values of the Wald test for testing the null of a unit root against a TARSUR alternative

suggest that the null of a fixed unit root is not rejected for the U.K. and West Germany, while

for Japan it is rejected in favor of the alternative hypothesis of a stochastic unit root. These

results are similar to the ones obtained by Leybourne, McCabe and Mills (1996) with a different

methodology. The advantages of the TARSUR model is that in the case of Japan we find a

possible cause for the existence of a stochastic unit root, changes on the U.S. bond yields. For

an alternative threshold model of interest rates, see Gonzalez and Gonzalo (1998).

6. CONCLUSION

This paper introduces a new class of stochastic unit root models (TARSUR) where the

random behavior of the unit root is driven by an economic threshold variable. By doing that,

we do not only make the unit root models more flexible but we find an explanation for the

existence of unit roots. Flexibility is obtained because depending on the values of certain

parameters, TARSUR processes can behave like an explosive process, like an exact unit root

process, or like a stationary process. Explanatory power is gained because TARSUR models, by

identifying an economic variable as a threshold variable, can provide a cause for the existence

of unit roots.

Empirical applications show that estimation and testing of TARSUR models is not more

complex than the estimation and testing involved in fixed unit root models. This is a clear ad-

vantage of TARSUR models with respect to other stochastic unit root methodologies available

in the literature.

Extension of these models to the cointegration framework is undergoing research by the

authors.
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8. APPENDIX

Proof of Theorem 1. The condition of strict stationarity follows from Brandt (1986), and

the weak stationarity from Karlsen (1990).

Proof of Proposition 1. The condition for covariance stationarity is given by,

∞X
j=0

E
³¯̄
ψt,j

¯̄2´12
=

³ 1 1
´ ∞X
j=1

F j2

 v21p1

v22p2

 <∞, (22)

with F2 =

 v21p11 v21p21

v22p12 v22p22

. This infinite sum converges if the spectral radius of F2 is less

than one.

Proof of Proposition 2. The IRF can be expressed as

ξh =
³
1 1

´
Fh1

 v1p1

v2p2

 , h = 1, 2, · · · , (23)

where F1 =

 v1p11 v1p21

v2p12 v2p22

. Therefore lim
h→∞

ξh converges to zero if and only if the

spectral radius of F1 is less than one.

Proof of Corollary 1. From V (δ1) > 0 and by Jensen’s inequality we get

E log |δ1| < logE |δ1| = logEδ1 = 0.

Therefore condition (4) holds.

Proof of Proposition 3. Iterating backwards (10),

4Yt = εt + (ωt − 1)
n−1X
j=1

Ã
j−1Y
i=1

ωt−i

!
εt−j + (ωt − 1)

Ã
n−1Y
i=1

ωt−i

!
Yt−n. (24)

Substracting (10) from (24)

∆Yt(Yt−n)−4Yt = (ωt − 1) (Yt−1(Yt−n)− Yt−1) ,

where∆Yt(Yt−n) corresponds to equation (24), and4Yt to equation (10). As long as V (ωt) >
0,∆Yt(Yt−n) converges almost sure (in mean square) to4Yt as n→∞, if and only if Yt−1(Yt−n)
converges almost sure (in mean square) to Yt−1.

Proof of Proposition 4. Covariance stationary follows from Propositions 1 and 3. Ex-

pression (12) is easily obtained after some algebra.
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Proof of Proposition 5. The proof is divided in three parts depending on the deterministic

terms included in the regression model (18): (1) no deterministic terms (µ1 = µ2 = 0 and

β1 = β2 = 0), (2) a threshold constant term (µ1 6= µ2 and β1 = β2 = 0), and (3) a threshold

constant term as well as a threshold deterministic trend (µ1 6= µ2 and β1 6= β2).

In order to derive the asymptotic distribution of the proposed statistic we need to use some

of the asymptotic tools developed in Caner and Hansen (2001).

Define the partial-sum process

BT (s, u) =
1√
T

[Ts]X
t=1

I(Zt−d ≤ r)εt,

with u = P (Zt−d ≤ r) = p(r). Theorem 1 in Caner and Hansen (2001) establishes that

BT (s, u)⇒ σB(s, u), (25)

on (s, u) ∈ [0, 1]2 as T → ∞, where B(s, u) is a standard Brownian sheet on [0, 1]2 , and
σ2 = E(ε2t ).

Following Theorem 2 in Caner and Hansen (2001) we have that if Xt = Xt−1 + εt

1√
T

TX
t=1

XtI(Zt−d ≤ r)εt ⇒ σ

Z 1

0
B(s)dB(s, u), (26)

where B(s) is a standard Brownian Motion. Finally, from Theorem 3 in Caner and Hansen

(2001) we have that

1

T

TX
t=1

XtI(Zt−d ≤ r)⇒ p(r)

Z 1

0
B(s)ds. (27)

Case 1. The DGP is

∆Yt = εt. (28)

The regression model considered is (18) with µ1 = µ2 = 0 and β1 = β2 = 0,

∆Yt = γUt(r)Yt−1 + εt, (29)

where Ut(r) = I(Zt−d ≤ r)− p(r).
The t-statistic for γ = 0 is

tγ=0(r) =
1
T

PT
2 Yt−1Ut(r)εtq

1
T 2
PT
2 U

2
t (r)Y

2
t−1
.

From (25) and (26)
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1

T

TX
2

Ut(r)Yt−1εt ⇒ σ2
Z 1

0
B(s)dV (s, p(r)),

where V (s, p(r)) is a Kiefer-Müller process on [0, 1]2. On the other hand, (25) and (27) imply

that

1

T 2

TX
2

I(Zt−d ≤ r)Y 2t−1 ⇒ σ2p(r)

Z 1

0
B(s)2ds.

Therefore

1

T 2

TX
2

Ut(r)
2Y 2t−1 ⇒ σ2p(r)(1− p(r))

Z 1

0
B(s)2ds,

and the asymptotic distribution of the t-statistic is,

tγ=0(r)⇒
R 1
0 B(s)dV (s, p(r))q

p(r)(1− p(r))(R 10 B(s)2ds) .
Since V (s, p(r)) and B(s) ≡ B(s, 1) are independent, it can be proved that for a fixed r,R 1

0 B(s)dV (s, p(r))qR 1
0 B(s)

2ds
≡ N(0,σ2ν),

where σ2ν = V ar (Ut(r)εt/σ) = p(r)(1− p(r)).
Case 2. Regression model contains a threshold constant term

∆Yt = µ1I(Zt−d ≤ r) + µ2I(Zt−d > r) + γUt(r)Yt−1 + εt. (30)

Note that Ut(r) = (1 − p(r))I(Zt−d ≤ r) − p(r)I(Zt−d > r). We can estimate γ from the

following transformed model:

∆Yt = γ
£
(1− p(r))I(Zt−d ≤ r)Y It−1 − p(r)I(Zt−d > r)Y IIt−1

¤
+ εt, (31)

where Y It−1 = Yt−1 −
P
I(Zt−d≤r)Yt−1P
I(Zt−d≤r) and Y IIt−1 = Yt−1 −

P
I(Zt−d>r)Yt−1P
I(Zt−d>r)

.

The t-statistic for γ = 0 is

tγ=0(r) =
T−1

¡
(1− p(r))PY It−1I(Zt−d ≤ r)εt − p(r)

P
Y IIt−1I(Zt−d> r)εt

¢rbσ2T−2 ³(1− p(r))2P I(Zt−d≤ r)
¡
Y It−1

¢2
+ p(r)2

P
I(Zt−d≤ r)

¡
Y It−1

¢2´ .
Its asymptotic distribution is obtained under different nulls of interest:

(i) H0 : γ = 0 and µ1 = µ2 = 0 (DGP (28)).

By applying (25) and (27)
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T−1Y iT t ⇒ B(s)−
Z 1

0
B(s)ds = B∗(s) , i = I, II.

Then, by using (26) we obtain

tγ=0(r) ⇒ (1− p(r)) R B∗(s)dB(s, p(r))− p(r) R B∗(s)dB(s, 1− p(r))q
(1− p(r))p(r) R B∗(s)2ds

≡
R
B∗(s)dV (s, p(r))q

p(r)(1− p(r))(R B∗(s)2ds) .
Since B∗(s) and V (s, p(r)) are independent, it can be proved that for fixed rR

B∗(s)dV (s, p(r))q
p(r)(1− p(r))(R B∗(s)2ds) ≡ N(0, 1).

(ii) H0 : γ = 0 and µ1 = µ2 = µ 6= 0. The DGP is

Yt = µ+ Yt−1 + εt. (32)

By applying (25) and (27)

T−1Y i[Ts] ⇒ µs− µ
2
= f(s), i = I, II.

Using the same reasoning as before,

tγ=0(r)⇒
R
f(s)dV (s, p(r)q
p(r)(1− p(r)µ212

.

For a fixed r R
f(s)dV (s, p(r)q
p(r)(1− p(r)µ212

≡ N(0, 1).

(iii) H0 : γ = 0 and µ1 6= µ2. The DGP is

Yt = µ1I(Zt−d ≤ r) + µ2I(Zt−d > r) + Yt−1 + εt = (33)

= µ+ Yt−1 + ξt,

where µ = µ1p(r) + µ2(1− p(r)) and ξt = µ1(I(Zt−d ≤ r)− p(r)) + µ2(I(Zt−d > r)− (1−
p(r))) + εt is a zero mean strictly stationary process. Then T−

1
2
P[Ts]
t=1 εtI(Zt−d ≤ r)
T−

1
2
P[Ts]
t=1 ξt

⇒
 B(s, p(r))

σξB(s)

 .
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Note that as in the previous case

T−1Y i[Ts] ⇒ µs− µ
2
= f(s), i = I, II.

Then,

tγ=0(r)⇒
R
f(s)dV (s, p(r))q
p(r)(1− p(r)µ212

.

For a fixed r, R
f(s)dV (s, p(r))q
p(r)(1− p(r)µ212

≡ N(0, 1).

Case 3. The regression model considered is

∆Yt = (µ1 + β1t)I(Zt−d ≤ r) + (µ2 + β2t)I(Zt−d > r) + γUt(r)Yt−1 + εt. (34)

Following the same logic as in case 2, γ can be estimated from the following transformed

model:

∆Yt = γ
h
(1− p(r))I(Zt−d ≤ r)Y lt−1 − p(r)I(Zt−d > r)Y ht−1

i
+ εt, (35)

where

Y lt−1 = Yt−1 −
TX
j=1

Yj−1I(Zj−d ≤ r)
³
1 j

´X³
1 j

´ 1

j

 I(Zj−d ≤ r)
−1 1

t


and

Y ht−1 = Yt−1 −
X

Yj−1I(Zj−d > r)
³
1 j

´X³
1 j

´ 1

j

 I(Zj−d > r)
−1 1

t

 .
The t−statistic for γ = 0 is

tγ=0(r) =
T−1

¡
(1− p(r))PY lt−1I(Zt−d ≤ r)εt − p(r)

P
Y ht−1I(Zt−d > r)εt

¢rbσ2T−2 ³(1− p(r))2P I(Zt−d ≤ r)
¡
Y lt−1

¢2
+ p(r)2

P
I(Zt−d ≤ r)

¡
Y ht−1

¢2´ .
Its asymptotic distribution is obtained under different nulls of interest:

(i) H0 : γ = 0 and µ1 = µ2 = 0 (DGP (28)).

Applying (25) and (27) we get

T−
1
2Y i[Ts] ⇒ B(s)−

Z 1

0
B(a)

³
1 a

´
da

Z 1

0

³
1 a

´ 1

a

da
−1 1

s


= B∗∗(s), i = l, h.
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Then, by (26)

tγ=0(r) ⇒ (1− p(r)) R B∗∗(s)dB(s, p(r))− p(r) R B∗∗(s)dB(s, 1− p(r))q
(1− p(r))p(r) R B∗∗(s)2ds

≡
R
B∗∗(s)dV (s, p(r))q

(1− p(r))p(r)(R B∗∗(s)2ds.
Since V (s, p(r)) and B(s) are independent, for a fixed rR

B∗∗(s)dV (s, p(r))q
(1− p(r))p(r)(R B∗∗(s)2ds ≡ N(0, 1).

(ii) H0 : γ = 0 and µ1 = µ2 = µ 6= 0 (DGP (32)).
Since the regression model contains a trend component, the test statistic is invariant to µ,

so we can set µ = 0. Then we are back into case (i).

(iii) H0 : γ = 0 and µ1 6= µ2 (DGP (33)).
Since the regression model contain a trend component, it can be shown that the test statistic

is invariant to µ, so we can set µ = 0 in expression (33). Then, applying results (25), (26) and

(27) we obtain the following asymptotic distribution

tγ=0(r) ⇒ (1− p(r)) R B∗∗b (s)dBa(s, p(r))− p(r) R B∗∗b (s)dBa(s, 1− p(r))q
(1− p(r))p(r) R B∗∗b (s)2ds

≡
R
B∗∗b (s)dVa(s, p(r))q

(1− p(r))p(r) R B∗∗b (s)2ds.
Again, for fixed r R

B∗∗b (s)dVa(s, p(r))q
(1− p(r))p(r) R B∗∗b (s)2ds ≡ N(0, 1).

Proof of Proposition 6

Given that br is T-consistent4, it can be shown that
tγ=0(br)⇒ tγ=0(r).

Then, results in Proposition 5 can be directly applied.

Proof of Proposition 7

Since the threshold value is unknown and unidentified, the test statistic proposed is

WT =sup
r∈R∗

tγ=0(r)
2.

4Caner and Hansen (2000) proof that T (br − r0) = Op(1) in presence of nonstationary variables.
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All the cases considered in Proposition 7 are examined in Proposition 5. Applying the

continuous mapping theorem we have that

WT ⇒ sup
r∈R∗

t(r)2,

where t(r) is the asymptotic distribution of the t− statistic obtained in Proposition 5.
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Table 1: 5% Critical Values for the TARSUR test when r is unknown and unidentified

DGP RM T = 100 T = 250 T = 500

µ1 = µ2 = 0
µ1 = µ2 = 0

β1 = β2 = 0
7.36 7.30 7.09

µ1 = µ2 = 0
µ1 6= µ2

β1 = β2 = 0
7.54 7.34 7.11

µ1 = µ2 6= 0
µ1 6= µ2
β1 6= β2

7.79 7.41 7.17

Note: 10,000 replications.

DGP: model (13); RM: model (18)
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Table 2: Empirical size (%) of the TARSUR test for r known

DGP RM T = 100 T = 250 T = 500

µ1 = µ2 = 0
µ1 = µ2 = 0

β1 = β2 = 0
5.14 5.02 4.87

µ1 = µ2 = 0
µ1 6= µ2

β1 = β2 = 0
5.77 5.47 5.26

∆µ = −2 µ1 6= µ2
β1 6= β2

5.15 5.46 5.29

∆µ = −1 µ1 6= µ2
β1 6= β2

5.04 5.07 4.96

∆µ = −0.6 µ1 6= µ2
β1 6= β2

5.79 5.24 5.34

∆µ = −0.3 µ1 6= µ2
β1 6= β2

5.80 4.90 5.24

∆µ = 0
µ1 6= µ2
β1 6= β2

6.01 5.53 5.24

∆µ = 0.3
µ1 6= µ2
β1 6= β2

5.68 5.50 4.82

∆µ = 0.6
µ1 6= µ2
β1 6= β2

5.28 4.93 5.21

∆µ = 1
µ1 6= µ2
β1 6= β2

5.53 5.64 5.13

∆µ = 2
µ1 6= µ2
β1 6= β2

5.43 5.41 4.92

Note: Rejection rates (%) from 10,000 replications. Nominal size 5%.

DGP: model (13); RM: model (18)
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Table 3: Empirical size (%) of the TARSUR test when r is unknown and identified

DGP T = 100 T = 250 T = 500

∆µ = −2 6.01 5.55 4.84

∆µ = −1 8.98 5.98 5.30

∆µ = −0.6 14.34 7.71 5.80

∆µ = −0.3 20.13 (4.54) 14.65 (3.20) 10.96 (2.89)

∆µ = 0 23.31 (5.10) 20.97 (4.59) 19.64 (5.27)

∆µ = 0.3 20.28 (4.52) 14.57 (3.49) 10.74 (2.88)

∆µ = 0.6 14.49 8.02 5.47

∆µ = 1 8.97 5.58 5.41

∆µ = 2 5.93 5.13 4.80

Note: Rejection rates (%) from 10,000 replications. Nominal size 5%.

In brackets the empirical size based on the a.d. of sup t2γ=0 instead of the Normal distribution.

DGP: model (13); RM: model (18)
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Table 4: Empirical power (%) of the TARSUR test for r known

DGP RM T = 100 T = 250 T = 500

|γ| = 0.02 0.06 0.2 0.02 0.06 0.2 0.02 0.06 0.2

µ1 = µ2 = 0
µ1 = µ2 = 0

β1 = β2 = 0
10.95 43.28 92.97 35.44 86.71 99.97 70.13 98.90 100

µ1 = µ2 = 0
µ1 6= µ2

β1 = β2 = 0
6.45 21.71 85.30 16.98 70.95 99.91 45.78 96.79 100

∆µ = −2 µ1 6= µ2
β1 6= β2

7.07 19.43 99.82 13.29 98.56 100 70.21 100 100

∆µ = −1 µ1 6= µ2
β1 6= β2

6.19 13.81 95.21 11.36 84.66 100 41.00 100 100

∆µ = −0.6 µ1 6= µ2
β1 6= β2

5.82 11.81 86.59 9.69 67.78 100 31.89 99.90 100

∆µ = −0.3 µ1 6= µ2
β1 6= β2

5.44 11.55 77.13 9.70 54.50 99.96 26.79 97.29 100

∆µ = 0
µ1 6= µ2
β1 6= β2

5.37 11.00 71.37 9.27 47.88 99.74 25.11 91.58 100

∆µ = 0.3
µ1 6= µ2
β1 6= β2

5.78 11.68 76.85 9.83 53.49 99.94 26.52 97.41 100

∆µ = 0.6
µ1 6= µ2
β1 6= β2

5..56 12.18 87.11 10.32 66.98 100 30.83 99.79 100

∆µ = 1
µ1 6= µ2
β1 6= β2

5.75 12.81 95.78 10.31 84.59 100 41.49 100 100

∆µ = 2
µ1 6= µ2
β1 6= β2

6.96 19.50 99.84 13.20 98.58 100 70.60 100 100

Note: Rejection rates (%) from 10,000 replications. Nominal size 5%.

DGP: model (13); RM: model (18)

32



Table 5: Empirical power (%) of the TARSUR test for r unknown

DGP RM T=100 T=250 T=500

|γ| = 0.02 0.06 0.2 0.02 0.06 0.2 0.02 0.06 0.2

µ1 = µ2 = 0
µ1 = µ2 = 0

β1 = β2 = 0
8.87 35.05 90.66 27.49 80.70 99.94 63.67 98.15 100

µ1 = µ2 = 0
µ1 6= µ2

β1 = β2 = 0
6.01 14.04 75.85 11.36 57.60 99.80 33.24 93.64 100

∆µ = −2 µ1 6= µ2
β1 6= β2

8.17 19.37 99.92 12.34 98.69 100 72.04 100 100

∆µ = −1 µ1 6= µ2
β1 6= β2

15.38 19.05 97.01 12.46 85.54 100 42.39 100 100

∆µ = −0.6 µ1 6= µ2
β1 6= β2

19.62 21.85 89.65 15.06 69.30 99.99 32.67 99.84 100

∆µ = −0.3 µ1 6= µ2
β1 6= β2

22.32 25.87 81.76 20.69 56.12 100 29.19 97.58 100

∆µ = 0
µ1 6= µ2
β1 6= β2

23.71 27.46 78.34 23.61 54.19 99.86 33.68 92.45 100

∆µ = 0.3
µ1 6= µ2
β1 6= β2

22.44 25.19 81.85 20.58 57.14 99.97 28.40 98.01 100

∆µ = 0.6
µ1 6= µ2
β1 6= β2

20.32 21.85 89.57 16.03 69.02 100 32.32 99.89 100

∆µ = 1
µ1 6= µ2
β1 6= β2

16.03 18.56 96.82 12.87 84.88 100 42.59 100 100

∆µ = 2
µ1 6= µ2
β1 6= β2

8.51 19.54 99.91 13.49 98.75 100 70.87 100 100

Note: Rejection rates (%) from 10,000 replications. Nominal size 5%.

DGP: model (13); RM: model (18)
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Table 6: Empirical Power of the DF t-test for TARSUR alternatives

DGP RM T = 100 T = 250 T = 500

|γ| = 0.02 0.06 0.2 0.02 0.06 0.2 0.02 0.06 0.2

µ1 = µ2 = 0
µ = 0

β = 0
4.70 4.69 5.70 4.87 4.99 4.73 4.99 4.80 4.32

µ1 = µ2 = 0
µ 6= 0
β = 0

2.29 1.17 0.29 1.93 0.82 0.33 1.19 0.50 0.33

∆µ = −2 µ 6= 0
β 6= 0

0.00 0.00 0.05 0.00 0.00 0.12 0.00 0.03 0.22

∆µ = −1 µ 6= 0
β 6= 0

0.00 0.00 0.03 0.00 0.01 0.26 0.00 0.04 0.25

∆µ = −0.6 µ 6= 0
β 6= 0

0.00 0.00 0.05 0.00 0.01 0.10 0.00 0.08 0.22

∆µ = −0.3 µ 6= 0
β 6= 0

0.00 0.00 0.04 0.00 0.00 0.15 0.00 0.04 0.23

∆µ = 0
µ 6= 0
β 6= 0

0.00 0.00 0.04 0.00 0.00 0.14 0.00 0.04 0.22

∆µ = 0.3
µ 6= 0
β 6= 0

0.00 0.00 0.06 0.00 0.00 0.18 0.00 0.06 0.22

∆µ = 0.6
µ 6= 0
β 6= 0

0.00 0.00 0.03 0.00 0.00 0.21 0.00 0.01 0.16

∆µ = 1
µ 6= 0
β 6= 0

0.00 0.00 0.01 0.00 0.00 0.26 0.00 0.04 0.26

∆µ = 2
µ 6= 0
β 6= 0

0.00 0.00 0.01 0.00 0.00 0.16 0.00 0.05 0.25

Note: Rejection rates (%) from 10,000 replications. Nominal size 5%.

DGP: model (13); RM: 4Yt = π1 + π2t+ π3Yt−1 + vt
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Table 7: TARSUR model for U.S. Stock Pricesbµ1 bµ2 bβ1 bβ2 bγ br bd bp(r) WT R2 AIC

0.007
(0.028)

− 0.439
(0.14)

− 0.0006
(0.0002)

0.002
(0.0011)

− 0.063
(0.017)

0.71 1 0.8 13.61 0 .25 −3.22

Table 8: Linear regression model for U.S. Stock Pricesbµ bβ bρ bα1 bα2 bα3 R2 AIC

− 0.03
(0.02)

0.0006
(0.0002)

0.32
(0.06)

0.00036
(0.0004)

−0.00049
(0.0004)

0.0016
(0.0003)

0 .16 −0.35

Table 9: TARSUR regime roots and conditional probabilities for U.S. Stock Prices

Zt−d bρ1 = bγ + bρ2 bρ2 = 1− bγbp(r) p22 p12

∆rgnpt 0.98 1.05 0.41 0.12

Table 10: TARSUR model for Interest Rates

∆Yt = ∆BUK ∆BJP ∆BWG

Zt−d = ∆BUSt ∆BUSt−1 ∆BUSt−1bµ1 0.014
(0.023)

0.037
(0.018)

0.005
(0.008)bµ2 −0.034

(0.052)
−0.015
(0.005)

−0.009
(0.011)bβ1 0.000005

(0.00002)
0.00003
(0.000008)

0.000009
(0.000006)bβ2 0.000004

(0.00001)
− 0.000005

(0.000005)
0.000001
(0.000009)bγ − 0.0098

(0.008)
− 0.016
(0.005)

−0.005
(0.008)br 0.023 −0.037 −0.005bd 0 1 1dp(r) 0.317 0.231 0.573

WT 1.39 9.78 1.73

R2 0 .033 0 .031 0 .067

Note: standard errors in brackets.
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Figure 1: Random Walk versus different TARSUR series. Each figure differs by V (δt).
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Figure 2: US stock prices and (1− L) real GDP, 1947:1-1999:4.
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Figure 3: Interest rates from Japan, UK, US and West Germany.
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