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Large shocks vs. small shocks.
(Or does size matter? May be so.)
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Abstract

What are the shocks that drive economic fluctuations? The answer to this question requires as
a first step solving the shock identification issue. This paper proposes a new identification
scheme based on two aspects: the long run effect of the shock (permanent or transitory), and the
size of the shock (Large or small). This is done by using a threshold integrated moving average
model (TIMA) previously introduced in the literature by the authors. Based on this model we
develop a testing strategy to determine whether Large and small shocks have different long run
effects, as well as whether one of them is purely transitory. The paper analyzes the impulse
response function of both types of shocks, and provides the asymptotic results sufficient to
implement the above testing strategy. Based on these results we develop a new nonlinear
permanent transitory decomposition, that is applied to US stock prices to analyze the quality of
the stock market, and to US GNP to investigate the asymmetric behavior of its shocks.
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1. Introduction

What are the shocks that drive the economy? Where does the persistence present in
most of the economic time series come from? Is the persistence of output shocks
symmetric or asymmetric? What fraction of output variation is due to supply or
demand shocks? All the attempts to answer these questions pass through the critical
decision of shock identification.

Traditionally this has been done by decomposing the analyzed variable into
unobserved permanent and transitory components (see Watson, 1986). Some examples
are: (1) Beveridge and Nelson (1981) decomposition (B—N hereafter), where the
permanent component is a random walk and there is perfect correlation between
permanent and transitory shocks due to the fact that there is only one shock, the
permanent one; (2) Unobserved component models with uncorrelated components
(UC-0) (see Harvey, 1985; Clark, 1987), where the permanent component is also
assumed to be a random walk but its innovation is uncorrelated with the one in the
transitory term. Note that not all the ARIMA models admit an UC-0 decomposition.
This problem can be solved eliminating the random walk constraint on the permanent
component. In this case we have an extra identification problem that is overcome by
imposing an ad hoc smooth condition on the permanent term (see the “‘canonical”
decomposition in Pierce, 1979). All these decompositions present two basic problems
that are not solved in the literature: (i) at every time period ¢ there is always a
permanent shock, and (ii) none of the assumptions on permanent and transitory
components are testable. The approach proposed in this paper tries to solve the
identification issue without encountering these problems.

Our proposal is based on two pillars. First, as in the above mentioned
identification attempts we accept that there are permanent and transitory shocks,
and secondly, shocks behave differently in the long-run according to their own
characteristics (sign, size, etc.) or some characteristics of the economy. The first
premise, as is well known (see Quah, 1992) is not enough to identify the permanent
and transitory shocks of a univariate time series. This paper shows that with our
second assumption we cannot only identify the permanent and transitory shocks of a
single economic variable, but we can test whether in fact these shocks are transitory
or permanent. In order to implement our proposal we use a class of threshold
models, the threshold integrated moving average models (TIMA) previously
introduced in the literature by Gonzalo and Martinez (2004). These are models
with a unit root in the autoregressive part to capture persistence, and a threshold
design in the moving average side to allow for asymmetries. The threshold variable
can represent any characteristic of the shocks (large or small, positive or negative,
etc.) or of the economy (expansion or recession, inflation or deflation, etc.) we are
interested on. This threshold design is able to capture the possibility that any of these
characteristics may have different long run effects. By allowing the existence of a unit
root in some of the moving average regime, we permit that the characteristics
triggering those regimes have only a transitory effect.

In principle, TIMA models can deal with different shock characteristics, but in this
paper we will focus on shock size as in the StopBreak model of Engle and Smith
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(1999). Our maintained hypothesis is that large shocks will have permanent effects
while small shocks will produce only transitory effects. This hypothesis is based on
the assumption that certain times series are less likely to mean revert after a large
shock than after a small one. For example in the stock market, investors may
perceive large shocks as containing informational content and small shocks as mere
noise. In macroeconomics, an unsolved issue is whether economic fluctuations are
due to an accumulation of small shocks or instead mostly to infrequent large shocks.
A positive aspect of our framework is that we are able to test our maintained
hypothesis.

The identification of permanent and transitory shocks with our procedure, allows
us to construct an orthogonal nonlinear permanent—transitory decomposition of the
original variable. We also obtain a nonlinear B—N decomposition that while sharing
part of the spirit of both, the standard linear B—N and the UC-0 decompositions, its
behavior lies in between.

Threshold moving average (TMA) models have already been considered in
Wecker (1981) and in De Gooijer (1998). Both works are centered on presenting the
new TMA model and on analyzing some of the moment properties in detail. They
both assume normality, the threshold parameter to be known and equal to zero, and
they do not present asymptotic results. These can be found in Guay and Scaillet
(2003) using indirect inference. One part of our paper can be considered
complementary to this one in the sense of also developing asymptotic results; but
in our case using Hansen (1996), Gonzalez and Gonzalo (1998), and Caner and
Hansen (2001) approach to threshold models.

The paper finishes with two applications of our TIMA Shock-Size model: first, to
stock prices, where following Hasbrouck (1993) the size of the transitory component
can be considered a measure of the quality or efficiency of the stock market; and
second to GNP, where the majority of the research that investigates the size of its
permanent component has implicitly imposed symmetry, and the minority that
allows for asymmetries driven by the sign of the shocks has not reached any final
conclusion yet (see Elwood, 1998).

The rest of the paper is structured as follows. Section 2 introduces the TIMA
Shock-Size model and analyzes in detail its impulse response function (IRF). Section
3 presents the asymptotic theory results needed for testing the hypothesis of interests.
In Section 4 we define two new nonlinear permanent—transitory decompositions and
compare them with the existing linear decompositions. Sections 5 and 6 present two
empirical applications of our TIMA Shock-Size model, one to measure the quality of
the stock market and the other to analyze whether or not the persistence of shocks to
GNP is asymmetric. Finally, Section 7 draws some concluding remarks. The
appendix contains technical derivations and proofs of the results in the main text.

2. TIMA Shock-Size models

In this section we lay out the basis of the TIMA Shock-Size model. In order to
better understand this model, we start with a more general structure, the
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autoregressive threshold integrated moving average ARTIMA (p,m,1,1) model
introduced in Gonzalo and Martinez (2004),

m+1
Dy (L)(1 = L)y, = p+ > (1 = 0;L)e1(rj1 <z, <r)), (1)
J 1

where L is the lag operator, ®,(L) = (1 — ¢, L — --- — ¢,L”) with all its roots outside
the unit circle, 1(.) denotes the indicator function, and z, the threshold variable that
triggers the regime switches. The random error term ¢, is a real i.i.d sequence with
Ele,|*’ <oo for some y>2. The threshold parameters denoted (ry,...,r,) with
rg = —00, Iy = 00 are such that r; € R, Vi=1,...,m with R, ={(r1,...,r):
—00<

r<r<---<rp<ri<oo}. Thus we require all threshold parameters to lie in
the bounded subset [r, 7] of the threshold variable sample space.

Some examples of threshold variables z, are: (i) ¢, for instance when the sign is the
shock characteristic that triggers the regime switches (as in Wecker, 1981; Elwood,
1998; Guay and Scaillet, 2003); (i) (1 — L)y, or any other economic variable that is
strictly stationary and ergodic (as in De Gooijer, 1998); and (iii) |¢|, the shock’s size.

In this paper we are only concerned with the asymmetry produced by the size of a
shock (z; = |&l). To present the main results of ARTIMA models producing such
asymmetry (ARTIMA Shock-Size), and without loss of generality, we will use a
simpler version of model (1). A version with no autoregressive part (,(L) = 1) and
only two regimes (the case of more regimes can be handled as in Gonzalo and
Pitarakis, 2002) that is denoted TIMA Shock-Size model:

g — Oy if Jgq| >,

()

g —Ogy if eI <1,

(I_L)yt=/1+{

or in a more compact way
(I—=Ly,=p+e—0_18-1, (3)

with 0,_y = 0, if |¢;,_;|>r, and equal to 0, otherwise. This TIMA model is a time
varying moving average model, and in that sense can be seen as the threshold version
or approximation of the StopBreak model of Engle and Smith (1999). The main
difference is that in the latter all the shocks are permanent (a shock is transitory if it
is equal to zero), while in the former the existence of both permanent and transitory
shocks is allowed.

Assumptions.

A.0. & iid (0,0,), with a uniformly continuous density function 0<f, < oo, and
E(e7) < oo with y>2.

Al |0) =09 =H">0.

A2, E=[E(0(e_1)|) + rhf™ <1 and 01| <|0|, where
h=10; — 0,], and f"" = max,(f ,(—r + e) +f.(r + ¢)) with e defined in the
support of &.
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A.3.  The vector of the true parameter values 9° = (1°, 09, 05,/°) € © = [—7, 7i] x
[—1+6,1 = 8] x [-146,1] x [1,7] s.t.
E" = [E*(0,,0,,7) + rhf™]<1 and |0;|<|02] V9 € ©, where
E*(01,02,7) = 1011(1 — p(r)) + 1021p(r), p(r) = sup, P(|e; + k| <7),
ST = dmax,f (e), 6>0, and 0< r <F<o00.

A4 Ele;/3;-11 =0 and Ele.;1(letj| >7) /311 =0 for j=0, with sigma-field
3 Z ()<,

A.S. 0; =1 for somei=1,2.

Assumptions A.0 A.l are standard identification assumptions in threshold models
and empirical processes (see Bai, 1994). Assumption A.2 is a sufficient condition for
invertibility. We can distinguish two different parts in it. In the first one, E(|0(¢,—1)|)
must be less than 1. This takes care of the case of overdifferencing, especially when
we allow a unit root in the MA part. Non-invertibility is not only a problem of
overdifferencing, but a problem of nonlinearity too. The second part, riaf™, takes
care of the degree of nonlinearity, measured as a product of the gap (rh) and its
upper limit probability /™. A.3 describes the parametric space of TIMA Shock-Size
models (partially related to the invertibility condition) and constitutes a sufficient
requirement for the asymptotic results obtained in the paper. Finally, assumptions
A.4 and A.5 are helpful assumptions to interpret the outcomes of our model, i.e. to
prove the existence of an orthogonal permanent transitory decomposition in terms
of the IRF. A.4 is a symmetry condition of the conditional distribution of the shocks
that can be relaxed. It allows the identification of permanent and transitory shocks
based on the IRF. Otherwise, the IRF is unknown and has to be estimated (see for
example, Clarida and Taylor, 2003). A.5 (together with A.4) guarantees the existence
of pure transitory shocks.

2.1. Impulse response function

To analyze in detail the asymmetric persistence of the shocks present in a TIMA
model we have to study the behavior of its IRF. This function measures the effect of
a perturbation at time ¢ in the sample path {y, ;}7°,. If this effect on y,,; does not
vanish when k — oo we say that the shock is persistent. With linear models there is a
general consensus about the relation of the IRF and the persistence of the shock.
However with nonlinear models three main aspects of the time series come up to
determine the definition of the IRF and its relationship with persistence. These
aspects are the history of the series at time ¢ — 1, the shock ¢, and future shocks. To
capture all these three new aspects we use the Generalized impulse response function
(GIRF) introduced and defined in Koop et al. (1996) and in Potter (2000) as

GIRF(k,e,,wi—1) = E[y, /e, wim1] — B[y, /wiz1] for k=0,1,2,..., @)

where w, is the sample history of the process until time ¢. According to this definition,
a shock is persistent if the effect of knowing it on the conditional expectation of y,
(given the past) does not vanish when & — oo.
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In order to show that TIMA Shock-Size models can admit both type of shocks,
permanent as well as transitory, we use the following result.

Result 1. Let y, follow the TIM A process (2). Under assumption A.4, the GIRF of y, is
given by

GIRF (k,&,,w;_1) = (1 — 0))e,.

From this result is clear that the shock ¢, is transitory if 8, = 1 (assumption A.5). It
is worth noting that it is the size of ¢, that determines the persistent or transitory
effect of ¢,. It is also important to notice that when A.4 does not hold the GIRF may
be different from (1 — 6,)¢,. This is the case, for instance, when the threshold variable
is the sign of the shock. In this situation, TIMA model will not have any transitory
shock.

To better understand the behavior of the GIRF and the main differences between
our TIMA model and other linear and nonlinear models, we consider four examples
for which we calculate their theoretical GIRF. In all these examples, the shocks ¢, are
assumed to be iid. A simulation exercise where the different GIRF’s are compared is
shown in Fig. 1.

Example 1 (Linear model). In this example we consider the standard general linear
model,

o0
Ve = Z 06—,
jo

1.0
TIMA Big Shock ——
0.8 1 \ TIMA Small Shock ==~
' . TAR Big Shock ===~
' TAR Small Shock ————
RW Big Shock 000
v RW Small Shock -—----
069 '
) N
W\
i\
044 N\
A N
N,
N\
N N
. -
0.24 N o
0.0+ e
T T T T - T
0 10 20 30

Fig. 1. Mean of the estimated GIRF (divided by ¢,). The mean of the GIRF is obtained conditional on the
shock size (|¢]<0.5 and |g|>0.5). The mean is calculated over 1000 Monte Carlo replications for 200
values of ¢ = N(0, 1). We select a random history w, | with ¢ = 201.
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with 0y = 1. Then
k—1

o0
Virk = 2 Ojtrsiy + Okt + > Oksjer .
70 i

J
Therefore

GIRF (k, &, w;_1) = Ope,.
There are two possibilities: limy_, o0 = 0 or limy_, o0k #0. In the first case, all the
shocks {&}>_, are transitory. In the second one, all of them are permanent. The long

—00°
run properties of the shock, ¢;, only depend on the parameter 6y, they do not depend
either on ¢, or on the past. There is no asymmetric persistence. For the simulation
and comparison exercise of Fig. 1, we use as an example of linear model a random
walk (RW)

V=DVt
This model produces the following GIRF:

GIRF (k, e, wi—1) = &,
where clearly all the shocks are permanent.
Example 2 (TAR model). In this example we consider the following TAR model

Vo= Wetl>r) + oy Wlemi | <r) + &
Rewriting this model at time 7 + &

(2]
Yirk = Z Otk jr+i—j
J

k— 00
E Ok jeiri—j + Orgricer + g Ot jersi—js

0
1
0 Jj ok+1

L~

with 0,; =T ¢in &imi = d11(le—il >1) + 1 1(Je—il<r) for j=1, and 0,9 = 1.
Therefore

k—1

GIRF(k, &, w—1) = Z [E(Ht+k,jﬁz+k—j/wr—l ,E1) — E(9t+kjst+k—j/VVz—1 )]
70
+ E(0t+k,k/3t, W,,l)e, - E(0r+k,kgz/wt—l)- (5)

For TAR models the GIRF is nonlinear and it depends on the past of &. In
general, the problem is to obtain the expectations involved in the right-hand side of
(5). This problem can be solved by simulation (see Koop et al., 1996; Potter, 2000).
For the particular TAR model of this example, it can be proved that under
assumption A.4,

k-1
GIRF (k, e, wi—1) = ¢, H E(o;/er, wi-1)er.

s
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Assuming the parameters (¢;, ¢,) satisfy some stationarity and ergodicity
conditions (see Petrucelli and Woodford, 1984), the above GIRF tends to 0 when
k — oo. Therefore although we can obtain asymmetric behavior in the effect of the
shocks, all of them are transitory.

For the simulation and comparison study, we use the following TARUR model
(introduced by Gonzalez and Gonzalo, 1998) with a unit root in the regime
corresponding to large shocks,

_ Vio1 T & if  |e_1]>0.5,
Y= 06y, +e if le1]<0.5.

Its GIRF is

[E(p)] e, it e]>0.5,

IRF (k, &, wi—1) =
G (k, e, wi1) {0.6[E(¢>,)]k18z i ]e]<0.5,

where E(¢,) < 1. Note that in this case all shocks are transitory, although the effect
depends on the shock’s size.

Example 3 (TIMA model). In this example we analyze our TIMA Shock-Size model
(2) with GIRF described in Result 1. For the simulation and comparison study of
Fig. 1, and in order to compare closely to the TAR model of Example 2, we use the
following ARTIMA (1,1,1,1) model:

g —0.6¢,_1 if |g_1|>0.5,
& — &1 if  ]e_1]<0.5.

(1—0.6L)(1— L)y, = {

From Result 1 it is obvious that the GIRF of this model is

&t if |8[|>0.5,

GIRF(k’S”W’—l):{(o.@kls, if el <0.5.

If |e]<0.5 (small shock), ¢ is transitory. When |&|>0.5 (large shock), & is
permanent. Recall that although the threshold in ¢ depends on ¢y, it is the size of ¢
which determines the type of persistence effect.

Examples 2 and 3 are very similar. In both examples, y, behaves like a random
walk in the big shock regime, and like a stationary process in the small shock regime.
Nevertheless the GIRF is totally different. Comparing the three theoretical GIRFs it
is observed that: (i) in the RW case, there is no asymmetric behavior, GIRF is the
same for all shocks; (ii) in the TAR case, the size of the shock affects its persistence
(asymmetric behavior), but all of them are transitory; and (iii) for the ARTIMA
Shock-Size model, GIRF is equal to the one produced by a random walk when
shocks are large, and closer to the GIRF produced by the TAR model when shocks
are small.

Fig. 1 shows the results of a simulation exercise, where the GIRFs (divided by ¢,) of
Examples 1 3 have been estimated. To estimate the GIRF we generate 1000 future
paths of {s,+j}/301 for each 200 realizations of ¢;, and only one history w,_;. The GIRF
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is obtained as the sample mean of these 1000 future paths conditional on the shock
size. Fig. 1 summarizes graphically the results obtained in Examples 1-3.

Finally we compare the TIMA Shock-Size model (2) with the StopBreak model of
Engle and Smith (1999).

Example 4 (StopBreak model). In its simplest form, the StopBreak process is
ye=my+ &,

where m, is a time-varying conditional mean which is updated via
my = m_1 + q;_1&-1,

with ¢, = q(¢). In particular, Engle and Smith (1999) consider the following ¢(.)
function

2

t 1
m, />O.

q(), =

The GIRF function for the StopBreak model (assuming E(g,¢,) = 0) is
GIRF (k, &, wi—1) = q,8.

Fig. 2 compares graphically the GIRF (divided by ¢,) of a StopBreak process (y = 5),
with the one of a TIMA Shock-Size model (0; =0, 0, =1 and r = 1). From this
figure, it is clear that in the StopBreak process all the shocks are permanent, while in
the TIMA Shock-Size model both type of shocks (permanent and transitory) are able
to co-exist.

1.2

1.0

084
0.6 1

0.44
VA B StopBreak
0.2 1 -  TIMA

0.01

-4 -2 0 2 4

Fig. 2. GIRF of StopBreak (y = 5) and TIMA (0, = 0,0, = 1,r = 1) models (divided by ¢,). StopBreak
model: y,=m,+¢, with m=m 1+q, ()& 1 and g¢,=¢/(p+¢). TIMA Shock-Size:
1 LDy, =& bie 11(e 1l>r) 0O 11(le 1I<r).
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3. Estimation and inference of TIMA Shock-Size models

In TIMA, as well as in TAR models, it is necessary to distinguish between the
cases of observable and unobservable threshold variable. When the threshold
variable is observable (for instance, z; (1 — L)y,), it can be proved (see Gonzalo
and Martinez (2004)) that the least squares (LS) estimators of the TIMA model
parameters behave asymptotically like the corresponding LS estimators of the
discontinuous TAR model parameters: T2 consistent for U, 01, 82 and T for 7. The
latter speed of convergence is due to the kind of discontinuity in r, present in both
models via the indicator function.

In the TIMA Shock-Size model, the situation becomes different because the
threshold variable ¢, is unobservable, and therefore has to be estimated. The model is
discontinuous in all the parameters, again via the indicator function. This is the case,
even if the threshold parameter r is known. The discontinuity implies that the rate of
convergence for all the parameters becomes now 7~'. In more detail, the (joint)
estimation of the parameter vector 3  (u, 01, 0>, r) is carried out by conditional least
squares (CLS) (see Chan, 1993). For simplicity, without lack of generality we assume
u 0. First we minimize

T

0r(® Y e®),

t 1
with
e (%) 0113 +x, e O,

0, if le/—1|>r,
0[—1 .
02 if |€r—l | <r,

and x, (1 —L)y, For a given r, the LS solution is Hl(r) and Qz(r) Second, we
minimize Qp(0;(r), Gz(r) 1), obtaining 7. The CLS estimator of & (01, 0,,7) is

8 (01,0,D = 0P, 0:(,7)

The rate of convergence of 9 is provided in the next result.

Result 2. Let y, follow the TIMA process (2). Under A.0, A.1 and A.3, 5,-,7
00 +0p(T7Y) for i 1,2, and 7y 1o+ Op(T71).

In TIMA Shock-Size models, all the parameters enter into the indicator function
through ¢,(9), and therefore there is a discontinuity in r, as well as in the slope
parameters 0; (i 1,2).

When the threshold variable is observable the asymptotic distribution of 01, 02 is
obtained in Gonzalo and Martinez (2004). For the TIMA Shock-Size case we have
not been able yet to obtain the asymptotic distribution directly. This is a very
difficult task and we recognize that it is beyond the scope of this paper. Therefore we
propose an alternative way of obtaining the asymptotic distribution of 0 (91, 02)
This alternative procedure consists on two steps. In a first step, the TIMA
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Shock-Size model is estimated by CLS as previously described. In a second step, we
consider ¢ and ¥ to be known and equal to the CLS estimates of the first step.
Basically, this can be done because in the first step everything is T—consistent. In
more detail, in the second step we obtain 0(}) by minimizing

T

0r(0.9) =" ¢X(0.9).
t 1
with
e0,9) = 011611 >Pe_1 + 021([r_1 | <PVe,_1 + xi.

The asymptotic normality of 5(@), is derived from the fact that (5(:9\) —0%) =
Op(T ~1/2) together with Result 2. This is established in the next result.

Result 3. Let y, follow the TIMA process (2). Under A.0, A.1 and A.3,

T'20(3) — 0°) -5 N(0, Q).
where

-1
E(8?711(|8t71|>r0)) 0

Q=E[e
(&1} 0 (2, 1(l1] <)

t
From this result it is easy to test whether a shock is transitory or not. This is done

by testing if one of the 0 parameters is equal to one, for instant, via a standard
t — test.

3.1. A testing strategy

In order to be able to detect whether the persistence of shocks is asymmetric or
not, and to discover the existence of pure transitory shocks, we propose a simple
testing strategy inside the framework of TIMA models. This testing strategy follows
the lines of Gonzalez and Gonzalo (1998), Caner and Hansen (2001), and Gonzalo
and Montesinos (2002) for TAR models with unit roots. It consists on testing first
for the existence of a threshold effect

Hy:0, =0,

H,: 0, #6,, (6)
and second, on testing for a unit root in one of the moving average regimes (e.g. the
second regime)

Hp:0,=1

H,:0,#1. (7

There are many ways of carrying out a test for the first hypothesis. In this paper,

we test the null of linearity versus the alternative of a threshold effect, in a similar
fashion as Engle and Smith (1999) test linearity versus a StopBreak process. Under
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the null hypothesis of linearity we fit an ARIMA(p, 1, g) model to y,
Pp(LY1 = L)y, = n+ Oy(Le;, ®)

and use the residuals, g, to construct the following auxiliary regression

% =0€/§r—11(|/5t—1|<")+ut~ )

Under the null, « = 0, and under the alternative, «#0. This can be tested by a
t — test. The only problem is that r is not identified under the null, so we proceed as
in Davis (1977, 1987) taking the sup of the absolute value of the z-statistic over all
values of r € [r,7]. The asymptotic distribution is provided in the next result, where
= denote weak convergence with respect to the Skorohod metric. Following
Wooldridge (1994), let 4 = (i, ¢y,...,0,,01,...,0,) be the LS estimator of =
(10, ¢Y,.... ). 0Y,....00) from model (8), defined as

T T
A =arg min Z ef(i) = arg min Z q,(wy, 4),
T AN

with e,(1) the error term from model (8) for a given value of the parameter A. Then,
from Theorem 4.4 in Wooldridge (1994), it is easy to prove that under A.0,

T
T2 =2 = T7'PH 00> 5%+ op(1), for i=0,....p+4q.
t 1

where s,4) is the score vector, and H;(\’) the i-row of H(")=
limr_o 77" 37 E[h,(2%)] with ,(2) the Hessian matrix.

Result 4. Let t,, be the t-ratio of the parameter o in the auxiliary regression (9) for a
given r. Under the null of linearity plus assumption A.0,

toz(r) = D(}’) in [Z: 7]5
with

rtq

D)= D)+ Y V;,,.zg(r)] [Z.()02] 2,
i0

where Di(r) is a continuous gaussian process with covariance function
M, (r1,r2) = E(e)E(e;_, 1(Je—1| < min(r1, 72))),

V';; a random variable with distribution given by the asymptotic normal distribution of
T2 — 1Y), and 2(r) = E(e21(|e;|<r)). Finally, to complete the definition of D(r),
Cov(Di(r), V3,) = H ' OOimr oo T35 Elegert 1(ler1 | <)si(20)]:

Then, by the continuous mapping theorem,

d
sup |ty —> sup |D(r)].
el el
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The asymptotic distribution of sup,,5/D(r)| depends on nuisance parameters.
Therefore to obtain the p-values of the test we propose a simple bootstrap method.
This is a model-based bootstrap (see Davison and Hinkley, 1997; Section 8.2.2), that
is next described in a computer algorithm format.

Algorithm 1 generates bootstrap samples {y; }[T | from model (8) and calculates the
bootstrap approximation of the distribution of sup,.z |Zx()|-

Algorithm 1 (Model-based Bootstrap procedure).

1. =1

2. Generate {¢}} | resampling from {& — &}l |, withe =T PO

3. Generate {y*}" | from @,(L)(1 — L)yt =i+ O4(L)e}.

4. From model (8), with bootstrap sample {yt*}tT 1» obtain {Ef}tT L by LS.

5. From model (9), with {& },T ., estimate o*(r) by LS and compute
?i = SUP,¢[r 7 |[oc*(r)|'

6. I =1+ 1. Go to step 2 while | <B.

7. Estimate the p-value, p,, from the bootstrap approximation,

1 & (e
Dy = E Z 1<Zi> sup |lx(,-)|>.
/1

refrr]

If the null of linearity is rejected, then we proceed to test the existence of transitory
shocks by constructing the z-statistic of 6, = 1 in model (2). According to Result 3,
this statistic follows a standard normal distribution.

4. Permanent—transitory decomposition

For both, theoretical and empirical reasons, it is frequently desirable to
decompose an economic time series into the sum of unobservable permanent and
temporary components that generate the series. Most of the literature has focused on
decomposing linear models, see Watson (1986) and more recently Mortely et al.
(2001). As the latter authors note, this implicitly imposes the restriction that the
transitory component (related to business cycle) is symmetric, whereas recent
research suggests the opposite (see for example, Neftci, 1984; Hamilton, 1989;
Beaudry and Koop, 1993). In this section, we propose two new nonlinear permanent
and transitory (P-T hereafter) decompositions based on the ARTIMA Shock-Size
model.

First we present a modified version of Quah (1992)’s definition of a P-T
decomposition.

Definition 1. Let Y be an integrated sequence. A permanent—transitory (P-T)

decomposition for Y is a pair (Y, ¥T) such that:

1) Y is integrated and Y’ is covariance stationar 5
g y
ii) Y* does not have any transitor ShOCk;
y y
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(iii) Var(AYT) and Var(AYT) are strictly positive, with A = (1 — L);
(v) Y, =Yl + Y]

Further, if
(v) AY? is uncorrelated with Y7 at all leads and lags,

then the P-T decomposition is said to be orthogonal.

The new condition (ii) guarantees that the permanent component is formed only
by permanent shocks. It is worth mentioning that the Beveridge and Nelson
decomposition does not satisfy condition (v), because its permanent and transitory
shocks are perfectly correlated.

Given the following ARTIMA Shock-Size model,

O(L)(1 — L)y, = p+ (1 — 0Ly + (1 — 0,L)e, (10)

with 6, = 1, the first new P-T decomposition proposed is

o=yl +¥
v =) ptyl + 2D = 01 L), an
yI =)', (12)

where the permanent component is formed only by permanent shocks
(ef = &1(le/>r)), and the transitory component, only by transitory shocks
(ef = &1(le;|<r)). It is obvious that this nonlinear decomposition is an orthogonal
decomposition according to Definition 1. An important characteristic of this new
P-T decomposition is that its existence can be tested, by testing 0, = 1. Besides, it
allows the possibility of a richer dynamic structure in the permanent component than
the one produced by a pure random walk.

There are situations where economic theory suggests the permanent component be
a random walk (see the application to stock prices). For these cases we propose to
apply B-N directly to our ARTIMA Shock-Size model. The method developed by
Beveridge and Nelson (1981) consists on defining the permanent component as the
long-horizon level forecast of the original series, or the part that remains after all
transitory dynamics have worked themselves out. More precisely,

yve=yl+yl.
J";D = klggo [E(yt+k|yrsyt—la~ ..) — kE(y, =Yl
o=y -y

To apply this to the ARTIMA Shock-Size model (10), we first rewrite it as
Ve = ¢(1)_1.“ +tVig+ CL(L)StL + C(L)g;,

where Cp (L) = &~ (L)(1 — 6,L) and Cy(L) = &~ '(L)(1 — 6,L). Second, we use the
well-known algebraic result (see Phillips and Solo, 1992) by which a lag polynomial
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C(L) can be written as C(L) = C(1)+ (1 — L)G(L). Then the corresponding B—N
decomposition can easily be obtained as follows:

vl =@Myl + Crler + Co(De, (13)

yI = CL(L)el + Cy(L)e. (14)

This decomposition constitutes our second proposal of a nonlinear P-T
decomposition. For the simple TIMA model (2),

=4yl (= 0)ek + (1 - 0y)e,

y,T = —018,L — Oa¢).

When the small shocks are transitory (6, = 1) the nonlinear B—N becomes
yi= Ayl (=0, (15)
W = 0 — & (16)

The big advantage of this nonlinear B—-N decomposition, as the following result
shows, does not come from the permanent component but from the transitory one.
The above examples show that neither the shocks of the permanent and transitory
components are perfectly correlated nor that all the shocks at time ¢ are permanent.
In this way we overcome the two main drawbacks of the linear B—N decomposition
(more examples of nonlinear B—N decompositions can be found in Clarida and
Taylor, 2003).

The next result establishes the relationship between the B-N and UC-0
decompositions applied to the Wold (1938) representation of a TIMA Shock-Size
process, and the nonlinear B—-N decomposition (15)—(16). Note that, in order for
UC-0 to exist, the parameter 0; must satisfy 0<0; <1.

Result 5. Let y, be the TIMA model (2), then
VEN Ay = VIMA QYD) = 1Y YAy,
VBN(y[T) < VTIMA(_)/IT)< VUC O(y[T)7

where VBN and VUC O are the variances of the components of the B-N and UC—0
decompositions applied to the Wold's representation of (1 — L)y,, and V™A s the
variance of the components forming the nonlinear B—-N decomposition of the TIMA
model. Strict inequality is obtained if 0<0;<1.

As it is well known, (see Quah, 1992), the variance of the innovations of the
random walk component is always the same (equal to the height of the spectral
density of (1 — L)y, at frequency zero), independently of the used decomposition.
However, for 0<6;<1, the variance of the transitory component of each
decomposition is different. In particular, the variance of the transitory component
of the nonlinear B—N decomposition for the TIMA model (2) lies always between the
corresponding variances of the UC—-0 and the linear B-N decompositions. This fact
has important consequences for the applications analyzed in the next two sections.
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Fig. 3. Variance of the transitory component of different P T decompositions of a TIMA Shock-Size
Process. o2, = E(&71(|&/|>7)) and 62, = E(&}). 0, = 1 and & = N(0, 1).

In Fig. 3 we illustrate graphically the inequalities of Result 5 for 6, =1, and
different values of 0 € [0, 1] and of the ratio E(e21(|e,| >7))/E(e?).

5. Application to stock prices: a measure of the stock market quality

In this section we apply ARTIMA Shock-Size models to measure the deviations
between actual transaction and implicit efficient prices, following the methodology
developed by Hasbrouck (1993). Measurement of this difference arises in financial
market analysis in two important contexts. First, with the purpose of evaluating the
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broker’s performance, and second, for a comparative analysis of the market
regulatory structures. Hasbrouck’s approach is based on decomposing the
transaction price p,, into two components, the efficient price m,, and the pricing
error s, and on measuring the relative size of s;. In more detail Hasbrouck’s model
takes the logarithm of the observed transaction price at time #, as the sum of two
components:

D, = m;+ 5;.
The element m;, (efficient price) is assumed to follow a random walk,
my=mg_1 + &,

and s, (pricing error) is a zero-mean covariance-stationary process that is modelled
as

s, = P + 1,

where 7, is uncorrelated with &;. Given that the permanent component is identified
with a random walk, the correct P-T decomposition depends only on the
assumption about the correlation structure of both components. If the shocks of
both components are perfectly correlated (1, = 0), we are in the B-N scenario. If
both shocks are uncorrelated (ff =0), UC-0 is the decomposition to be used.
Unfortunately, the two identification restrictions are obviously not testable, and as it
is shown in the previous section they imply different dispersion of the pricing error.
Besides, economic theory does not argue conclusively in favor of any of the
identification restrictions.

Roll (1984) bid-ask spread model corresponds to =0 and y, = *(spread)/2.
Roll proves that the bid-ask spread generates a first order autocorrelation different
from 0 in the increments of the transaction prices, and this correlation explains the
existence of the pricing error. The perfect correlation restriction is a particular case
of Glosten (1987) model. In this model, the spread is partially due to the asymmetric
information revealed in the trade. With no nontrade public information, it is
obtained >0 and n, = 0.

Starting from these two models, we develop a more complete model which takes
into account several issues not considered in any of the previous ones. We assume the
market description of Glosten (1987), that is, two kinds of agents, uninformed and
informed, with a market maker. The first aspect to be considered is that when there is
a transaction cost, not all the new information will be translated into the transaction
prices. Only the new information which implies a profit greater than the transaction
cost will be translated into the transaction price. In other words, the shocks that
drive the efficient price component must be “big” shocks to the transaction price.
The second aspect is that the transactions of the uninformed agents cannot
generate big inefficient changes in the transaction prices, because the informed
traders will arbitrate the situation. This implies that the shocks driving the pricing
error component must be “small” shocks to the transaction price. Based on these
two aspects and taking Glosten model as starting point we propose the following
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pricing specification

p[ :m,-i-st,
my = my—1 + 1(]&| >r)e;,
se = 1(led <r)ey.

The parameter r is identified as the spread or transaction cost, and only the shocks
greater than this cost will affect the efficient price m,. From this specification the
following representation for the transaction prices is obtained

& if el >r,

(1—-Lyp, = { (17)

e —eg1 If gl <r.

Model (17) is a TIMA Shock-Size model. At this point, it is worth mentioning
again that although we only can observe one shock, ¢, in the structural model there
are two type of shocks. One related to new information and therefore driving the
efficient price process, and another coming from the uninformed traders and
therefore of transitory nature. Using the reasoning described above, these two types
of structural shocks translate into the transaction price process in terms of “big’” and
“small” shocks. Within this TIMA model we are able to test the existence of these
two type of structural shocks.

Fig. 4 represents the logarithm of the S&P500 daily series. Table 1 shows the Least
Squares estimates of the linear ARIMA and nonlinear ARTIMA model fitted to
S&P500 daily series. Parameter estimates of the TIMA Shock-Size model were
obtained by numerically minimizing the squared estimated error using the
FORTRAM optimization procedure DBCPOL. The moving average parameter
estimates of the TIMA model are clearly different. Following the testing strategy
described in Section 3.1, we test the validity of this model in two steps. In the first
one, the null hypothesis of linearity is tested against the alternative of threshold

7.2

7.01

6.8 1

1998:01:02 1999:08:04 2001:03:06 2002:10:10

Fig. 4. Logarithm of S&P500, 2 January 1998 29 July 2003.
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Table 1
Least squares estimates of ARIMA(0,1,1) and ARTIMA(0,1,1,1) models for stock prices
Parameters 0 0, 0, r o, AIC
ARIMA(0, 1, 1) 0.0176 0.0136 5.7521
(0.0267)
ARTIMA(0,1,1,1) 0.0131 0.9717 0.0035 0.0135 5.7564
(0.0268) (03632)

Note: In brackets are the corresponding standard errors. The ARTIMA parameter estimates correspond
to the second step procedure described in Section 3.

Table 2
Testing linearity versus threshold Shock-Size effect

Auxiliary regression
& =op +ore 1 +one 11 1<)

sup; |1z, | p-value % (F) NG () 7
2.213 0.067 0.000 0.004 0.806 0.0035
(0.0003) (0.0268) (0.3645)

Note: &, are the residuals of the null linear model. Bootstrap p-value is obtained from 1000 replications. In
brackets are the corresponding standard errors.

Table 3
Variance decomposition of different P 7" decompositions for stock prices

B N ARIMA(0,1,1) B N ARTIMA(0,1,1,1) UC 0 ARIMA(0,1,1)
amy X 102 1.338 1.370 1.339
oy, x 102 0.024 0.074 0.176

Note: p, = m; + s;, with m; a random walk and s, the transitory component. ga,,, and gy, are the standard
deviation of Am, and s,, respectively.

effect. If we reject this null, in a second step we test the null hypothesis of a unit root
in the MA regime driven by small shocks.

To test linearity, we fit an ARIMA(0,1,1) to the logarithm of the series, construct
the following auxiliary regression with the estimated residuals,

T = o0 + o1e—1 + 0281 L([&—1| <) + uy,

and test the significance of o(r). Given that under the null hypothesis the parameter
r is unidentified, the test proposed is sup, |z, |, where t,,(, is the t-ratio for the null
of ay(r) = 0. The results of this test are shown in Table 2.

Linearity is rejected at a 10% significant level (p-value = 0.067). From Table 1 the
hypothesis of a unit root in the MA side corresponding to the regime of small shocks
cannot be rejected at the usual significance levels. With these two results we conclude
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that the analyzed S&P500 data do not reject the proposed TIMA Shock-Size model.
Therefore in order to measure the size of the pricing error component s,, we obtain
the nonlinear B—N decomposition of the estimated TIMA model. To do that we
impose 0, = 1. The results are in Table 3. Notice that, as the theory suggests, the
contribution of the random walk component is practically the same in all the P-T
decompositions, and the sizes of the transitory components satisfy the inequality
established in Result 5.

Besides this measure of the quality of the stock market, the TIMA Shock-Size
model provides some extra information. For example, the estimated value of the
threshold parameter 7= 0.00283 (imposing 0, = 1) implies that the estimated
transaction cost is 0.283 percent of the stock price. This figure is very similar to
that obtained by Hasbrouck (1993) for intra-day data. Also, the percentage of pure
transitory shocks can be estimated (23.65%). The periods where these shocks occurred
can be identified in this context with periods of non-outstanding information.

6. Application to GNP: asymmetric persistence of shocks to output

The goal of this section is to answer empirically an important question about
output fluctuations: Is the persistence of shocks to output asymmetric? This question
has been analyzed by Beaudry and Koop (1993), Hess and Iwata (1997) and Elwood
(1998) among others. All these authors deal with asymmetries produced by the sign
of the shocks, and there is not a clear conclusion. The first authors give an
affirmative answer about the existence of asymmetries, while the others contradict
this result. We will use our TIMA Shock-Size model to conclude that shocks with
different sizes have different long run effects on output. Small shocks will be
transitory, while large shocks will be permanent.

In this section, indirectly we will also try to answer the question of which type of
shocks are responsible for economic fluctuations. This question has been analyzed in
detail by Blanchard and Quah (1989), Cochrane (1994), and many other authors.
Cochrane (1994) remarks two key issues: (i) shock identification and (ii) endogenous
shocks. About the latter, he demands new theoretical models, probably nonlinear, that
are able to explain the fluctuation of the business cycle in terms of endogenous shocks.
TIMA Shock-Size models are perfect candidates to handle both issues simultaneously.

Fig. 5 represents the logarithm of quarterly real GNP for the period 1947:01-
2003:03. Table 4 shows the least square estimates of several linear ARIMA models
and a nonlinear ARTIMA model fitted to GNP. Following Campbell and Mankiw
(1987), we have considered all ARIMA models with p and ¢ less than 3. For space
considerations, Table 4 only presents the results for the ARIMA(1,1,0), ARI-
MA(0,1,1) and ARIMA(1,1,1). The ARTIMA Shock-Size fitted model is

(1 —¢L)(1 — L)y, = p+ (1 — 0, L)ek + (1 — 0,L)e’.

Table 4 shows that all linear models fit the data very similarly. According to the
AIC criteria the best linear model is the ARIMA(1,1,0), however to eliminate a few
correlations in the residuals, we select the ARIMA(1,1,1) model for our testing
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Fig. 5. Log of real GNP, 1947:01-2003:03.

Table 4

Least square estimates of ARIMA and ARTIMA models for real GNP

Parameter ARIMA(1,1,0) ARIMA(0,1,1) ARIMA(1,1,1) ARTIMA(1,1,1,1)
¢ 0.335 (0.062) 0.453 (0.171) 0.647 (0.182)

0 0.260 (0.064) 0.131 (0.191)

0 0.320 (0.196)

0, 1.210 (0.396)
rx 10 0.477

o, x 10% 0.956 0.969 0.950 0.941

AIC 6.452 6.424 6.447 6.475

Note: In brackets are the corresponding standard errors. The ARTIMA parameter estimates correspond
to the second step procedure described in Section 3.

strategy. This testing strategy is the one suggested in Section 3.1 and used in the
previous application. To test the null of linearity versus the alternative of a threshold
effect, we construct the following auxiliary regression with the residuals of the linear
ARIMA (1,1,1)

=g + o€ + 081 11| <7) + uy.

In this regression we test the significance of o> (r) with the sup, |#,,()|, Where £, is the
t-ratio for the null of o, (r) = 0. The results of this test are shown in Table 5. Clearly the
null of linearity is rejected with a p-value smaller than 0.05. This implies that the size of
the shocks is able to generate asymmetries in the persistence of shocks to GNP.

In order to test whether or not small shocks are transitory, we test 6, = 1. From
Result 3, this is done directly from last column of Table 4, concluding that the null of
a unit root in the MA side cannot be rejected. Therefore the GNP data do not reject
that large shocks are persistent while small shocks are only transitory.
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Imposing 0, =1, we calculate the nonlinear orthogonal P-T decomposition
((11)—~(12)) proposed in Section 4. This becomes

1-0,L
U ( I)SL

1 - P—
( L)yt d) (1—¢L) 1

1
T _ s
T a=en ™

Table 5
Testing linearity versus threshold Shock-Size effect

Auxiliary regression
& = oo +ore 1 +oe 11([e 1<)

sup, |t | p-value a%(F) o (F) % (F) 7
2.362 0.045 0.000 0.021 0.789 0.004
(0.0006) (0.0676) (0.3363)

Note: & are the residuals of the null linear model. Bootstrap p-value is obtained from 1000 replications. In
brackets are the corresponding standard errors.

B-N Permanent Component of GNP and NBER Reference Points, 1947:01-2003:03
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Fig. 6. B N decomposition of real GNP based on an ARIMA(1,1,1): (a) B N Permanent component of
GNP and NBER reference points, 1947:01-2003:03; (b) B N Transitory Component of GNP and NBER
Reference Points, 1947:01-2003:03.
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Non-Linear Permanent Component of GNP and NBER Reference Points, 1947:01-2003:03
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Fig. 7. B N decomposition of real GNP based on an ARTIMA(1,1,1,1): (a) Nonlinear permanent
component of GNP and NBER reference points, 1947:01-2003:03; (b) Nonlinear transitory component of
GNP and NBER reference points, 1947:01-2003:03.

where & corresponds to shocks smaller than ¥ = 0.0046. This implies that shocks
smaller than approximately ¢,/2 are pure transitory. They amount to 51% of the
GNP shocks (the remain 49% are permanent).

Figs. 6-8 represent graphically the P-T decompositions discussed in Section 4,
together with the NBER reference points. Numerically this comparison is
summarized in Table 6. Both linear and nonlinear B—-N decompositions produce
very similar results (the differences are due to estimation issues). However, the
orthogonal nonlinear P-T decomposition is clearly different. First, the transitory
component is less volatile, and second, the permanent component is smoother.

To finish, it is worthwhile to mention the close link between the large shocks from
the ARTIMA (1,1,1,1) model and the NBER turning points. From Fig. 9 it can be
seen that peaks and troughs are related to large shocks of opposite signs. Situations
where output leaves a trough are generated by a positive large shock, and the
opposite occurs when the output abandons a peak.

7. Conclusion

In this paper we introduce a new class of simple nonlinear models (TIMA) with
the aim of being able to identify the shocks of a dynamic system. This identification
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Non-Linear Permanent Component of GNP and NBER Reference Points, 1947:01-2003:03

9.26 1
8.31 1
7361, . . . . . .
(@ 1947Q1 1956Q4 1966Q4 1976Q4 1986Q4 1996Q4  2003Q4
Non-Linear Transitory Component of GNP and NBER Reference Points, 1947:01-2003:03
0.004 {

o MM Al f]\ A!\ \ f\ Lyl MVAA,I\UI\M
SUINN INL L T RTVLAN

-0.005 1
(b)  1947Q1 1956Q4 1966Q4 1976Q4 1986Q4 1996Q4  2003Q4

o

Fig. 8. Orthogonal decomposition of real GNP based on an ARTIMA(1,1,1,1): (a) Nonlinear permanent
component of GNP and NBER reference points, 1947:01-2003:03; (b) Nonlinear transitory component of
GNP and NBER reference points, 1947:01-2003:03.

Table 6
Variance decomposition of different P 7 decomposition for real GNP
2 3 2 3
aAy{) x 10 ay;,v x 10
B N ARIMA(1,1,1) 0.2288 0.0398
B N ARTIMA(1,1,1,1) 0.1825 0.0229
Orthogonal ARTIMA(1,1,1,1) 0.0982 0.0032

Note: y, = yf +yI. In the B N decomposition y’ is a random walk. In the orthogonal ARTIMA
decomposition y? is formed only by permanent shocks, s.t E(Ay?, yT) = 0 (see (11) and (12)). aivp and O'%T
are the variance of Ay? and yT, respectively. o o

is based on the long run effects of the shocks (permanent or transitory) and on their
sizes (Large or small). The latter is a special case rather than a necessity. It could be
any other shock or economic characteristic. TIMA models provide a nice framework
to test if a shock with a given characteristic (in this paper its size) has a permanent or
a transitory effect. Once shocks are identified we construct two new nonlinear
permanent—transitory decomposition, that are compared with the standard linear
B-N and UC-0 permanent—transitory decompositions available in the literature.
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Fig. 9. Large shocks and the NBER reference points, 1947:01-2003:03.

Two applications of these new nonlinear P-T decompositions are shown in the
paper. The first one studies the quality of the stock market by measuring the
importance of the transitory component (pricing error) in the total transaction price.
The second one studies the asymmetries in the persistence of the GNP shocks. While
the literature has been inconclusive to this respect when the asymmetry comes from
the shock sign, we find a clearly affirmative response when the asymmetry is
generated by the shock size.

Extensions to a multivariate framework is under current research by the authors.
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Appendix

Proof of Result 1. This result is easily proved by rewriting model (2) at time ¢ + k as

1 1-6,L
Yk TZD) A+ (=1L errk—11(|erpk—11>1)
1—-6,L
+ﬁ Erpk-11(lerrk—1|<7). (18)

Conditioning on w,_j, the past history of the process (included &), and using (18),
the GIRF has the following expression:

GIRF(k, &, wi—1) (1 = 00){e1(le/|>r) — Ele1(J&/| > r)lwi—1]}
+ (1 = ){e (e <r) — Elec1(Jef] <r)lwii]}

k—2
+ > (= OD{Elerix—1-i1(erx—1-il > 1)len wii]
i0

— Elerri—1-il(erpr—1-il > 1)W1 1}
k—2

+ > (1= O){Elerh-1-i1(ersr—1-il <Pler, wi1]
i0

— Elesr—1-il(lerh—1-il <P)wi1]}

Under Assumption A.4, we obtain that

Elesyj1(eril >nIwic1]l  Eleryp11Ueryprl>r)len wiea] 0,

for j>0. Hence,

(1—0ye if 6, 6,
GIRF(k,e,wi—1) (1 —0))g (=0 if 0, 0, O

Proofs of Results 2 and 3. They can be found in Gonzalo and Martinez (2004) and
are available upon request. [

Proof of Result 4. For simplicity and without loss of generality, this result is proved
for thecase of p 1,¢ 1and g 0. Part of the proof makes use of some of the
results in Bai (1994).

Let us write the ARMA(1,1) representation of x, (1—-L)y, as & x,—
¢poXi—1 — Ope,—1 and the corresponding residuals as & x; — ¢x,—1 — 0¢,_;, where
(@,5) are the LS estimators of the parameters (¢, 0y). These estimators satisfy that
T'2(¢ — ¢) and T'72(0 — 6,) are Oy(1).



Péagina 27 de 37

Subtracting the errors from the residuals, making use of gy = 0, and by repeated
substitution we obtain

—1 R t—1 .
Bma= (D0~ (@ —d) > (0 xiy = O =00 (=1Y0 1.
j 0 j o
(19)

Denote p = (—5, «/T@ — ¢p), \/T(g —6y)) and p = (u,v,w) € R. Define

t—1

t—1
Ay =u'eg+ T2 (UZ Wxi_j+w Z ui8[1j> =u'ey + T_1/2§p,. (20)
70

J o
From (9) and the definition of 7,

T

tot(r)—__Til/ Z ,8\; 1(}’)

t 1

T T -1/2
TIZ@;‘_l(r))ZTIZa?m] .@D
t 1 t 1

where €(r) = & 1([&|<r) and u,(r) =& — a(r)e,_,(r).

The proof basically consists on decomposing the RHS term of (21) in several
pieces, and analyzing the asymptotic behavior of these pieces. For the first term,
712521 &%, (r), we prove that,

T
T2 N 88 () = X1r(r) + Xor X3.0(r) + 0p(1),
t 1

where the o,(1) is uniform for all r € [r,7] and

X1, 1r(r) = Di(r),
d
Xor =V + Vo),
Xs3.r(r) L 2.(r) uniformly in r,
with V4 and Vy normal random variables with distribution, the asymptotic

distribution of Tl/z(qb ¢y) and T1/2(0 0y), respectively. For the other term in
(21), we prove that

T T
TN GO T Y30 = Xaz(r) + op(1),
t 1 t 1

where

Xar() > Z(r)o?,

uniformly in 7.
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We start with 71251 22 (r). Define

—1 .
L) > (=10 x,
j o

t—1 .
GO0 Y (=10
j 0

From (19), T‘lﬂzz ,%:6,_,(r) can be written as
T

T
TR w0 TS s 1<)
— t 1

T
— (= P)T 2D &Vt (D11 |<r)
t 1
~ T ~ ~
O 0T 'Y el aOWEI<) (6 ¢T 7
t 1
T o~ ~
x> et YOG | <) — (0 — 00) T/
t 1

T
<Y e YO 1([E1 | <) + Ry (.0, 7). (22)
t 1

The first term of the RHS of (22) can be written as

T T
-2 Z g1 1([e—1|<r) -2 Z ere (g1 <r) + -2
t 1 t 1

T
Y et ([ <r) = 1(g1 1<), (23)
r1

The Lemma 3.1 of Koul and Stute (1999) establishes that

T
-2 Z ee11(lem1|<1) = Di(r),
[ 1
where Di(r) is a gaussian process with a covariance function given by

Mi(ri,r2)  E(e)E[e? 1(Je—1|< min(ry, r2))]-
For the last term of the RHS of (23) it suffices to prove that
T
sup |72 e 1 (11 <) = 1em1 <n)| - op(1).
re[—T.r] r 1

Given that g6, 8,8:1 +&¢_,, where ¢ gl(e,>0) and 7 &l1(g,<0), it is
enough to prove that

T
sup 77123 e | (1G-1<r) — We<n)|  op(1), (24)
re[=r7] [
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since the case of ¢, is similar. For that, we use the proof of Theorem 1 in Bai
(1994). Define

F(r) = E[e | 1(e.m1 <1)],
with F(—o0) = 0 and F(o0) = KF<oo. Then, using (19) and (20)

T
712 Zg,gltl(l(a_l <r) — 1(g-1<r))
t 1

T
=T el (e <r+ Apu1) = Wy <)
t 1

= Kr(r) — Kr(").

To study this process, I?T(r) — Kr(r), it suffices to study the auxiliary process,
T
Gr(r.p)= T2 ) el (et <r+ Apyot) = Uem1 <1)).
t 1

Expression (24) is implied by the following result:

sup sup |Gr(r,p)| = op(l) for every b>0, (25)
peDy re[—7,7]

where D, = [0, 0] x [b, b} with 0<0<1 and b>0. Define

T
Zr(r,p) =T el 1@ <r+ Ap) —FO + A,,-1)]
t 1

— Sz[ﬁil 1(e—1 <r) — F(N]},

T
r(r,p) =T &F(r+ Ay 1) —F()]-
t 1

Then, |G7(r,p)|<|Z71(r, p)| + IT7(r, p)|. To show (25), it suffices to prove the
following two propositions.

Proposition 5. Under Assumption A.0, we have

sup sup |Zz(r,p)| = op(l) for every b>0.
peDy re[—rF]

Proposition 6. Under Assumption A.0, we have
sup sup |II7(r,p)| = op(l) for every b>0.

peDy, re[—7.r]

The proof of both propositions follows Bai (1994) and therefore we do not show it
in full detail. We will focus only on those details that are different. Given
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that &, = ¢ + ¢, it is enough to prove Proposition 5 for

T
Zr(r,p) =T el el 1o <r+ Api1) = FO + Ap)]
t 1
— &/ lel 161 <) —FO]).

The case ¢, is similar. Note that &¢ | 1(¢,-1 <r+ 4,,-1) and ¢ F(r) maintain the

non-decreasing monotonicity of the indicator function used in Bai (1994).

Proof of Proposition 5. Define 1, = CZ;_(I) V(|x1—j—1] + |&—j—1]) for some C>0 and
7€ (0,1), and for every 4 € R,

T
Zr(r,p,2) = T2 " eHleh 1@ <r+ Timi(p, 2)
[ 1
—F(+ Tima(p, D] = [62 1 (a1 <7) +FOIL,

where I'y(p, ) =u'gy + it@F1 leo| + T_1/2é,,, + AT‘I/Zn,. Note that Zr(r,p, 0) =
ZT(V, p)

Using the compactness of Dy, this set can be partitioned into a finite number of
subsets such that the diameter of each one is less than {. Denote these subsets by

A, Ds, ..o DNy Fix k and consider A and py, = (ug, vk, wr) € Ag. Proceeding as Bai
(1994), choose C large enough and t € (0, 1) such that

A ps = Appd SCO ool + (T, for all p € Ay

With this inequality and the monotonicity of the functions involved in Z¢(r, p), it
can be proved that

T
Zr(r. )< Zr(r,p. O+ T72 3" & [F0r + Tt (p 0) = Fr + Ay 1)),
t 1

for all p € Ay, and the reverse inequality with { replaced by —{. Now the following
lemma is needed.

Lemma 2. Under Assumption A.0, for every given p = (u,v,w) € Dy and every J. € R,
we have

@ TVET e el + 0 20D = op(1),
(b) T71/2mTaX1<z<T8?L(|épz| + 4n,]) = op(1),
(¢ T Yo 18 Ul + 12n,) = Op(1).

This lemma can be proved in a similar way as Lemma 1 in Bai (1994).
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Applying Lemma 2 to the next inequality, that has been obtained from a mean
value theorem,

T

D e Fe+Tii(pp £0) = FOr+ Ap1)]

t 1

T-1/2

T
ALY (0= DO el + T2,y), for all rand p € Dy,
t 1

with /7 = max, ef ,(¢) <Ky <00, it is straightforward to show that

12

T
D EFC+ T £0) = FOr+ Ap1)]

t 1

sup sup T~
pEDy re[—rF]

= {Op(1),

where the Oy(1) is uniform in r and p € Dj. Therefore,

sup sup |Z7(r,p)I< max sup |Z7(r, py, Ol
peDy re[—7,7] k<m(Q) re[—7,7]

+ max sup |Z7(r, pg, —0) + LOp(1). (26)

k<m(Q) re[—77]

Then, {O,(1) can be arbitrary small in probability, so Proposition 5 follows if the
first two terms of the RHS of (26) are o,(1). This will be true if

sup |1 Z1(r,p, ()l = op(1) for everyp,{. 27)
re[—r,7]

For that Lemma 3 is needed.

Lemma 3. For every £ € (0,1/2), every p = (u,v,w) € Dy and every A € R,

T
sup T2 e IF(ra+ Timilp, 1)) = F(ri + Timi(p, )] = op(1),
t 1

(r1.r2)€BT

where By = {(r1,12) € R x R;|F(r1) — F(r2)| <Kp, T-'274 for some Kf, <oo.

Given the uniform continuity and boundedness of our F(r), the proof of this
lemma is analogous to that of Lemma 2 of Bai (1994).

Now divide the real line into N(7) = [T~"/**]+ 1 parts, with £ € (0,1/2), by
points —F = rg<ri < -+ <ry(p = with F(r}) = iN(T) "' Kp,,. Since &/ &/ 1(e-1 <1)
and &F(r) are non-decreasing, for ry <r<rji;, we have

T
|Zr(r, 0, OI<I1Z iy, 9, Ol + T2 eF F(rin + Timt) = Fr+ Ti)]
t 1

T
+ T2 (el lef e <ri) — Flres)]
t 1

—&/[e" 161 <) —F(M]},
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and the reverse inequality with r¢4; replaced by r,. Therefore,

sup | Z7(r, p, DI < max \Z1(rie, p, 0
re[—r,r]

T
+max T2 Y 7 &l [F(re+ Tio) =0+ Tp)]

t 1

T
+ sup T2 Z{s?[8i11(8z71<F71(9)) =4l

|gfg'|<KFN<T>*'

e/ 16 11 <F () — g1 (28)

For the third summand of the RHS of expression (28), it is needed to prove that
771251 efet  1(e—1 <F'(g)) — g] is tight. This process can be written as

712 Z & let e <F () — g]
_rn Z(F — B 1e-1 <F'(9) — gl

+ 7712 ZE(8+) e <F'(9) — gl

The tightness of the first and second summand can be proved by using Lemma 3.1
of Koul and Stute (1999). Then, the op(1) of both summands follows from the

tightness of the process and the fact that KFJN(T)_l = 0p(1). The convergence in

probability to 0 of the second summand of the RHS of (28) follows from Lemma 3.
Finally, Z7(rk, p,{) can be expressed as

T T
Zr(riop,O) T7V2 (68 = BE (e p, O + T7PEE) Y dii (i p, 0,
t 1 t 1

with d,—1(ri, p, O =[e;" | 1(erm1 <ri + Tim1(p, O)—=F(rx + F'i—1(p, O) — & 1e—1 <ri)+
F(rz)]. Then, the processes involved in both sums are martingale arrays, and we can
apply directly Bai (1994) to obtain that

max | Z7(r.p. Ol = 0p(1). O

Proof of Proposition 6. This proof is analogous to Proposition 2 of Bai (1994), and it
is thus omitted. [

With this, result (24) is proved. Then, getting back into expression (23), we have
proved

T
T2 Z eem1 1([E-11<r) = Di(r) + Op(l)a
t 1

where the o,(1) term is uniform in 7.
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For the rest of the terms in the RHS of (22), using that
E {sup Yi,,(“)] <Ky <oo,
u
E {SUP Yi,(u)} <Ky <oo,

and that ¢, is iid, it can be established, in a similar way as (23) and (24), that

T o~

! Z e Vo1 (D) 1([e-1| <1) = op(1),
t 1
T ~

! Z & Y1) 1(Je—1 | <1) = op(1),
[ 1
T N T

T e VdOWE <) =T Y & 1(lel <)+ op(1),
t 1 t 1
T R T

T e L OUEl<n =T Y & 1(lel <)+ op(1),
t 1 t 1

T
7! Z sf_ll(ls,_1|<r) RN E(g,z_ll(|g,_1|<r)) = 2,(r) uniformly in r € [r,7],
(1

sup Ru (¢, 0,r) = op(1),
relr7)

where the op(1) terms are uniformly in r. Now, given that Tl/z[(qAS — ¢p), (@— 00)]
converges in distribution to (Vg, V), which is a multivariate normal random
variable with mean 0 and variance covariance matrix My, it is straightforward to
prove that

T
-2 Z 2 8_1(r) = Di(r)+ (Vy + Vo) Zur), (29)
t 1
with Cov(D(r), V({, l(ﬂo)llmT%OO T Z, L E 8r5r711(|8r71|<”)51(20)] and

Cov(Di(r), Vo) = Hy ' (2 )hmMo T30 Elerer 1(lem1] <0)si (0]
Finally, it is necessary to prove that

T

TN @ () = Z(0), (30)
t 1

! Z (- o (31)

uniformly in r € [r,7] with 0<X,(r)<oo and 0<¢? <oo.
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The proofs of (30) and (31) are tedious and similar to the above proofs. So, we
only present an outline of them. For (30) note that (Ef(r))2 can be written as

@) = [e + (e — 2P LG <7)
= & 1(|e/| <r) + e [1(& | <7r) — 1(le,| <r)]
+ (&0 — )2 1([E| <) + 2e(e, — )& < 7).

About the first term, 7-'S2/  &1(le|<r), given Assumption A.0, it is
straightforward to show that

T
7! Z sfl(|s,|<r)i> 2.(r),
t 1

umformly in relr,7] with 0<X,(r)<oco. The rest of terms can be handled

as T Zz 187L +1(](At 1<r) = 1(e=1 <7)), th(¢ 9 r) and T~ Z; 160 Ve 1(9)]
(le;—1] <r), respectively. Once (30) is proved, it is straightforward to show that

() - 0, (32)
uniformly in r € [r,7]. From (30) and (32), it is easy to obtain (31).
Result 4,

d
Sup |ty —> sup |D()l,

refr refr
with
D(r) = [Di() + (Vi + Vo) ZMIZur)a;] 2,
follows directly from the continuous mapping theorem and (29)-(31). O

Proof of Result 5. For simplicity and without lack of generality we present the proof
for the case of 0, = 1.

Let af, = V(x,), and p,; = Cov(x,, x,—1) with x, = (1 = L)y,. If y, follows the
TIMA model (2), then,

o1 =20, — (1 — 0o,

pa =—0; + (1= 0. (33)
where 62, = E[(¢})*]. From Egs. (15) and (16),

VIMAAY) = 02 + 2p,,

VIMAGT) = —po + (0F = 0o .

To obtain the corresponding results for linear B—N decomposition, we use the
Wold representation of the TIMA model,

(I =Ly, = p+u — Ouy, (34)
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with u, white noise, (E(u,) = 0, 6> = E(u?)). Then,
VENAY) = 0% + 20,
VBN(VrT) = —0p,.
Finally, proceeding in a similar way, the UC—0 decomposition of (34) is
(= Ly} = u+uf,
vl =nl,

with E[y{] = E[n/]1= 0, E[(n)’] = o, E[(n/)’] = 77, E(n/’,n{) = 0, and such that

oyp =0y +2p, and o7 = —p,,. Therefore

n
e YAy =63+ 2p,.
yue 0Ty = —p,.

Then, the Var(Ay?) is the same for the three decompositions. With respect to the
Var(yT), using the fact that the parameters 0 and 6, are less than 1, it is
straightforward to show the largest one is obtained in the case of the UC-0
decomposition. To prove that VBN(y,T) is less or equal than VTIMA(y,T), it is enough
to prove that ¢2>02, since

VENGT) = ai — oi,

TIMA . T 2 2
V y,)=o0,—0..

From the Wold representation (34),

- o2+ \/(af,)2 —4p2,

g, 3
Given that p,, = —0c? and |0| <1, the valid solution is
L @) -4,
o, = 3 .

Substituting 62 and p,, in terms of 0, o7 and o7, from (33), we have
0’1 - 4(pxl)2 = “iL(l - 0%)2 + (O’g‘fiL - (fiL)(z - 291)2~

Then, by using that 62 = 262 — (1 — 07)¢2, and ¢?>¢?2, it is obtained that 62 > ¢?
and the result follows. [
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