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What are the shocks that drive economic fluctuations? The answer to this question requires as

a first step solving the shock identification issue. This paper proposes a new identification

scheme based on two aspects: the long run effect of the shock (permanent or transitory), and the

size of the shock (Large or small). This is done by using a threshold integrated moving average

model (TIMA) previously introduced in the literature by the authors. Based on this model we

develop a testing strategy to determine whether Large and small shocks have different long run

effects, as well as whether one of them is purely transitory. The paper analyzes the impulse

response function of both types of shocks, and provides the asymptotic results sufficient to

implement the above testing strategy. Based on these results we develop a new nonlinear

permanent transitory decomposition, that is applied to US stock prices to analyze the quality of

the stock market, and to US GNP to investigate the asymmetric behavior of its shocks.
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1. Introduction

What are the shocks that drive the economy? Where does the persistence present in
most of the economic time series come from? Is the persistence of output shocks
symmetric or asymmetric? What fraction of output variation is due to supply or
demand shocks? All the attempts to answer these questions pass through the critical
decision of shock identification.

Traditionally this has been done by decomposing the analyzed variable into
unobserved permanent and transitory components (see Watson, 1986). Some examples
are: (1) Beveridge and Nelson (1981) decomposition (B–N hereafter), where the
permanent component is a random walk and there is perfect correlation between
permanent and transitory shocks due to the fact that there is only one shock, the
permanent one; (2) Unobserved component models with uncorrelated components
(UC–0) (see Harvey, 1985; Clark, 1987), where the permanent component is also
assumed to be a random walk but its innovation is uncorrelated with the one in the
transitory term. Note that not all the ARIMA models admit an UC–0 decomposition.
This problem can be solved eliminating the random walk constraint on the permanent
component. In this case we have an extra identification problem that is overcome by
imposing an ad hoc smooth condition on the permanent term (see the ‘‘canonical’’
decomposition in Pierce, 1979). All these decompositions present two basic problems
that are not solved in the literature: (i) at every time period t there is always a
permanent shock, and (ii) none of the assumptions on permanent and transitory
components are testable. The approach proposed in this paper tries to solve the
identification issue without encountering these problems.

Our proposal is based on two pillars. First, as in the above mentioned
identification attempts we accept that there are permanent and transitory shocks,
and secondly, shocks behave differently in the long-run according to their own
characteristics (sign, size, etc.) or some characteristics of the economy. The first
premise, as is well known (see Quah, 1992) is not enough to identify the permanent
and transitory shocks of a univariate time series. This paper shows that with our
second assumption we cannot only identify the permanent and transitory shocks of a
single economic variable, but we can test whether in fact these shocks are transitory
or permanent. In order to implement our proposal we use a class of threshold
models, the threshold integrated moving average models (TIMA) previously
introduced in the literature by Gonzalo and Martı́nez (2004). These are models
with a unit root in the autoregressive part to capture persistence, and a threshold
design in the moving average side to allow for asymmetries. The threshold variable
can represent any characteristic of the shocks (large or small, positive or negative,
etc.) or of the economy (expansion or recession, inflation or deflation, etc.) we are
interested on. This threshold design is able to capture the possibility that any of these
characteristics may have different long run effects. By allowing the existence of a unit
root in some of the moving average regime, we permit that the characteristics
triggering those regimes have only a transitory effect.

In principle, TIMAmodels can deal with different shock characteristics, but in this
paper we will focus on shock size as in the StopBreak model of Engle and Smith
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(1999). Our maintained hypothesis is that large shocks will have permanent effects
while small shocks will produce only transitory effects. This hypothesis is based on
the assumption that certain times series are less likely to mean revert after a large
shock than after a small one. For example in the stock market, investors may
perceive large shocks as containing informational content and small shocks as mere
noise. In macroeconomics, an unsolved issue is whether economic fluctuations are
due to an accumulation of small shocks or instead mostly to infrequent large shocks.
A positive aspect of our framework is that we are able to test our maintained
hypothesis.

The identification of permanent and transitory shocks with our procedure, allows
us to construct an orthogonal nonlinear permanent–transitory decomposition of the
original variable. We also obtain a nonlinear B–N decomposition that while sharing
part of the spirit of both, the standard linear B–N and the UC–0 decompositions, its
behavior lies in between.

Threshold moving average (TMA) models have already been considered in
Wecker (1981) and in De Gooijer (1998). Both works are centered on presenting the
new TMA model and on analyzing some of the moment properties in detail. They
both assume normality, the threshold parameter to be known and equal to zero, and
they do not present asymptotic results. These can be found in Guay and Scaillet
(2003) using indirect inference. One part of our paper can be considered
complementary to this one in the sense of also developing asymptotic results; but
in our case using Hansen (1996), González and Gonzalo (1998), and Caner and
Hansen (2001) approach to threshold models.

The paper finishes with two applications of our TIMA Shock-Size model: first, to
stock prices, where following Hasbrouck (1993) the size of the transitory component
can be considered a measure of the quality or efficiency of the stock market; and
second to GNP, where the majority of the research that investigates the size of its
permanent component has implicitly imposed symmetry, and the minority that
allows for asymmetries driven by the sign of the shocks has not reached any final
conclusion yet (see Elwood, 1998).

The rest of the paper is structured as follows. Section 2 introduces the TIMA
Shock-Size model and analyzes in detail its impulse response function (IRF). Section
3 presents the asymptotic theory results needed for testing the hypothesis of interests.
In Section 4 we define two new nonlinear permanent–transitory decompositions and
compare them with the existing linear decompositions. Sections 5 and 6 present two
empirical applications of our TIMA Shock-Size model, one to measure the quality of
the stock market and the other to analyze whether or not the persistence of shocks to
GNP is asymmetric. Finally, Section 7 draws some concluding remarks. The
appendix contains technical derivations and proofs of the results in the main text.

2. TIMA Shock-Size models
In this section we lay out the basis of the TIMA Shock-Size model. In order to
better understand this model, we start with a more general structure, the
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autoregressive threshold integrated moving average ARTIMA (p;m; 1; 1) model
introduced in Gonzalo and Martı́nez (2004),

FpðLÞð1� LÞyt ¼ mþ
Xmþ1
j 1

ð1� yjLÞ�t1ðrj�1oztprjÞ, (1)

where L is the lag operator, FpðLÞ ¼ ð1� f1L� � � � � fpLpÞ with all its roots outside
the unit circle, 1ð:Þ denotes the indicator function, and zt the threshold variable that
triggers the regime switches. The random error term �t is a real i:i:d sequence with
Ej�tj

2go1 for some g42. The threshold parameters denoted ðr1; . . . ; rmÞ with
r0 ¼ �1, rmþ1 ¼ 1 are such that ri 2 Rm 8i ¼ 1; . . . ;m with Rm ¼ fðr1; . . . ; rmÞ :
�1o

ror1o � � �ormor̄o1g. Thus we require all threshold parameters to lie in
the bounded subset ½r; r̄� of the threshold variable sample space.

Some examples of threshold variables zt are: (i) �t, for instance when the sign is the
shock characteristic that triggers the regime switches (as in Wecker, 1981; Elwood,
1998; Guay and Scaillet, 2003); (ii) ð1� LÞyt or any other economic variable that is
strictly stationary and ergodic (as in De Gooijer, 1998); and (iii) j�tj, the shock’s size.

In this paper we are only concerned with the asymmetry produced by the size of a
shock (zt ¼ j�tj). To present the main results of ARTIMA models producing such
asymmetry (ARTIMA Shock-Size), and without loss of generality, we will use a
simpler version of model (1). A version with no autoregressive part (FpðLÞ ¼ 1) and
only two regimes (the case of more regimes can be handled as in Gonzalo and
Pitarakis, 2002) that is denoted TIMA Shock-Size model:

ð1� LÞyt ¼ mþ
�t � y1�t�1 if j�t�1j4r;

�t � y2�t�1 if j�t�1jpr;

(
(2)

or in a more compact way

ð1� LÞyt ¼ mþ �t � yt�1�t�1, (3)

with yt�1 ¼ y1 if j�t�1j4r, and equal to y2 otherwise. This TIMA model is a time
varying moving average model, and in that sense can be seen as the threshold version
or approximation of the StopBreak model of Engle and Smith (1999). The main
difference is that in the latter all the shocks are permanent (a shock is transitory if it
is equal to zero), while in the former the existence of both permanent and transitory
shocks is allowed.

Assumptions.

A.0. �t iid ð0;s�Þ, with a uniformly continuous density function 0of �o1, and
Eð�2gt Þo1 with g42:

A.1. jy01 � y02j ¼ h040:
m
A.2. E ¼ ½Eðjyð�t�1ÞjÞ þ rhf �o1 and jy1jojy2j, where

h ¼ jy1 � y2j, and f m
¼ maxeðf �ð�rþ eÞ þ f �ðrþ eÞÞ with e defined in the

support of �t.
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A.3. The vector of the true parameter values W0 ¼ ðm0; y01; y
0
2; r

0Þ 2 Y ¼ ½�m; m� �
½�1þ d; 1� d� � ½�1þ d; 1� � ½r; r� s.t.
E
�
¼ ½E�ðy1; y2; rÞ þ rhf m�

�o1 and jy1jojy2j 8W 2 Y, where
E�ðy1; y2; rÞ ¼ jy1jð1� pðrÞÞ þ jy2jpðrÞ, pðrÞXsupkPðj�t þ kjorÞ,
f m�
¼ 4maxef �ðeÞ, d40, and 0o roro1.

A.4. E½�t=It�1� ¼ 0 and E½�tþj1ðj�tþjj4rÞ=It�1� ¼ 0 for jX0, with sigma-field

It ¼
def
fð�jÞ; jptg.

A.5. yi ¼ 1 for some i ¼ 1; 2.

Assumptions A.0 A.1 are standard identification assumptions in threshold models
and empirical processes (see Bai, 1994). Assumption A.2 is a sufficient condition for
invertibility. We can distinguish two different parts in it. In the first one, Eðjyð�t�1ÞjÞ

must be less than 1. This takes care of the case of overdifferencing, especially when
we allow a unit root in the MA part. Non-invertibility is not only a problem of
overdifferencing, but a problem of nonlinearity too. The second part, rhf m; takes
care of the degree of nonlinearity, measured as a product of the gap (rh) and its
upper limit probability f m. A.3 describes the parametric space of TIMA Shock-Size
models (partially related to the invertibility condition) and constitutes a sufficient
requirement for the asymptotic results obtained in the paper. Finally, assumptions
A.4 and A.5 are helpful assumptions to interpret the outcomes of our model, i.e. to
prove the existence of an orthogonal permanent transitory decomposition in terms
of the IRF. A.4 is a symmetry condition of the conditional distribution of the shocks
that can be relaxed. It allows the identification of permanent and transitory shocks
based on the IRF. Otherwise, the IRF is unknown and has to be estimated (see for
example, Clarida and Taylor, 2003). A.5 (together with A.4) guarantees the existence
of pure transitory shocks.

2.1. Impulse response function

To analyze in detail the asymmetric persistence of the shocks present in a TIMA
model we have to study the behavior of its IRF. This function measures the effect of
a perturbation at time t in the sample path fytþkg

1
k 0. If this effect on ytþk does not

vanish when k!1 we say that the shock is persistent. With linear models there is a
general consensus about the relation of the IRF and the persistence of the shock.
However with nonlinear models three main aspects of the time series come up to
determine the definition of the IRF and its relationship with persistence. These
aspects are the history of the series at time t� 1; the shock �t and future shocks. To
capture all these three new aspects we use the Generalized impulse response function
(GIRF) introduced and defined in Koop et al. (1996) and in Potter (2000) as

GIRF ðk; �t;wt�1Þ ¼ E½ytþk=�t;wt�1� � E½ytþk=wt�1� for k ¼ 0; 1; 2; . . . , (4)

where wt is the sample history of the process until time t. According to this definition,

a shock is persistent if the effect of knowing it on the conditional expectation of ytþk

(given the past) does not vanish when k!1:
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In order to show that TIMA Shock-Size models can admit both type of shocks,
permanent as well as transitory, we use the following result.

Result 1. Let yt follow the TIMA process (2). Under assumption A.4, the GIRF of yt is

given by

GIRF ðk; �t;wt�1Þ ¼ ð1� ytÞ�t.

From this result is clear that the shock �t is transitory if yt ¼ 1 (assumption A.5). It
is worth noting that it is the size of �t, that determines the persistent or transitory
effect of �t. It is also important to notice that when A.4 does not hold the GIRF may
be different from ð1� ytÞ�t. This is the case, for instance, when the threshold variable
is the sign of the shock. In this situation, TIMA model will not have any transitory
shock.

To better understand the behavior of the GIRF and the main differences between

our TIMA model and other linear and nonlinear models, we consider four examples

for which we calculate their theoretical GIRF. In all these examples, the shocks �t are
assumed to be iid. A simulation exercise where the different GIRF’s are compared is
shown in Fig. 1.

Example 1 (Linear model). In this example we consider the standard general linear
model,
yt ¼
X1
j 0

yj�t�j,

k

G
I

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

TIMA Big Shock
TIMA Small Shock
TAR Big Shock
TAR Small Shock
RW Big Shock
RW Small Shock

Fig. 1. Mean of the estimated GIRF (divided by �t). The mean of the GIRF is obtained conditional on the

shock size (j�tjp0:5 and j�tj40:5). The mean is calculated over 1000 Monte Carlo replications for 200

values of �t � Nð0; 1Þ. We select a random history wt 1 with t ¼ 201.
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with y0 ¼ 1. Then

ytþk ¼
Xk�1
j 0

yj�tþk�j þ yk�t þ
X1
j 1

ykþj�t�j.

Therefore

GIRF ðk; �t;wt�1Þ ¼ yk�t.

There are two possibilities: limk!1yk ¼ 0 or limk!1yka0: In the first case, all the
shocks f�tg

1
�1, are transitory. In the second one, all of them are permanent. The long

run properties of the shock, �t, only depend on the parameter yk, they do not depend
either on �t or on the past. There is no asymmetric persistence. For the simulation
and comparison exercise of Fig. 1, we use as an example of linear model a random
walk (RW)

yt ¼ yt�1 þ �t.

This model produces the following GIRF:

GIRF ðk; �t;wt�1Þ ¼ �t,

where clearly all the shocks are permanent.

Example 2 (TAR model). In this example we consider the following TAR model

yt ¼ f1yt�11ðj�t�1j4rÞ þ f2yt�11ðj�t�1jprÞ þ �t.

Rewriting this model at time tþ k

ytþk ¼
X1
j 0

ytþk;j�tþk�j

¼
Xk�1
j 0

ytþk;j�tþk�j þ ytþk;k�t þ
X1

j kþ1

ytþk;j�tþk�j,

with yt;j ¼
Qj

i 1ft�i, ft�i ¼ f11ðj�t�ij4rÞ þ f21ðj�t�ijprÞ for jX1, and yt;0 ¼ 1.
Therefore

GIRF ðk; �t;wt�1Þ ¼
Xk�1
j 0

½Eðytþk;j�tþk�j=wt�1; �tÞ � Eðytþk;j�tþk�j=wt�1Þ�

þ Eðytþk;k=�t;wt�1Þ�t � Eðytþk;k�t=wt�1Þ. ð5Þ

For TAR models the GIRF is nonlinear and it depends on the past of �t. In
general, the problem is to obtain the expectations involved in the right-hand side of
(5). This problem can be solved by simulation (see Koop et al., 1996; Potter, 2000).
For the particular TAR model of this example, it can be proved that under
assumption A.4, Ytþk�1
GIRF ðk; �t;wt�1Þ ¼ ft

j tþ1

Eðfj=�t;wt�1Þ�t.



Página 8 de 37
Assuming the parameters (f1, f2) satisfy some stationarity and ergodicity
conditions (see Petrucelli and Woodford, 1984), the above GIRF tends to 0 when
k!1. Therefore although we can obtain asymmetric behavior in the effect of the
shocks, all of them are transitory.

For the simulation and comparison study, we use the following TARUR model
(introduced by González and Gonzalo, 1998) with a unit root in the regime
corresponding to large shocks,

yt ¼
yt�1 þ �t if j�t�1j40:5;

0:6yt�1 þ �t if j�t�1jp0:5:

(
Its GIRF is

GIRF ðk; �t;wt�1Þ ¼
½EðftÞ�

k�1�t if j�tj40:5;

0:6½EðftÞ�
k�1�t if j�tjp0:5;

(
where EðftÞo1. Note that in this case all shocks are transitory, although the effect
depends on the shock’s size.

Example 3 (TIMA model). In this example we analyze our TIMA Shock-Size model
(2) with GIRF described in Result 1. For the simulation and comparison study of
Fig. 1, and in order to compare closely to the TAR model of Example 2, we use the
following ARTIMA (1,1,1,1) model:

ð1� 0:6LÞð1� LÞyt ¼
�t � 0:6�t�1 if j�t�1j40:5;

�t � �t�1 if j�t�1jp0:5:

(
From Result 1 it is obvious that the GIRF of this model is

GIRF ðk; �t;wt�1Þ ¼
�t if j�tj40:5;

ð0:6Þk�1�t if j�tjp0:5:

(
If j�tjp0:5 (small shock), �t is transitory. When j�tj40:5 (large shock), �t is
permanent. Recall that although the threshold in t depends on �t�1; it is the size of �t
which determines the type of persistence effect.

Examples 2 and 3 are very similar. In both examples, yt behaves like a random
walk in the big shock regime, and like a stationary process in the small shock regime.
Nevertheless the GIRF is totally different. Comparing the three theoretical GIRFs it
is observed that: (i) in the RW case, there is no asymmetric behavior, GIRF is the
same for all shocks; (ii) in the TAR case, the size of the shock affects its persistence
(asymmetric behavior), but all of them are transitory; and (iii) for the ARTIMA
Shock-Size model, GIRF is equal to the one produced by a random walk when
shocks are large, and closer to the GIRF produced by the TAR model when shocks
are small.

Fig. 1 shows the results of a simulation exercise, where the GIRFs (divided by �t) of

Examples 1 3 have been estimated. To estimate the GIRF we generate 1000 future
paths of f�tþjg

30
j 1 for each 200 realizations of �t, and only one history wt�1. The GIRF
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is obtained as the sample mean of these 1000 future paths conditional on the shock
size. Fig. 1 summarizes graphically the results obtained in Examples 1–3.

Finally we compare the TIMA Shock-Size model (2) with the StopBreak model of
Engle and Smith (1999).

Example 4 (StopBreak model). In its simplest form, the StopBreak process is

yt ¼ mt þ �t,

where mt is a time-varying conditional mean which is updated via

mt ¼ mt�1 þ qt�1�t�1,

with qt ¼ qð�tÞ. In particular, Engle and Smith (1999) consider the following qð:Þ
function

qðgÞt ¼
�2t

gþ �2t
; g40.

The GIRF function for the StopBreak model (assuming Eðqt�tÞ ¼ 0) is

GIRF ðk; �t;wt�1Þ ¼ qt�t.

Fig. 2 compares graphically the GIRF (divided by �t) of a StopBreak process (g ¼ 5),
with the one of a TIMA Shock-Size model (y1 ¼ 0, y2 ¼ 1 and r ¼ 1). From this

figure, it is clear that in the StopBreak process all the shocks are permanent, while in
the TIMA Shock-Size model both type of shocks (permanent and transitory) are able
to co-exist.

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

StopBreak
TIMA

shock

Fig. 2. GIRF of StopBreak (g ¼ 5) and TIMA (y1 ¼ 0; y2 ¼ 1; r ¼ 1Þ models (divided by �t). StopBreak
model: yt ¼ mt þ �t, with mt ¼ mt 1 þ qt 1ðgÞ�t 1 and qt ¼ �

2
t =ðgþ �

2
t Þ. TIMA Shock-Size:

ð1 LÞyt ¼ �t y1�t 11ðj�t 1j4rÞ y2�t 11ðj�t 1jprÞ.
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3. Estimation and inference of TIMA Shock-Size models

In TIMA, as well as in TAR models, it is necessary to distinguish between the
cases of observable and unobservable threshold variable. When the threshold
variable is observable (for instance, zt ð1� LÞyt), it can be proved (see Gonzalo
and Martı́nez (2004)) that the least squares (LS) estimators of the TIMA model
parameters behave asymptotically like the corresponding LS estimators of the
discontinuous TAR model parameters: T1=2 consistent for bm;by1;by2 and T for br. The
latter speed of convergence is due to the kind of discontinuity in r, present in both
models via the indicator function.

In the TIMA Shock-Size model, the situation becomes different because the
threshold variable �t is unobservable, and therefore has to be estimated. The model is
discontinuous in all the parameters, again via the indicator function. This is the case,
even if the threshold parameter r is known. The discontinuity implies that the rate of
convergence for all the parameters becomes now T�1. In more detail, the (joint)
estimation of the parameter vector W ðm; y1; y2; rÞ is carried out by conditional least
squares (CLS) (see Chan, 1993). For simplicity, without lack of generality we assume
m 0. First we minimize

QT ðWÞ
XT

t 1

e2t ðWÞ,

with

etðWÞ yt�1et�1ðWÞ þ xt; e0 0,

yt�1

y1 if jet�1j4r;

y2 if jet�1jpr;

(
and xt ð1� LÞyt. For a given r, the LS solution is by1ðrÞ and by2ðrÞ. Second, we
minimize QT ð

by1ðrÞ;by2ðrÞ; rÞ, obtaining br. The CLS estimator of W ðy1; y2; rÞ isbW ðby1;by2;brÞ � ðby1ðbrÞ;by2ðbrÞ;brÞ.
The rate of convergence of bW is provided in the next result.

Result 2. Let yt follow the TIMA process (2). Under A.0, A.1 and A.3, byi;T

y0i þOpðT
�1Þ for i 1; 2, and brT r0 þOpðT

�1Þ:

In TIMA Shock-Size models, all the parameters enter into the indicator function
through etðWÞ, and therefore there is a discontinuity in r, as well as in the slope
parameters yi (i 1; 2).

When the threshold variable is observable the asymptotic distribution of by1;by2 is
obtained in Gonzalo and Martı́nez (2004). For the TIMA Shock-Size case we have
not been able yet to obtain the asymptotic distribution directly. This is a very
difficult task and we recognize that it is beyond the scope of this paper. Therefore we
propose an alternative way of obtaining the asymptotic distribution of by ðby1;by2Þ.

This alternative procedure consists on two steps. In a first step, the TIMA
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Shock-Size model is estimated by CLS as previously described. In a second step, we
consider �t and r0 to be known and equal to the CLS estimates of the first step.
Basically, this can be done because in the first step everything is T�consistent. In
more detail, in the second step we obtain byðbWÞ by minimizing

QT ðy; bWÞ ¼XT

t 1

e2t ðy;bWÞ,
with

etðy; bWÞ ¼ y11ðjbet�1j4brÞbet�1 þ y21ðjbet�1jpbrÞbet�1 þ xt.

The asymptotic normality of byðbWÞ, is derived from the fact that ðbyðbWÞ � y0Þ ¼
OpðT

�1=2Þ; together with Result 2. This is established in the next result.

Result 3. Let yt follow the TIMA process (2). Under A.0, A.1 and A.3,

T1=2ðbyðbWÞ � y0Þ �!
d

Nð0;OÞ,

where

O ¼ E½�2t �
Eð�2t�11ðj�t�1j4r0ÞÞ 0

0 Eð�2t�11ðj�t�1jpr0ÞÞ

" #�1
.

From this result it is easy to test whether a shock is transitory or not. This is done
by testing if one of the y parameters is equal to one, for instant, via a standard
t� test.

3.1. A testing strategy

In order to be able to detect whether the persistence of shocks is asymmetric or
not, and to discover the existence of pure transitory shocks, we propose a simple
testing strategy inside the framework of TIMA models. This testing strategy follows
the lines of González and Gonzalo (1998), Caner and Hansen (2001), and Gonzalo
and Montesinos (2002) for TAR models with unit roots. It consists on testing first
for the existence of a threshold effect

H0 : y1 ¼ y2
Ha : y1ay2, ð6Þ

and second, on testing for a unit root in one of the moving average regimes (e.g. the
second regime)

H0 : y2 ¼ 1

Ha : y2a1. ð7Þ
There are many ways of carrying out a test for the first hypothesis. In this paper,
we test the null of linearity versus the alternative of a threshold effect, in a similar
fashion as Engle and Smith (1999) test linearity versus a StopBreak process. Under
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the null hypothesis of linearity we fit an ARIMA(p; 1; q) model to yt

FpðLÞð1� LÞyt ¼ mþYqðLÞ�t, (8)

and use the residuals, b�t, to construct the following auxiliary regressionb�t ¼ ab�t�11ðjb�t�1jorÞ þ ut. (9)

Under the null, a ¼ 0, and under the alternative, aa0. This can be tested by a
t� test. The only problem is that r is not identified under the null, so we proceed as
in Davis (1977, 1987) taking the sup of the absolute value of the t-statistic over all
values of r 2 ½r; r�. The asymptotic distribution is provided in the next result, where
) denote weak convergence with respect to the Skorohod metric. Following
Wooldridge (1994), let bl ¼ ðbm; bf1; . . . ; bfp;by1; . . . ;byqÞ be the LS estimator of l0 ¼
ðm0;f0

1; . . . ;f
0
p; y

0
1; . . . ; y

0
qÞ from model (8), defined as

bl ¼ arg min
l

XT

t 1

e2t ðlÞ ¼ arg min
l

XT

t 1

qtðwt; lÞ,

with etðlÞ the error term from model (8) for a given value of the parameter l. Then,
from Theorem 4.4 in Wooldridge (1994), it is easy to prove that under A.0,

T1=2ðbli � l0i Þ ¼ T�1=2H�1i: ðl
0
Þ
XT

t 1

stðl
0
Þ þ opð1Þ; for i ¼ 0; . . . ; pþ q,

where stðlÞ is the score vector, and Hi:ðl
0
Þ the i-row of Hðl0Þ ¼

limT!1 T�1
PT

t 1 E½htðl
0
Þ� with htðlÞ the Hessian matrix.

Result 4. Let taðrÞ be the t-ratio of the parameter a in the auxiliary regression (9) for a

given r. Under the null of linearity plus assumption A.0,

taðrÞ ) DðrÞ in ½r; r�,

with

DðrÞ � D1ðrÞ þ
Xpþq

i 0

Vli
S�ðrÞ

" #
½S�ðrÞs2� �

�1=2,

where D1ðrÞ is a continuous gaussian process with covariance function

M1ðr1; r2Þ ¼ Eð�2t ÞEð�
2
t�11ðj�t�1jpminðr1; r2ÞÞÞ,

V li
a random variable with distribution given by the asymptotic normal distribution of

T1=2ðbli � l0i Þ, and S�ðrÞ ¼ Eð�2t 1ðj�tjprÞÞ. Finally, to complete the definition of DðrÞ,
CovðD1ðrÞ;V li

Þ ¼ H�1i: ðl
0
ÞlimT!1 T�1

PT
t 1 E½�t�t�11ðj�t�1jprÞstðl

0
Þ�.

Then, by the continuous mapping theorem,
sup
r2½r;r�
jtaðrÞj �!

d
sup
r2½r;r�
jDðrÞj.



Página 13 de 37
The asymptotic distribution of supr2½r;r�jDðrÞj depends on nuisance parameters.
Therefore to obtain the p-values of the test we propose a simple bootstrap method.
This is a model-based bootstrap (see Davison and Hinkley, 1997; Section 8.2.2), that
is next described in a computer algorithm format.

Algorithm 1 generates bootstrap samples fy%

t g
T
t 1 from model (8) and calculates the

bootstrap approximation of the distribution of supr2½r;r� jtaðrÞj.

Algorithm 1 (Model-based Bootstrap procedure).

1. l ¼ 1.
2. Generate f�%t g

T
t 1 resampling from fb�t �b�gTt 1, with b� ¼ T�1

PT
t 1b�t.

3. Generate fy%

t g
T
t 1 from bFpðLÞð1� LÞy%

t ¼ bmþ bYqðLÞ�%t .
4. From model (8), with bootstrap sample fy%

t g
T
t 1, obtain fb�%t gTt 1 by LS.

5. From model (9), with fb�%t gTt 1, estimate a%ðrÞ by LS and compute

t
l
a ¼ supr2½r;r� jta%ðrÞj.

6. l ¼ l þ 1. Go to step 2 while lpB.
7. Estimate the p-value, pv, from the bootstrap approximation,

pv ¼
1

B

XB

l 1

1 t
l
a4 sup

r2½r;r�
jtaðrÞj

 !
.

If the null of linearity is rejected, then we proceed to test the existence of transitory

shocks by constructing the t-statistic of y2 ¼ 1 in model (2). According to Result 3,
this statistic follows a standard normal distribution.

4. Permanent–transitory decomposition

For both, theoretical and empirical reasons, it is frequently desirable to
decompose an economic time series into the sum of unobservable permanent and
temporary components that generate the series. Most of the literature has focused on
decomposing linear models, see Watson (1986) and more recently Mortely et al.
(2001). As the latter authors note, this implicitly imposes the restriction that the
transitory component (related to business cycle) is symmetric, whereas recent
research suggests the opposite (see for example, Neftci, 1984; Hamilton, 1989;
Beaudry and Koop, 1993). In this section, we propose two new nonlinear permanent
and transitory (P–T hereafter) decompositions based on the ARTIMA Shock-Size
model.

First we present a modified version of Quah (1992)’s definition of a P–T

decomposition.
ry (P–T)
Defi
(i)
(ii)
nition 1. Let Y be an integrated sequence. A permanent–transito
P T
dec
omposition for Y is a pair ðY ;Y Þ such that:
Y P is integrated and Y T is covariance stationary;
Y P does not have any transitory shock;
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(iv

wh
we
n ¼ ð1� LÞ;
(ii
i) VarðnY PÞ and VarðnY T Þ are strictly positive, with
P T
) Y t ¼ Y t þ Y t .
Further, if

(v) nY P is uncorrelated with Y T at all leads and lags,

then the P–T decomposition is said to be orthogonal.

The new condition (ii) guarantees that the permanent component is formed only
by permanent shocks. It is worth mentioning that the Beveridge and Nelson
decomposition does not satisfy condition (v), because its permanent and transitory
shocks are perfectly correlated.

Given the following ARTIMA Shock-Size model,

FðLÞð1� LÞyt ¼ mþ ð1� y1LÞ�L
t þ ð1� y2LÞ�s

t , (10)

with y2 ¼ 1, the first new P–T decomposition proposed is

yt ¼ yP
t þ yT

t ,

yP
t ¼ Fð1Þ�1mþ yP

t�1 þ FðLÞ�1ð1� y1LÞ�L
t , ð11Þ

yT
t ¼ FðLÞ�1�s

t , (12)

where the permanent component is formed only by permanent shocks
(�L

t ¼ �t1ðj�tj4rÞ), and the transitory component, only by transitory shocks
(�s

t ¼ �t1ðj�tjprÞ). It is obvious that this nonlinear decomposition is an orthogonal
decomposition according to Definition 1. An important characteristic of this new
P–T decomposition is that its existence can be tested, by testing y2 ¼ 1. Besides, it
allows the possibility of a richer dynamic structure in the permanent component than
the one produced by a pure random walk.

There are situations where economic theory suggests the permanent component be
a random walk (see the application to stock prices). For these cases we propose to
apply B–N directly to our ARTIMA Shock-Size model. The method developed by
Beveridge and Nelson (1981) consists on defining the permanent component as the
long-horizon level forecast of the original series, or the part that remains after all
transitory dynamics have worked themselves out. More precisely,

yt ¼ yP
t þ yT

t ,

yP
t ¼ lim

k!1
½Eðytþkjyt; yt�1; . . .Þ � kEðyt � yt�1Þ�,

yT
t ¼ yt � yP

t .

To apply this to the ARTIMA Shock-Size model (10), we first rewrite it as

yt ¼ Fð1Þ�1mþ yt�1 þ CLðLÞ�
L
t þ CsðLÞ�

s
t ,
ere CLðLÞ ¼ F�1ðLÞð1� y1LÞ and CsðLÞ ¼ F�1ðLÞð1� y2LÞ. Second, we use the
ll-known algebraic result (see Phillips and Solo, 1992) by which a lag polynomial
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CðLÞ can be written as CðLÞ ¼ Cð1Þ þ ð1� LÞ eCðLÞ. Then the corresponding B–N

decomposition can easily be obtained as follows:

yP
t ¼ Fð1Þ�1mþ yP

t�1 þ CLð1Þ�
L
t þ Csð1Þ�

s
t , (13)

yT
t ¼

eCLðLÞ�
L
t þ

eCsðLÞ�
s
t . (14)

This decomposition constitutes our second proposal of a nonlinear P–T

decomposition. For the simple TIMA model (2),

yP
t ¼ mþ yP

t�1 þ ð1� y1Þ�L
t þ ð1� y2Þ�s

t ,

yT
t ¼ �y1�

L
t � y2�s

t .

When the small shocks are transitory (y2 ¼ 1) the nonlinear B–N becomes

yP
t ¼ mþ yP

t�1 þ ð1� y1Þ�L
t , (15)

yT
t ¼ �y1�

L
t � �

s
t . (16)

The big advantage of this nonlinear B–N decomposition, as the following result
shows, does not come from the permanent component but from the transitory one.
The above examples show that neither the shocks of the permanent and transitory
components are perfectly correlated nor that all the shocks at time t are permanent.
In this way we overcome the two main drawbacks of the linear B–N decomposition
(more examples of nonlinear B–N decompositions can be found in Clarida and
Taylor, 2003).

The next result establishes the relationship between the B–N and UC–0
decompositions applied to the Wold (1938) representation of a TIMA Shock-Size
process, and the nonlinear B–N decomposition (15)–(16). Note that, in order for
UC–0 to exist, the parameter y1 must satisfy 0py1p1.

Result 5. Let yt be the TIMA model (2), then

V BNðDyP
t Þ ¼ VTIMAðDyP

t Þ ¼ V UC 0ðDyP
t Þ,

V BNðyT
t ÞpVTIMAðyT

t ÞpVUC 0ðyT
t Þ,

where V BN and VUC 0 are the variances of the components of the B–N and UC–0
decompositions applied to the Wold’s representation of ð1� LÞyt, and VTIMA is the

variance of the components forming the nonlinear B–N decomposition of the TIMA
model. Strict inequality is obtained if 0oy1o1.

As it is well known, (see Quah, 1992), the variance of the innovations of the
random walk component is always the same (equal to the height of the spectral
density of ð1� LÞyt at frequency zero), independently of the used decomposition.
However, for 0oy1o1, the variance of the transitory component of each
decomposition is different. In particular, the variance of the transitory component

of the nonlinear B–N decomposition for the TIMA model (2) lies always between the
corresponding variances of the UC–0 and the linear B–N decompositions. This fact
has important consequences for the applications analyzed in the next two sections.
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Fig. 3. Variance of the transitory component of different P T decompositions of a TIMA Shock-Size

Process. s2�;L ¼ Eð�2t 1ðj�tj4rÞÞ and s2�t ¼ Eð�2t Þ. y2 ¼ 1 and �t � Nð0; 1Þ.
In Fig. 3 we illustrate graphically the inequalities of Result 5 for y2 ¼ 1, and
different values of y1 2 ½0; 1� and of the ratio Eð�2t 1ðj�tj4rÞÞ=Eð�2t Þ.

5. Application to stock prices: a measure of the stock market quality

In this section we apply ARTIMA Shock-Size models to measure the deviations

between actual transaction and implicit efficient prices, following the methodology
developed by Hasbrouck (1993). Measurement of this difference arises in financial
market analysis in two important contexts. First, with the purpose of evaluating the
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broker’s performance, and second, for a comparative analysis of the market
regulatory structures. Hasbrouck’s approach is based on decomposing the
transaction price pt, into two components, the efficient price mt, and the pricing
error st, and on measuring the relative size of st. In more detail Hasbrouck’s model
takes the logarithm of the observed transaction price at time t, as the sum of two
components:

pt ¼ mt þ st.

The element mt (efficient price) is assumed to follow a random walk,

mt ¼ mt�1 þ �t,

and st (pricing error) is a zero-mean covariance-stationary process that is modelled
as

st ¼ b�t þ Zt,

where Zt is uncorrelated with �t. Given that the permanent component is identified
with a random walk, the correct P–T decomposition depends only on the
assumption about the correlation structure of both components. If the shocks of
both components are perfectly correlated (Zt ¼ 0), we are in the B–N scenario. If
both shocks are uncorrelated (b ¼ 0), UC–0 is the decomposition to be used.
Unfortunately, the two identification restrictions are obviously not testable, and as it
is shown in the previous section they imply different dispersion of the pricing error.
Besides, economic theory does not argue conclusively in favor of any of the
identification restrictions.

Roll (1984) bid-ask spread model corresponds to b ¼ 0 and Zt ¼ �ðspreadÞ=2.
Roll proves that the bid-ask spread generates a first order autocorrelation different
from 0 in the increments of the transaction prices, and this correlation explains the
existence of the pricing error. The perfect correlation restriction is a particular case
of Glosten (1987) model. In this model, the spread is partially due to the asymmetric
information revealed in the trade. With no nontrade public information, it is
obtained b40 and Zt ¼ 0.

Starting from these two models, we develop a more complete model which takes
into account several issues not considered in any of the previous ones. We assume the
market description of Glosten (1987), that is, two kinds of agents, uninformed and
informed, with a market maker. The first aspect to be considered is that when there is
a transaction cost, not all the new information will be translated into the transaction
prices. Only the new information which implies a profit greater than the transaction
cost will be translated into the transaction price. In other words, the shocks that
drive the efficient price component must be ‘‘big’’ shocks to the transaction price.
The second aspect is that the transactions of the uninformed agents cannot
generate big inefficient changes in the transaction prices, because the informed

traders will arbitrate the situation. This implies that the shocks driving the pricing
error component must be ‘‘small’’ shocks to the transaction price. Based on these
two aspects and taking Glosten model as starting point we propose the following



Página 18 de 37
pricing specification

pt ¼ mt þ st,

mt ¼ mt�1 þ 1ðj�tj4rÞ�t,

st ¼ 1ðj�tjprÞ�t.

The parameter r is identified as the spread or transaction cost, and only the shocks
greater than this cost will affect the efficient price mt. From this specification the
following representation for the transaction prices is obtained

ð1� LÞpt ¼
�t if j�tj4r;

�t � �t�1 if j�tjpr:

(
(17)

Model (17) is a TIMA Shock-Size model. At this point, it is worth mentioning
again that although we only can observe one shock, �t, in the structural model there
are two type of shocks. One related to new information and therefore driving the
efficient price process, and another coming from the uninformed traders and
therefore of transitory nature. Using the reasoning described above, these two types
of structural shocks translate into the transaction price process in terms of ‘‘big’’ and
‘‘small’’ shocks. Within this TIMA model we are able to test the existence of these
two type of structural shocks.

Fig. 4 represents the logarithm of the S&P500 daily series. Table 1 shows the Least
Squares estimates of the linear ARIMA and nonlinear ARTIMA model fitted to
S&P500 daily series. Parameter estimates of the TIMA Shock-Size model were
obtained by numerically minimizing the squared estimated error using the

FORTRAM optimization procedure DBCPOL. The moving average parameter
estimates of the TIMA model are clearly different. Following the testing strategy
described in Section 3.1, we test the validity of this model in two steps. In the first
one, the null hypothesis of linearity is tested against the alternative of threshold

6.8

7.0

7.2

1998:01:02 1999:08:04 2001:03:06 2002:10:10

Fig. 4. Logarithm of S&P500, 2 January 1998 29 July 2003.



Table 1

Least squares estimates of ARIMA(0,1,1) and ARTIMA(0,1,1,1) models for stock prices

Parameters y y1 y2 r s� AIC

ARIMAð0; 1; 1Þ 0:0176
ð0:0267Þ

0.0136 5.7521

ARTIMA(0,1,1,1) 0:0131
ð0:0268Þ

0:9717
ð0:3632Þ

0.0035 0.0135 5.7564

Note: In brackets are the corresponding standard errors. The ARTIMA parameter estimates correspond

to the second step procedure described in Section 3.

Table 2

Testing linearity versus threshold Shock-Size effect

Auxiliary regressionb�t ¼ a0 þ a1b�t 1 þ a2b�t 11ðjb�t 1jprÞ

supr jta2 j p-value ba0ðrÞ ba1ðrÞ ba2ðrÞ r

2.213 0.067 0:000
ð0:0003Þ

0:004
ð0:0268Þ

0:806
ð0:3645Þ

0.0035

Note: b�t are the residuals of the null linear model. Bootstrap p-value is obtained from 1000 replications. In

brackets are the corresponding standard errors.

Table 3

Variance decomposition of different P T decompositions for stock prices

B N ARIMA(0,1,1) B N ARTIMA(0,1,1,1) UC 0 ARIMA(0,1,1)

sDmt � 102 1.338 1.370 1.339
2
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effect. If we reject this null, in a second step we test the null hypothesis of a unit root
in the MA regime driven by small shocks.

To test linearity, we fit an ARIMA(0,1,1) to the logarithm of the series, construct
the following auxiliary regression with the estimated residuals,b�t ¼ a0 þ a1b�t�1 þ a2b�t�11ðjb�t�1jprÞ þ ut,

and test the significance of a2ðrÞ. Given that under the null hypothesis the parameter
r is unidentified, the test proposed is suprjta2ðrÞj, where ta2ðrÞ is the t-ratio for the null
of a2ðrÞ ¼ 0. The results of this test are shown in Table 2.

sst � 10 0.024 0.074 0.176

Note: pt ¼ mt þ st, with mt a random walk and st the transitory component. sDmt and sst are the standard

deviation of Dmt and st, respectively.
Linearity is rejected at a 10% significant level (p-value ¼ 0:067). From Table 1 the
hypothesis of a unit root in the MA side corresponding to the regime of small shocks
cannot be rejected at the usual significance levels. With these two results we conclude
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that the analyzed S&P500 data do not reject the proposed TIMA Shock-Size model.
Therefore in order to measure the size of the pricing error component st, we obtain
the nonlinear B–N decomposition of the estimated TIMA model. To do that we
impose y2 ¼ 1. The results are in Table 3. Notice that, as the theory suggests, the
contribution of the random walk component is practically the same in all the P–T

decompositions, and the sizes of the transitory components satisfy the inequality
established in Result 5.

Besides this measure of the quality of the stock market, the TIMA Shock-Size
model provides some extra information. For example, the estimated value of the
threshold parameter br ¼ 0:00283 (imposing y2 ¼ 1) implies that the estimated

transaction cost is 0.283 percent of the stock price. This figure is very similar to

that obtained by Hasbrouck (1993) for intra-day data. Also, the percentage of pure
transitory shocks can be estimated (23:65%). The periods where these shocks occurred
can be identified in this context with periods of non-outstanding information.

6. Application to GNP: asymmetric persistence of shocks to output

The goal of this section is to answer empirically an important question about
output fluctuations: Is the persistence of shocks to output asymmetric? This question
has been analyzed by Beaudry and Koop (1993), Hess and Iwata (1997) and Elwood
(1998) among others. All these authors deal with asymmetries produced by the sign
of the shocks, and there is not a clear conclusion. The first authors give an
affirmative answer about the existence of asymmetries, while the others contradict
this result. We will use our TIMA Shock-Size model to conclude that shocks with
different sizes have different long run effects on output. Small shocks will be
transitory, while large shocks will be permanent.

In this section, indirectly we will also try to answer the question of which type of
shocks are responsible for economic fluctuations. This question has been analyzed in
detail by Blanchard and Quah (1989), Cochrane (1994), and many other authors.
Cochrane (1994) remarks two key issues: (i) shock identification and (ii) endogenous
shocks. About the latter, he demands new theoretical models, probably nonlinear, that
are able to explain the fluctuation of the business cycle in terms of endogenous shocks.
TIMA Shock-Size models are perfect candidates to handle both issues simultaneously.

Fig. 5 represents the logarithm of quarterly real GNP for the period 1947:01-
2003:03. Table 4 shows the least square estimates of several linear ARIMA models
and a nonlinear ARTIMA model fitted to GNP. Following Campbell and Mankiw
(1987), we have considered all ARIMA models with p and q less than 3. For space
considerations, Table 4 only presents the results for the ARIMA(1,1,0), ARI-
MA(0,1,1) and ARIMA(1,1,1). The ARTIMA Shock-Size fitted model is

ð1� fLÞð1� LÞyt ¼ mþ ð1� y1LÞ�L
t þ ð1� y2LÞ�s

t .
Table 4 shows that all linear models fit the data very similarly. According to the
AIC criteria the best linear model is the ARIMA(1,1,0), however to eliminate a few
correlations in the residuals, we select the ARIMA(1,1,1) model for our testing



Table 4

Least square estimates of ARIMA and ARTIMA models for real GNP

Parameter ARIMA(1,1,0) ARIMA(0,1,1) ARIMA(1,1,1) ARTIMA(1,1,1,1)

f 0.335 (0.062) 0.453 (0.171) 0.647 (0.182)

y 0.260 (0.064) 0.131 (0.191)

y1 0.320 (0.196)

y2 1.210 (0.396)

r� 102 0.477

s� � 102 0.956 0.969 0.950 0.941

AIC 6.452 6.424 6.447 6.475

1947Q1 1956Q4 1966Q4 1976Q4 1986Q4 1996Q4 2003Q4

7.5
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9.0

Fig. 5. Log of real GNP, 1947:01-2003:03.
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strategy. This testing strategy is the one suggested in Section 3.1 and used in the
previous application. To test the null of linearity versus the alternative of a threshold
effect, we construct the following auxiliary regression with the residuals of the linear
ARIMA (1,1,1)

b�t ¼ a0 þ a1b�t�1 þ a2b�t�11ðjb�t�1jprÞ þ ut.

In this regression we test the significance of a2ðrÞ with the suprjta2ðrÞj, where ta2ðrÞ is the
t-ratio for the null of a2ðrÞ ¼ 0. The results of this test are shown in Table 5. Clearly the
null of linearity is rejected with a p-value smaller than 0:05. This implies that the size of
the shocks is able to generate asymmetries in the persistence of shocks to GNP.

In order to test whether or not small shocks are transitory, we test y2 ¼ 1. From

Note: In brackets are the corresponding standard errors. The ARTIMA parameter estimates correspond

to the second step procedure described in Section 3.
Result 3, this is done directly from last column of Table 4, concluding that the null of
a unit root in the MA side cannot be rejected. Therefore the GNP data do not reject
that large shocks are persistent while small shocks are only transitory.
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Imposing y2 ¼ 1, we calculate the nonlinear orthogonal P–T decomposition
((11)–(12)) proposed in Section 4. This becomes
ð1� LÞyP
t ¼

m
1� f

þ
ð1� y1LÞ
ð1� fLÞ

�L
t ,

yT
t ¼

1

ð1� fLÞ
�s

t ,

Table 5

Testing linearity versus threshold Shock-Size effect

Auxiliary regressionb�t ¼ a0 þ a1b�t 1 þ a2b�t 11ðjb�t 1jprÞ

suprjta2 j p-value ba0ðrÞ ba1ðrÞ ba2ðrÞ r

2.362 0.045 0:000
ð0:0006Þ

0:021
ð0:0676Þ

0:789
ð0:3363Þ

0.004

Note: b�t are the residuals of the null linear model. Bootstrap p-value is obtained from 1000 replications. In

brackets are the corresponding standard errors.
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Fig. 6. B N decomposition of real GNP based on an ARIMA(1,1,1): (a) B N Permanent component of

GNP and NBER reference points, 1947:01-2003:03; (b) B N Transitory Component of GNP and NBER

Reference Points, 1947:01-2003:03.
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where �s
t corresponds to shocks smaller than br ¼ 0:0046. This implies that shocks

smaller than approximately s�=2 are pure transitory. They amount to 51% of the
GNP shocks (the remain 49% are permanent).

Figs. 6–8 represent graphically the P–T decompositions discussed in Section 4,
together with the NBER reference points. Numerically this comparison is
summarized in Table 6. Both linear and nonlinear B–N decompositions produce
very similar results (the differences are due to estimation issues). However, the
orthogonal nonlinear P–T decomposition is clearly different. First, the transitory
component is less volatile, and second, the permanent component is smoother.

To finish, it is worthwhile to mention the close link between the large shocks from
the ARTIMA (1,1,1,1) model and the NBER turning points. From Fig. 9 it can be

Fig. 7. B N decomposition of real GNP based on an ARTIMA(1,1,1,1): (a) Nonlinear permanent

component of GNP and NBER reference points, 1947:01-2003:03; (b) Nonlinear transitory component of

GNP and NBER reference points, 1947:01-2003:03.
seen that peaks and troughs are related to large shocks of opposite signs. Situations
where output leaves a trough are generated by a positive large shock, and the

opposite occurs when the output abandons a peak.

7. Conclusion
In this paper we introduce a new class of simple nonlinear models (TIMA) with
the aim of being able to identify the shocks of a dynamic system. This identification



Table 6

Variance decomposition of different P T decomposition for real GNP

s2
DyP

t
� 103 s2

yT
t
� 103

B N ARIMA(1,1,1) 0.2288 0.0398

B N ARTIMA(1,1,1,1) 0.1825 0.0229

Orthogonal ARTIMA(1,1,1,1) 0.0982 0.0032

Note: yt ¼ yP
t þ yT

t . In the B N decomposition yP
t is a random walk. In the orthogonal ARTIMA
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Fig. 8. Orthogonal decomposition of real GNP based on an ARTIMA(1,1,1,1): (a) Nonlinear permanent

component of GNP and NBER reference points, 1947:01-2003:03; (b) Nonlinear transitory component of

GNP and NBER reference points, 1947:01-2003:03.
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is based on the long run effects of the shocks (permanent or transitory) and on their
sizes (Large or small). The latter is a special case rather than a necessity. It could be
any other shock or economic characteristic. TIMA models provide a nice framework
to test if a shock with a given characteristic (in this paper its size) has a permanent or

decomposition yP
t is formed only by permanent shocks, s.t EðDyP

t ; y
T
t Þ ¼ 0 (see (11) and (12)). s2

DyP
t
and s2

yT
t

are the variance of DyP
t and yT

t , respectively.
a transitory effect. Once shocks are identified we construct two new nonlinear
permanent–transitory decomposition, that are compared with the standard linear
B–N and UC–0 permanent–transitory decompositions available in the literature.
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Two applications of these new nonlinear P–T decompositions are shown in the
paper. The first one studies the quality of the stock market by measuring the
importance of the transitory component (pricing error) in the total transaction price.
The second one studies the asymmetries in the persistence of the GNP shocks. While
the literature has been inconclusive to this respect when the asymmetry comes from

1947Q1 1956Q4 1966Q4 1976Q4 1986Q4 1996Q4 2003Q4

Fig. 9. Large shocks and the NBER reference points, 1947:01-2003:03.
the shock sign, we find a clearly affirmative response when the asymmetry is
generated by the shock size.
Extensions to a multivariate framework is under current research by the authors.
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Appendix

Proof of Result 1. This result is easily proved by rewriting model (2) at time tþ k as

ytþk

1

ð1� LÞ
mþ

1� y1L
ð1� LÞ

�tþk�11ðj�tþk�1j4rÞ

þ
1� y2L

ð1� LÞ
�tþk�11ðj�tþk�1jprÞ. ð18Þ

Conditioning on wt�1, the past history of the process (included �0), and using (18),
the GIRF has the following expression:

GIRF ðk; �t;wt�1Þ ð1� y1Þf�t1ðj�tj4rÞ � E½�t1ðj�tj4rÞjwt�1�g

þ ð1� y2Þf�t1ðj�tjprÞ � E½�t1ðj�tjprÞjwt�1�g

þ
Xk�2
i 0

ð1� y1ÞfE½�tþk�1�i1ðj�tþk�1�ij4rÞj�t;wt�1�

� E½�tþk�1�i1ðj�tþk�1�ij4rÞjwt�1�g

þ
Xk�2
i 0

ð1� y2ÞfE½�tþk�1�i1ðj�tþk�1�ijprÞj�t;wt�1�

� E½�tþk�1�i1ðj�tþk�1�ijprÞjwt�1�g.

Under Assumption A.4, we obtain that

E½�tþj1ðj�tþjj4rÞjwt�1� E½�tþjþ11ðj�tþjþ1j4rÞj�t;wt�1� 0,

for jX0. Hence,

GIRF ðk; �t;wt�1Þ ð1� ytÞ�t

ð1� y1Þ�t if yt y1
ð1� y2Þ�t if yt y2:

(
&

Proofs of Results 2 and 3. They can be found in Gonzalo and Martı́nez (2004) and
are available upon request. &

Proof of Result 4. For simplicity and without loss of generality, this result is proved
for the case of p 1, q 1 and m 0. Part of the proof makes use of some of the
results in Bai (1994).

Let us write the ARMA(1,1) representation of xt ð1� LÞyt as �t xt �

f0xt�1 � y0�t�1 and the corresponding residuals as b�t xt �
bfxt�1 �

byb�t�1, where

ðbf;byÞ are the LS estimators of the parameters ðf0; y0Þ. These estimators satisfy that

T1=2ðbf� f0Þ and T1=2ðby� y0Þ are Opð1Þ.
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Subtracting the errors from the residuals, making use of b�0 ¼ 0, and by repeated
substitution we obtain

b�t � �t ¼ ð�1Þ
t�1byt

�0 � ðbf� f0Þ
Xt�1
j 0

ð�1Þjbyj
xt�1�j � ð

by� y0Þ
Xt�1
j 0

ð�1Þjbyj
�t�1�j.

(19)

Denote r̂ ¼ ð�by; T
p
ðbf� f0Þ; T

p
ðby� y0ÞÞ and r ¼ ðu; v;wÞ 2 R3: Define

Lr;t ¼ ut�0 þ T�1=2 v
Xt�1
j 0

ujxt�1�j þ w
Xt�1
j 0

uj�t�1�j

 !
¼ ut�0 þ T�1=2xrt. (20)

From (9) and the definition of taðrÞ

taðrÞ ¼
baðrÞbsa ¼ T�1=2

XT

t 1

b�tb�s
t�1ðrÞ T�1

XT

t 1

ðb�s
t�1ðrÞÞ

2T�1
XT

t 1

bu2
t ðrÞ

" #�1=2
, (21)

where b�s
tðrÞ ¼ b�t1ðjb�tjprÞ and butðrÞ ¼ b�t � baðrÞb�st�1ðrÞ.

The proof basically consists on decomposing the RHS term of (21) in several
pieces, and analyzing the asymptotic behavior of these pieces. For the first term,
T�1=2

PT
t 1b�tb�s

t�1ðrÞ, we prove that,

T�1=2
XT

t 1

b�tb�s
t�1ðrÞ ¼ X 1;T ðrÞ þ X 2;T X 3;T ðrÞ þ opð1Þ,

where the opð1Þ is uniform for all r 2 ½r; r� and

X 1;T ðrÞ ) D1ðrÞ,

X 2;T!
d
ðVf þ V yÞ,

X 3;T ðrÞ!
p
S�ðrÞ uniformly in r,

with Vf and V y normal random variables with distribution, the asymptotic
distribution of T1=2ðbf� f0Þ and T1=2ðby� y0Þ, respectively. For the other term in
(21), we prove that

T�1
XT

t 1

ðb�st�1ðrÞÞ2T�1
XT

t 1

bu2
t ðrÞ ¼ X 4;T ðrÞ þ opð1Þ,

where

p 2
X 4;T ðrÞ!S�ðrÞs� ,

uniformly in r:
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We start with T�1=2
PT

t 2b�tb�s
t�1ðrÞ. Define

Ux;tð
byÞ Xt�1

j 0

ð�1Þjbyj
xt�1�j,

U�;tðbyÞ Xt�1
j 0

ð�1Þjbyj
�t�1�j.

From (19), T�1=2
PT

t 2b�tb�s
t�1ðrÞ can be written as

T�1=2
XT

t 1

b�tb�s
t�1ðrÞ T�1=2

XT

t 1

�t�t�11ðjb�t�1jprÞ

� ðbf� f0ÞT
�1=2

XT

t 1

�tUx;t�1ð
byÞ1ðjb�t�1jprÞ

ðby y0ÞT�1=2
XT

t 1

�tU�;t�1ðbyÞ1ðjb�t�1jprÞ ðbf f0ÞT
�1=2

�
XT

t 1

�t�1Ux;tð
byÞ1ðjb�t�1jprÞ � ðby� y0ÞT�1=2

�
XT

t 1

�t�1U�;tðbyÞ1ðjb�t�1jprÞ þ R1;tð
bf;by; rÞ. ð22Þ

The first term of the RHS of (22) can be written as

T�1=2
XT

t 1

�t�t�11ðjb�t�1jprÞ T�1=2
XT

t 1

�t�t�11ðj�t�1jprÞ þ T�1=2

�
XT

t 1

�t�t�1ð1ðjb�t�1jprÞ � 1ðj�t�1jprÞÞ. ð23Þ

The Lemma 3.1 of Koul and Stute (1999) establishes that

T�1=2
XT

t 1

�t�t�11ðj�t�1jprÞ ) D1ðrÞ,

where D1ðrÞ is a gaussian process with a covariance function given by

M1ðr1; r2Þ Eð�2t ÞE½�
2
t�11ðj�t�1jpminðr1; r2ÞÞ�.

For the last term of the RHS of (23) it suffices to prove that

sup
r2½�r;r�

T�1=2
XT

t 1

�t�t�1ð1ðb�t�1orÞ � 1ð�t�1orÞÞ

�����
����� opð1Þ.

Given that �t�t�1 �t�
þ
t�1 þ �t��t�1; where �

þ
t �t1ð�t40Þ and ��t �t1ð�to0Þ, it is

enough to prove that

sup
r2½�r;r�

T�1=2
XT

�t�
þ
t�1ð1ðb�t�1orÞ � 1ð�t�1orÞÞ

�����
����� opð1Þ, (24)
t 1
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since the case of �t��t�1 is similar. For that, we use the proof of Theorem 1 in Bai
(1994). Define

ðrÞ ¼ E½�þt�11ð�t�1orÞ�,

with ð�1Þ ¼ 0 and ð1Þ ¼ K o1: Then, using (19) and (20)

T�1=2
XT

t 1

�t�
þ
t�1ð1ðb�t�1orÞ � 1ð�t�1orÞÞ

¼ T�1=2
XT

t 1

�t�
þ
t�1ð1ð�t�1orþ Lr;t�1Þ � 1ð�t�1orÞÞ

¼ bKT ðrÞ � KT ðrÞ.

To study this process, bKT ðrÞ � KT ðrÞ, it suffices to study the auxiliary process,

GT ðr; rÞ ¼ T�1=2
XT

t 1

�t�
þ
t�1ð1ð�t�1orþ Lr;t�1Þ � 1ð�t�1orÞÞ.

Expression (24) is implied by the following result:

sup
r2Db

sup
r2½�r;r�

jGT ðr; rÞj ¼ opð1Þ for every b40, (25)

where Db ¼ ½�y; y� � ½b; b�2 with 0oyo1 and b40: Define

ZT ðr;rÞ ¼ T�1=2
XT

t 1

f�t½�
þ
t�11ð�t�1orþ Lr;t�1Þ � ðrþ Lr;t�1Þ�

� �t½�
þ
t�11ð�t�1orÞ � ðrÞ�g,

PT ðr; rÞ ¼ T�1=2
XT

t 1

�t½ ðrþ Lr;t�1Þ � ðrÞ�.

Then, jGT ðr;rÞjpjZT ðr;rÞj þ jPT ðr;rÞj: To show (25), it suffices to prove the
following two propositions.

Proposition 5. Under Assumption A.0, we have

sup
r2Db

sup
r2½�r;r�

jZT ðr; rÞj ¼ opð1Þ for every b40.

Proposition 6. Under Assumption A.0, we have

sup
r2Db

sup
r2½�r;r�

jPT ðr;rÞj ¼ opð1Þ for every b40.
The proof of both propositions follows Bai (1994) and therefore we do not show it
in full detail. We will focus only on those details that are different. Given
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that �t ¼ �þt þ �
�
t , it is enough to prove Proposition 5 for

ZT ðr;rÞ ¼ T�1=2
XT

t 1

f�þt ½�
þ
t�11ð�t�1orþ Lr;t�1Þ � ðrþ Lr;t�1Þ�
þ þ
� �t ½�t�11ð�t�1orÞ � ðrÞ�g.

The case ��t is similar. Note that �þt �
þ
t�11ð�t�1orþ Lr;t�1Þ and �þt ðrÞ maintain the

non-decreasing monotonicity of the indicator function used in Bai (1994).

Proof of Proposition 5. Define Zt ¼ C
Pt�1

j 0 t
jðjxt�j�1j þ j�t�j�1jÞ for some C40 and

t 2 ð0; 1Þ, and for every l 2 R;

eZT ðr;r; lÞ ¼ T�1=2
XT

t 1

�þt f½�
þ
t�11ð�t�1orþ Gt�1ðr; lÞÞ

� ðrþ Gt�1ðr; lÞÞ� � ½�þt�11ð�t�1orÞ þ ðrÞ�g,

where Gtðr; lÞ ¼ ut�0 þ lty
t�1
j�0j þ T�1=2xrt þ lT�1=2Zt. Note that eZT ðr; r; 0Þ ¼

ZT ðr;rÞ.
Using the compactness of Db; this set can be partitioned into a finite number of

subsets such that the diameter of each one is less than z: Denote these subsets by
n1;n2; . . .nmðzÞ. Fix k and consider nk and rk ¼ ðuk; vk;wkÞ 2 nk: Proceeding as Bai
(1994), choose C large enough and t 2 ð0; 1Þ such that

jLr;t � Lrk ;tjpzty
t�1
j�0j þ zT�1=2Zt for all r 2 nk.

With this inequality and the monotonicity of the functions involved in ZT ðr;rÞ, it
can be proved that

ZT ðr; rÞp eZT ðr;rk; zÞ þ T�1=2
XT

t 1

�þt ½ ðrþ Gt�1ðrk; zÞÞ � ðrþ Lr;t�1Þ�,
for all r 2 nk, and the reverse inequality with z replaced by �z: Now the following
lemma is needed.

Lemma 2. Under Assumption A.0, for every given r ¼ ðu; v;wÞ 2 Db and every l 2 R;
we have

(a) T�1=2
PT

t 1 �
þ
t ðju

t�0j þ ty
t�1
jl�0jÞ ¼ opð1Þ;

(b) T�1=2max1ptpT �þt ðjxrtj þ jlZtjÞ ¼ opð1Þ;
(c) T�1

PT
t 1 �

þ
t ðjxrtj þ jlZtjÞ ¼ Opð1Þ.
This lemma can be proved in a similar way as Lemma 1 in Bai (1994).



Página 31 de 37
Applying Lemma 2 to the next inequality, that has been obtained from a mean
value theorem,

T�1=2
XT

t 1

�þt ½ ðrþ Gt�1ðrk � zÞÞ � ðrþ Lr;t�1Þ�

�����
�����

p2zf �e T�1=2
XT

t 1

�þt ððt� 1Þy
t�2
j�0j þ T�1=2Zt�1Þ; for all r and r 2 Db,

with f �e ¼ maxe ef �ðeÞoKfeo1, it is straightforward to show that

sup
r2Db

sup
r2½�r;r�

T�1=2
XT

t 1

�þt ½ ðrþ Gt�1ðrk � zÞÞ � ðrþ Lr;t�1Þ�

�����
����� ¼ zOpð1Þ,

where the Opð1Þ is uniform in r and r 2 Db. Therefore,

sup
r2Db

sup
r2½�r;r�

jZT ðr; rÞjp max
kpmðzÞ

sup
r2½�r;r�

j eZT ðr;rk; zÞj

þ max
kpmðzÞ

sup
r2½�r;r�

j eZT ðr;rk;�zÞj þ zOpð1Þ. ð26Þ

Then, zOpð1Þ can be arbitrary small in probability, so Proposition 5 follows if the
first two terms of the RHS of (26) are opð1Þ: This will be true if

sup
r2½�r;r�

j eZT ðr;r; zÞj ¼ opð1Þ for everyr; z. (27)

For that Lemma 3 is needed.

Lemma 3. For every ‘ 2 ð0; 1=2Þ; every r ¼ ðu; v;wÞ 2 Db and every l 2 R;

sup
ðr1 ;r2Þ2BT ;‘

T�1=2
XT

t 1

�þt j ðr2 þ Gt�1ðr; lÞÞ � ðr1 þ Gt�1ðr; lÞÞj ¼ opð1Þ,

where BT ;‘ ¼ fðr1; r2Þ 2 R� R; j ðr1Þ � ðr2ÞjpK ;1T�1=2�‘g for some K ;1o1.

Given the uniform continuity and boundedness of our ðrÞ, the proof of this
lemma is analogous to that of Lemma 2 of Bai (1994).

Now divide the real line into NðTÞ ¼ ½T�1=2þ‘� þ 1 parts, with ‘ 2 ð0; 1=2Þ; by
points �r ¼ r0or1o � � �orNðTÞ ¼ r with ðriÞ ¼ iNðTÞ�1K ;1: Since �

þ
t �
þ
t�11ð�t�1orÞ

and �þt ðrÞ are non-decreasing, for rkororkþ1, we have

j eZT ðr;r; zÞjpj eZT ðrkþ1; r; zÞj þ T�1=2
XT

t 1

�þt ½ ðrkþ1 þ Gt�1Þ � ðrþ Gt�1Þ�

þ T�1=2
XT

f�þt ½�
þ
t�11ð�t�1orkþ1Þ � ðrkþ1Þ�
t 1

� �þt ½�
þ
t�11ð�t�1orÞ � ðrÞ�g,
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and the reverse inequality with rkþ1 replaced by rk: Therefore,

sup
r2½�r;r�

j eZT ðr;r; zÞjpmax
k
j eZT ðrk;r; zÞj

þmax
k

T�1=2
XT

t 1

�þt ½ ðrk þ Gt�1Þ � ðrþ Gt�1Þ�

�����
�����

þ sup
jg�g0jpK NðTÞ�1

T�1=2
XT

t 1

f�þt ½�
þ
t�11ð�t�1o �1ðgÞÞ � g�

� �þt ½�
þ
t�11ð�t�1o �1ðg0ÞÞ � g0�g. ð28Þ

For the third summand of the RHS of expression (28), it is needed to prove that
T�1=2

PT
t 1 �

þ
t ½�
þ
t�11ð�t�1o �1ðgÞÞ � g� is tight. This process can be written as

T�1=2
XT

t 1

�þt ½�
þ
t�11ð�t�1oF�1ðgÞÞ � g�

¼ T�1=2
XT

t 1

ð�þt � Eð�þt ÞÞ½�
þ
t�11ð�t�1o �1ðgÞÞ � g�

þ T�1=2
XT

t 1

Eð�þt Þ½�
þ
t�11ð�t�1o �1ðgÞÞ � g�.

The tightness of the first and second summand can be proved by using Lemma 3.1
of Koul and Stute (1999). Then, the opð1Þ of both summands follows from the

tightness of the process and the fact that K ;1NðTÞ
�1
¼ opð1Þ. The convergence in

probability to 0 of the second summand of the RHS of (28) follows from Lemma 3.
Finally, eZT ðrk;r; zÞ can be expressed as

eZT ðrk; r; zÞ T�1=2
XT

t 1

ð�þt � Eð�þt ÞÞdt�1ðrk; r; zÞ þ T�1=2Eð�þt Þ
XT

t 1

dt�1ðrk;r; zÞ,

with dt�1ðrk;r; zÞ¼½�þt�11ð�t�1ork þ Gt�1ðr; zÞÞ� ðrk þ Gt�1ðr; zÞÞ � �þt�11ð�t�1orkÞþ

ðrkÞ�. Then, the processes involved in both sums are martingale arrays, and we can
apply directly Bai (1994) to obtain that

max
k
j eZT ðrk;r; zÞj ¼ opð1Þ: &

Proof of Proposition 6. This proof is analogous to Proposition 2 of Bai (1994), and it
is thus omitted. &

With this, result (24) is proved. Then, getting back into expression (23), we have
proved

T�1=2
XT

�t�t�11ðjb�t�1jprÞ ) D1ðrÞ þ opð1Þ,

t 1

where the opð1Þ term is uniform in r:
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For the rest of the terms in the RHS of (22), using that

E sup
u

U2x;tðuÞ
� �

pKUxo1,

E sup
u

U2�;tðuÞ
� �

pKU�o1,

and that �t is iid, it can be established, in a similar way as (23) and (24), that

T�1
XT

t 1

�tUx;t�1ð
byÞ1ðjb�t�1jprÞ ¼ opð1Þ,

T�1
XT

t 1

�tU�;t�1ðbyÞ1ðjb�t�1jprÞ ¼ opð1Þ,

T�1
XT

t 1

�t�1Ux;tð
byÞ1ðjb�t�1jprÞ ¼ T�1

XT

t 1

�2t�11ðj�t�1jprÞ þ opð1Þ,

T�1
XT

t 1

�t�1U�;tðbyÞ1ðjb�t�1jprÞ ¼ T�1
XT

t 1

�2t�11ðj�t�1jprÞ þ opð1Þ,

T�1
XT

t 1

�2t�11ðj�t�1jprÞ �!
p

Eð�2t�11ðj�t�1jprÞÞ ¼ S�ðrÞ uniformly in r 2 ½r; r�,

sup
r2½r;r�

R1;tð
bf;by; rÞ ¼ opð1Þ,

where the opð1Þ terms are uniformly in r. Now, given that T1=2½ðbf� f0Þ; ðby� y0Þ�
converges in distribution to ðVf;V yÞ, which is a multivariate normal random
variable with mean 0 and variance covariance matrix Mf;y, it is straightforward to
prove that

T�1=2
XT

t 1

b�tb�s
t�1ðrÞ ) D1ðrÞ þ ðVf þ VyÞS�ðrÞ, (29)

with CovðD1ðrÞ;VfÞ ¼ H�11: ðl
0
ÞlimT!1 T�1

PT
t 1 E½�t�t�11ðj�t�1jprÞstðl

0
Þ� and

CovðD1ðrÞ;V yÞ ¼ H�12: ðl
0
ÞlimT!1 T�1

PT
t 1 E½�t�t�11ðj�t�1jprÞstðl

0
Þ�.

Finally, it is necessary to prove that

T�1
XT

t 1

ðb�s
t�1ðrÞÞ

2
�!

p
S�ðrÞ, (30)

T�1
XT

t 1

bu2
t ðrÞ �!

p
s2� , (31)
uniformly in r 2 ½r; r� with 0oS�ðrÞo1 and 0os2�o1:
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The proofs of (30) and (31) are tedious and similar to the above proofs. So, we
only present an outline of them. For (30) note that ðb�s

tðrÞÞ
2 can be written as

ðb�s
tðrÞÞ

2
¼ ½�t þ ð�t �b�tÞ�21ðjb�tjprÞ

¼ �2t 1ðj�tjprÞ þ �2t ½1ðjb�tjprÞ � 1ðj�tjprÞ�

þ ð�t �b�tÞ
21ðjb�tjprÞ þ 2�tð�t �b�tÞ1ðjb�tjprÞ.

About the first term, T�1
PT

t 1 �
2
t 1ðj�tjprÞ; given Assumption A.0, it is

straightforward to show that

T�1
XT

t 1

�2t 1ðj�tjprÞ �!
p

S�ðrÞ,

uniformly in r 2 ½r; r� with 0oS�ðrÞo1: The rest of terms can be handled
as T�1

PT
t 1 �

þ
t �
þ
t�1ð1ðb�t�1orÞ � 1ð�t�1orÞÞ; R1;tð

bf;by; rÞ and T�1
PT

t 1 �tUx;t�1ð
byÞ1

ðj�t�1jorÞ, respectively. Once (30) is proved, it is straightforward to show that

baðrÞ �!p 0, (32)

uniformly in r 2 ½r; r�: From (30) and (32), it is easy to obtain (31).
Result 4,

sup
r2½r;r�
jtaðrÞj �!

d
sup
r2½r;r�
jDðrÞj,

with

DðrÞ � ½D1ðrÞ þ ðVf þ V yÞS�ðrÞ�½S�ðrÞs2� �
�1=2,

follows directly from the continuous mapping theorem and (29)–(31). &

Proof of Result 5. For simplicity and without lack of generality we present the proof
for the case of y2 ¼ 1.

Let s2x ¼ V ðxtÞ, and rx1 ¼ Covðxt; xt�1Þ with xt ¼ ð1� LÞyt. If yt follows the
TIMA model (2), then,

s2x ¼ 2s2� � ð1� y21Þs
2
�;L,

rx1 ¼ �s
2
� þ ð1� y1Þs2�;L, ð33Þ

where s2�;L ¼ E½ð�L
t Þ

2
�. From Eqs. (15) and (16),

VTIMAðDyP
t Þ ¼ s2x þ 2rx1,

VTIMAðyT
t Þ ¼ �rx1 þ ðy

2
1 � y1Þs2�;L.

To obtain the corresponding results for linear B–N decomposition, we use the
Wold representation of the TIMA model,
ð1� LÞyt ¼ mþ ut � yut�1, (34)
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with ut white noise, (EðutÞ ¼ 0, s2u ¼ Eðu2
t Þ). Then,

V BNðDyP
t Þ ¼ s2x þ 2rx1,

V BNðyT
t Þ ¼ �yrx1.

Finally, proceeding in a similar way, the UC–0 decomposition of (34) is

ð1� LÞyP
t ¼ mþ ZP

t ,

yT
t ¼ ZT

t ,

with E½ZP
t � ¼ E½ZT

t � ¼ 0, E½ðZP
t Þ

2
� ¼ s2

ZP , E½ðZT
t Þ

2
� ¼ s2

ZT , EðZP
t ; Z

T
t Þ ¼ 0, and such that

s2
ZP ¼ s2x þ 2rx1 and s2

ZT ¼ �rx1. Therefore

V UC 0ðDyP
t Þ ¼ s2x þ 2rx1,

V UC 0ðyT
t Þ ¼ �rx1.

Then, the VarðDyP
t Þ is the same for the three decompositions. With respect to the

VarðyT
t Þ, using the fact that the parameters y and y1 are less than 1, it is

straightforward to show the largest one is obtained in the case of the UC–0
decomposition. To prove that V BNðyT

t Þ is less or equal than VTIMAðyT
t Þ, it is enough

to prove that s2uXs2� , since

V BNðyT
t Þ ¼ s2x � s2u,

VTIMAðyT
t Þ ¼ s2x � s2� .

From the Wold representation (34),

s2u ¼
s2x � ðs2xÞ

2
� 4r2x1

q
2

.

Given that rx1 ¼ �ys
2
u and jyjo1, the valid solution is

s2u ¼
s2x þ ðs2xÞ

2
� 4r2x1

q
2

.

Substituting s2x and rx1 in terms of y1, s2� and s2�;L from (33), we have

s4x � 4ðrx1Þ
2
¼ s4�;Lð1� y21Þ

2
þ ðs2�s

2
�;L � s4�;LÞð2� 2y1Þ

2.

2 2 2 2 2 2 2 2
Then, by using that sx ¼ 2s� � ð1� y1Þs�;L and s�4s�;L it is obtained that suXs�
and the result follows. &
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