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Abstract

This paper discusses inference in self exciting threshold autoregressive (SETAR) models. Of

main interest is inference for the threshold parameter. It is well known that the asymptotics of

the corresponding estimator depend upon whether the SETAR model is continuous or not. In

the continuous case, the limiting distribution is normal and standard inference is possible. In the

discontinuous case, the limiting distribution is non normal and it is not known how to estimate

it consistently. We show that valid inference can be drawn by the use of the subsampling

method. Moreover, the method can even be extended to situations where the (dis)continuity of

the model is unknown. In this case, the inference for the regression parameters of the model also

becomes difficult and subsampling can be used again. In addition, we consider an hypothesis test

for the continuity of a SETAR model. A simulation study examines small sample performance

and an application illustrates how the proposed methodology works in practice.
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1. Introduction
Over the last two decades, there has been an increasing interest in non-linear time
series analysis; for example, see Tong (1990) as a general reference. One of the most
popular non-linear time series models is the self-exciting threshold autoregressive
(SETAR) model or sometimes just called the threshold autoregressive (TAR) model.
A two-regime SETAR model is defined as

X t ¼
f10 þ f11X t�1 þ � � � þ f1pX t�p þ s1�t if X t�dpr;

f20 þ f21X t�1 þ � � � þ f2pX t�p þ s2�t if X t�d4r:

(
(1)

Here, dpp is a positive integer referred to as the threshold lag, r is the threshold, and
f�tg is a sequence of independent and identically distributed (i.i.d.) variables with
mean zero and unit variance; also, �t is assumed to be independent of the past
X t�1;X t�2; . . . : The positive constants s1 and s2 allow the innovations to have
different standard deviations in the two regimes. Throughout the paper, it will be
assumed that fX tg is stationary ergodic, having finite second moments, and that the
stationary distribution of ðX 1;X 2; . . . ;X pÞ

0 admits a density positive everywhere.
Heuristically speaking, X t is generated by one of two distinct autoregressive

models according to the level of X t�d : This model can be generalized to have more
than two distinct regimes and/or to depend on the levels of more than one lagged
variable. SETAR models are popular because they can exhibit many non-linear
phenomena such as limit cycles, chaos, harmonic distortion, jump phenomena, and
time irreversibility. They can be used as a general, parsimonious strategy for
modeling non-linear economic time series. For a number of applications, see Tong
(1990), Tiao and Tsay (1994), Potter (1995), and Chan and Tsay (1998), among
others.

It is important to distinguish between discontinuous and continuous SETAR
models. Let Fi ¼ ðfi0;fi1; . . . ;fipÞ

0 be the autoregressive coefficient vector of model
(1) in regime i: Then the model is said to have a discontinuous autoregressive
function if there exists Z
 ¼ ð1; zp�1; . . . ; z0Þ

0; where zp�d ¼ r; such that ðF1 �

F2Þ
0Z
a0: In this case, the threshold r constitutes the jump point of the

autoregressive function. Otherwise, that is, if ðF1 � F2Þ
0Z
 ¼ 0 for all Z
 satisfying

the above condition, the model has a continuous autoregressive function. It is easy to
see that the latter case is equivalent to the requirement that f1j ¼ f2j for 1pjadpp

and that f10 þ rf1d ¼ f20 þ rf2d : Therefore, in the continuous case, the SETAR
model can be written as

X t ¼ f0 þ
Xp

j 1;jad

fjX t�j þ
fd�ðX t�d � rÞ þ s1�t if X t�dpr;

fdþðX t�d � rÞ þ s2�t if X t�d4r;

�
(2)

where f0 ¼ f10 þ rf1d ; fd� ¼ f1d ; fdþ ¼ f2d and fj ¼ f1j for jad: The
importance of distinguishing between discontinuous and the continuous SETAR
models stems from the fact that the asymptotics of the (conditional) least squares
estimator of the parameter W ¼ ðF0

1;F
0
2; r; dÞ

0 are different in the two cases. While F̂i;n

always converges to a normal distribution with mean zero at rate square root of n;



with n being the sample size, the asymptotic covariance matrix depends upon
whether the model is continuous or not. For discontinuous models, r̂n converges to a

non-standard distribution at rate n and is asymptotically independent of F̂i;n: But for
continuous models, r̂n converges to a normal distribution at rate square root of n and
is asymptotically correlated with F̂i;n: See Chan (1993) and Chan and Tsay (1998) for
the results concerning the discontinuous and the continuous case, respectively. It
should be pointed out that Chan and Tsay (1998) base the estimation of W on the
restricted model (2), thereby enforcing the estimated model to be continuous.

A main goal of this paper is to construct asymptotically valid confidence intervals
for the threshold parameter r: In principle, the inference problem can be considered
solved when it is known that the SETAR model is continuous. In this case, Chan and
Tsay (1998) show that n1=2ðr̂n � rÞ converges weakly to a normal distribution with
mean zero and a variance that can be estimated consistently. On the other hand, the
discontinuous case remains without a satisfactory solution. While Chan (1993)
demonstrates that nðr̂n � rÞ converges weakly to a non-degenerate distribution, the
limiting distribution depends, in a very complicated way, on the underlying
probability mechanism and apparently cannot be estimated consistently. It is not
known whether a bootstrap approach would work. Under more restrictive
conditions, such as i.i.d. normal innovations and the threshold effect vanishing
asymptotically, the method of Hansen (2000) can be employed; see Section 4. In case
it is unknown whether the SETAR model is continuous or not, an additional
complication arises; this case has not been studied so far.

As will be demonstrated, one can solve the inference problem for the threshold
parameter r by the use of the subsampling method dating back to Politis and
Romano (1994); for a broader reference, see Politis, Romano, and Wolf (1999),
abbreviated by PRW (1999) in the sequel. We will first discuss the case when the
(dis)continuity of the SETAR model is known and then focus on the general case
when it is unknown. Moreover, the subsampling method can also be used to make
inference for regression parameters fij : This is especially interesting in the general
case, since the form of the limiting variance of f̂ij;n depends upon whether the
SETAR model is continuous or not and hence cannot be estimated consistently by
standard methods unless the (dis)continuity of the model is known.

A problem that has not been discussed in the literature yet is the construction of a
hypothesis test for the continuity of a SETAR model. As will be shown, the
subsampling method can be employed to this end as well.

The remainder of the paper is organized as follows. In Section 2, we provide some
key facts of the subsampling method to make the exposition self-complete. In
Section 3, we discuss how to use subsampling to compute confidence intervals for
SETAR model parameters. In Section 4, we compare our method to that of Hansen
(2000). In Section 5, we present a hypothesis test for the continuity of the SETAR
model. In Section 6, we discuss the choice of the block size, which is an important
model parameter of the subsampling method. In Section 7, we conduct some
simulation studies to examine finite-sample properties. In Section 8, we provide an
empirical application to unemployment data. In Section 9, we provide a discussion.
The mathematical details are postponed to the Appendix.



2. Subsampling in a nutshell
In this section, the subsampling method for dependent data is briefly reviewed. We
consider the construction of confidence intervals for real-valued parameters and the
construction of hypothesis test for general null hypotheses.

2.1. Confidence intervals for a parameter

Consider the case of a time series fX 1;X 2;X 3; . . .g governed by a probability law
P: The goal is to construct asymptotically valid confidence intervals for a real-valued
parameter y ¼ yðPÞ on the basis of observing the finite segment X 1; . . . ;X n: For
brevity we only consider two-sided symmetric confidence intervals; one-sided
confidence intervals and two-sided equal-tailed intervals are treated similarly. The
existence of an estimator ŷn ¼ ŷðX 1; . . . ;X nÞ is assumed. The basis of constructing
confidence intervals for y is the estimation of the two-sided sampling distribution of
ŷn; properly normalized. To this end let

Jnðx;PÞ ¼ ProbPftnjŷn � yjpxg;

where ftng is a normalizing sequence. We shall assume here that tn ¼ nb for some
positive real number b:

The subsampling approximation to Jnðx;PÞ is defined by

Ln;bðxÞ ¼
1

n � b þ 1

Xn�bþ1

a 1

1ftbjŷb;a � ŷnjpxg;

where the integer 1obon is referred to as the block size, ŷb;a ¼ ŷðX a; . . . ;X aþb�1Þ is
the estimator of y computed on the block (or subsample) of data fX a; . . . ;X aþb�1g:
The quantiles of the subsampling distribution Ln;b can then be used to construct
asymptotically valid confidence intervals for y: To be more specific, let cn;bð1� aÞ be
an ð1� aÞ quantile of Ln;b: The symmetric subsampling interval is then given as

I sym ¼ ½ŷn 
 t�1
n cn;bð1� aÞ�: (3)

This interval can be shown to have the right coverage probability asymptotically
under very weak conditions. Specifically, the following corollary is a special case of
Corollary 3.2.1 of PRW (1999).

Corollary 2.1. Assume that (i) JnðPÞ converges weakly to a continuous limiting

distribution; (ii) the sequence fX tg is strong mixing; and (iii) b ! 1; b=n ! 0; tb !

1 and tb=tn ! 0 as n ! 1:
Then the confidence interval I sym of (3) has asymptotic coverage probability of 1� a:

To use this construction, one has to know the rate of convergence tn: For our
application of the threshold parameter r; this would be n1=2 for a continuous SETAR
model and n for a discontinuous SETAR model. Therefore, in the general case, when
the (dis)continuity of the model is unknown, the standard subsampling method is not
applicable. One can get around this problem by using subsampling in conjunction



with an estimated rate of convergence. Assume an estimator of the rate denoted
by t̂n is available. Then one simply uses the standard method with tn replaced by t̂n:
Let
L̂n;bðxÞ ¼
1

n � b þ 1

Xn�bþ1

a 1

1ft̂bjŷb;a � ŷnjpxg:

Denoting an ð1� aÞ quantile of L̂n;b by ĉn;bð1� aÞ; the symmetric subsampling
interval based on the estimated rate of convergence is then given as

Î sym ¼ ½ŷn 
 t̂�1
n ĉn;bð1� aÞ�: (4)

In typical applications, the (unknown) rate is of the form tn ¼ nb with b unknown.
The problem of rate estimation is then reduced to estimating the power b: Given an
estimator b̂; the estimated rate becomes t̂n ¼ nb̂: If b̂ converges sufficiently fast to b;
interval (4) can be shown to have the right coverage probability asymptotically under
very weak conditions. Specifically, the following corollary is a special case of
Theorem 8.3.2 of PRW (1999).

Corollary 2.2. Assume that (i) JnðPÞ converges weakly to a continuous limiting

distribution; (ii) the sequence fX tg is strong mixing; (iii) b ! 1; b=n ! 0; tb ! 1

and tb=tn ! 0 as n ! 1; and (iv) tn ¼ nb and b̂ ¼ bþ oPððlog nÞ�1
Þ:

Then the confidence interval Î sym of (4) has asymptotic coverage probability of 1� a:

2.2. General hypothesis tests

More generally, assume that the unknown law P is assumed to belong to a certain
class of laws P: The null hypothesis H0 asserts P 2 P0; and the alternative
hypothesis H1 is P 2 P1; where Pi � Pand P0 [P1 ¼ P: The goal is to construct
an asymptotically valid test based on a given test statistic,

W n ¼ tnwn ¼ tnwnðX 1; . . . ;X nÞ;

where tn is a normalizing sequence. Let

Gnðx;PÞ ¼ ProbPftnwnpxg:

It will be assumed that Gnð�;PÞ converges in distribution, at least for P 2 P0: Of
course, this would imply (as long as tn ! 1) that wn ! 0 in probability for P 2 P0:
Naturally, wn should somehow be designed to distinguish between the competing
hypotheses. The method we describe assumes wn is constructed to satisfy the
following: wn ! wðPÞ in probability, where wðPÞ is a constant which satisfies wðPÞ ¼

0 if P 2 P0 and wðPÞ40 if P 2 P1:
To describe the test construction, let wb;a be equal to the statistic wb evaluated at

the block of data fX a; . . . ;X aþb�1g: The sampling distribution of W n is then
approximated by

Ĝn;bðxÞ ¼
1

n � b þ 1

Xn�bþ1

a 1

1ftbwb;apxg:



Using this estimated sampling distribution, the critical value for the test is obtained

as the 1� a quantile of Ĝn;bð�Þ; specifically, define
gn;bð1� aÞ ¼ inffx : Ĝn;bðxÞX1� ag:

Finally, the nominal level a test rejects H0 if and only if

W n4gn;bð1� aÞ: (5)

This construction can be shown to lead to a test that has asymptotically the right
size and is consistent under very weak conditions. Specifically, the following
corollary is a special case of Theorem 3.5.1 of PRW (1999).

Corollary 2.3. Assume that (i) for P 2 P0; GnðPÞ converges weakly to a continuous

limit distribution; (ii) the sequence fX tg is strong mixing; (iii) b ! 1; b=n ! 0; tb !

1 and tb=tn ! 0 as n ! 1; and (iv) wðPÞ ¼ 0 if P 2 P0 and wðPÞ40 if P 2 P1:
Then probability (5) tends to a when P 2 P0 and it tends to 1 when P 2 P1:

Remark 2.1. Alternatively, one could compute a subsampling P-value given as

PV n;b ¼
1

n � b þ 1

Xn�bþ1

a 1

1ftbwb;aXW ng:

In this case, the nominal level a test rejects H0 if and only if

PV n;boa:

3. Confidence intervals for SETAR model parameters
This section describes how to use subsampling to construct confidence intervals
for SETAR model parameters. The (joint) estimation of the parameter vector W is

carried out by the method of conditional least squares (CLS); see Chan (1993) and
Chan and Tsay (1998). Note that in empirical applications, the lag parameter d is
sometimes assumed to be known and is then not estimated from the data; an
example is the application of Chan and Tsay (1998).

The theoretical results to follow refer to regularity conditions of Chan (1993) and
of Chan and Tsay (1998), respectively. For self-completeness, we briefly restate these
conditions:

Regularity Conditions 3.1 (Chan (1993), Theorem 2). Let Pl denote the l-step

transition probability of the Markov chain fZ tg; where Z t ¼ ðX t;X t�1; . . . ;X t�pþ1Þ
0:

Assume the following:

C1 {Z t} admits a unique invariant measure pð�Þ such that there exist constants Ko1

and ro1 so that for all z 2 Rp and for all l 2 N; jjPlðz; �Þ � pð�ÞjjpKð1þ jzjÞrl ;
where jj � jj and j � j denote the total variation norm and the Euclidean norm,
respectively.



C2 �t is absolutely continuous with a uniformly continuous and positive probability

density function. Furthermore, Eð�4t Þo1:
4
C3

Re
fX tg is stationary with EðX t Þo1:

gularity Conditions 3.2 (Chan and Tsay (1998), Theorem 2.2). Assume that fX tg

nerated by (2) is a b-mixing stationary process with a geometrically decaying mixing
ge

rat
e. Assume that fd�afdþ; and, for some q42; EðjX tj
qÞo1: Assume further that
the stationary probability density function of X t is positive everywhere and is bounded

over a neighborhood of the true threshold parameter r:

We would like to point out that these are the regularity conditions used to derive
the limiting distribution of CLS estimators in the discontinuous and the continuous
case, respectively. We do not need to strengthen these conditions in order to prove
the validity of the subsampling inference methods, even in the general case when the
(dis)continuity of the model is unknown.

3.1. Confidence intervals for the threshold parameter r

First, consider the continuous case. Chan and Tsay (1998), basing the estimation
on model (2), construct normal theory confidence intervals for r: A simulation study
in their paper shows that this method tends to undercover quite a bit. As an
alternative, the subsampling method can be used.

Theorem 3.1. Base the estimation of r on estimating model (2). Assume the model is

continuous and assume Regularity Conditions 3.2. Let y = r and tn ¼ n1=2: Further,
assume that b ! 1 and b=n ! 0 as n ! 1:

Then the confidence interval (3) has asymptotic coverage probability 1� a:

Next, consider the discontinuous case. Chan (1993) proves the strong consistency
and the limiting distribution of r̂n: However, the distribution is non-standard and
depends, in a very complicated way, on the underlying probability mechanism.
Indeed, nðr̂n � rÞ converges weakly to a random variable M�; where ½M�;MþÞ is the
unique random interval over which a compound Poisson process attains its global
minimum. Even though the underlying probability mechanism arguably can be
estimated consistently, it is not clear how one could go from there to consistently
estimate the distribution of M� as a basis for asymptotic inference for r: The
subsampling method can be used to construct valid confidence intervals.

Theorem 3.2. Base the estimation of r on estimating model (1). Assume the model is

discontinuous and assume Regularity Conditions 3.1. Let y = r and tn ¼ n: Further,
assume that b ! 1 and b=n ! 0 as n ! 1:

Then the confidence interval (3) has asymptotic coverage probability 1� a:

Finally, consider the general case. We apply subsampling in conjunction with an
estimated rate of convergence. It is known that tn ¼ nb; where b is equal to either 0.5
(if the model is continuous) or to 1 (if the model is discontinuous). The following
theorem demonstrates that the asymptotic validity of subsampling confidence
intervals is not affected as long as the estimator of b converges sufficiently fast.



Theorem 3.3. Base the estimation of r on estimating model (1). If the model is

discontinuous, assume Regularity Conditions 3.1. If the model is continuous, assume

Regularity Conditions 3.2. Let y = r and t̂ ¼ nb̂; where b̂ ¼ bþ o ððlog nÞ�1
Þ:
n P

Further, assume that b ! 1 and b=n ! 0 as n ! 1:
Then the confidence interval (4) has asymptotic coverage probability 1� a:

Remark 3.1. The key ingredients of the theorem are that in both the continuous
and the discontinuous cases tnðr̂n � rÞ has a proper limiting distribution, that
the rate tn is allowed to depend on the case, and that it can be estimated
consistently satisfying a certain regularity condition. In the discontinuous case,
the convergence of nðr̂n � rÞ to a proper, albeit non-standard limiting distribution
is proved in Chan (1993). While Chan and Tsay (1998) discuss continuous
SETAR models, their results cannot be used for our theorem because they
consider a restricted fit based on model (2). What is needed instead is the
asymptotic distribution of r̂n when the model is continuous but the unrestricted
model (1) is estimated. A corresponding result is stated as Theorem A.1 in the
Appendix.

The applicability of the suggested method now hinges on an estimator of b;
the power of n in the rate of convergence. Indeed, subsampling can be applied to
this end as well. The basic idea is the following. Since tnjr̂n � rj converges to a
non-degenerate distribution, loosely speaking, jr̂n � rj converges to the point
mass zero at rate tn: Therefore, by comparing a number of subsampling
distributions, based on distinct block sizes b1 . . . bI ; which estimate the sampling
distribution of the un-scaled statistic jr̂n � rj; one can consistently estimate the rate
tn: In the interest of space, we can only present the formula of the resulting
estimator; for a detailed discussion, the reader is referred to PRW (1999,
Section 8.2). Define

Kn;bðxÞ ¼
1

n � b þ 1

Xn�bþ1

a 1

1fjr̂b;a � r̂njpxg;

and denote by K�1
n;bðtÞ a t-quantile of Kn;b: Now, let bi ¼ bngic; for constants

0og1o � � �ogI ; let tj ; for j ¼ 1; . . . ; J ; be some points in ð0:5; 1Þ; and let

yi;j ¼ logðK�1
n;bi

ðtjÞÞ:

The following estimator of b then satisfies b̂I ;J ¼ bþ oPððlog nÞ�1
Þ:

b̂I ;J ¼ �

PI
i 1ðyi;: � ȳÞðlog bi � logÞPI

i 1ðlog bi � logÞ2
; (6)

where

yi;: ¼ J�1
XJ

j 1

yi;j ; y ¼ ðIJÞ�1
XI

i 1

XJ

j 1
yi;j ; and log ¼ I�1

XI

i 1

logðbiÞ:



3.2. Confidence intervals for regression parameters fij
It is also of interest to make inference for the regression parameters fij : On
grounds of consistency, the problem can be considered solved when it is known
whether the SETAR model is continuous or not. In both cases, n1=2ðf̂ij;n � fijÞ

converges to normal distribution with mean zero and a variance that can be
consistently estimated. The result for the continuous case is given by Chan and Tsay
(1998) and the one for the discontinuous case by Chan (1993). It should be
mentioned, though, that the method of Chan (1993) tends to undercover in finite
samples because it does not take the estimation uncertainty about r̂n into account
(e.g., Hansen, 2000). When the (dis)continuity of the model is unknown, standard
inference is rendered infeasible, since the form of the limiting variance is different in
the two cases. Instead, the subsampling method can be used. Given that the rate of
convergence of f̂ij;n does not depend on the continuity of the SETAR model, the
complication of the rate estimation does not occur.

The following theorem shows that when the estimation is based on model (1)
subsampling confidence intervals for fi;j will always have asymptotically correct
coverage probability. The validity of this approach when the true model is
continuous again hinges on Theorem A.1.

Theorem 3.4. Base the estimation of fij on estimating model (1). If the model is

discontinuous, assume Regularity Conditions 3.1. If the model is continuous, assume

Regularity Conditions 3.2. Let y= fij and tn ¼ n1=2: Further, assume that b ! 1 and

b=n ! 0 as n ! 1:
Then the confidence interval (3) has asymptotic coverage probability 1� a:

4. Comparison with a related method
To construct confidence intervals for SETAR parameters in discontinuous models,
the approach of Hansen (2000) could also be adopted. Note that Hansen’s

framework is richer, since it allows general regression models where the predictor
variables do not have to be lagged variables of the response. In what follows, we will
discuss how his method is applied to SETAR models as a special case. To circumvent
the non-standard and difficult asymptotics of r̂n in discontinuous models, Hansen
(2000) assumes that the ‘‘threshold effect’’, that is, the difference between the two
regression coefficient parameters, shrinks to zero as the sample size increases:

F1 � F2 ¼ Dn�a with Da0 and 0pao0:5:

Under the assumption that s1 ¼ s2; Hansen (2000) is able to construct confidence
intervals for r by inverting a likelihood ratio test for r: The ensuing intervals are
asymptotically correct when a40: In the case of a fixed, non-vanishing threshold
effect (that is, when a ¼ 0), the intervals are shown to be asymptotically conservative
under the additional assumption that the innovations are Gaussian.



The method has a number of problems. First, it is doubtful that it can be extended
to non-Gaussian innovations because the proof relies heavily on the Gaussian
innovation structure. Second, it is assumed that s ¼ s ; so that the innovation
1 2

terms are required to have the same variance in the two regimes. Third, the
confidence intervals are conservative when a ¼ 0 and the simulations in Hansen
(2000) show that unless F1 � F2 is close to zero and n is small, the intervals
overcover significantly. Fourth, the method cannot be extended to continuous
SETAR models, so it would not work in the general case.

We can also compare inference for regression parameters fij :Hansen (2000) shows
that, as in Chan (1993) in his model also, n1=2ðf̂ij;n � fijÞ converges to a normal
distribution with mean zero and that the limiting variance is the same as when r is
known. He argues correctly that ‘in finite samples, this procedure seems likely to
under-represent the true sampling uncertainty, since it is not the case that r̂n ¼ r in
any given sample’. Therefore, he suggests a Bonferroni-type bound in the
following way. First, one constructs a 1� R level confidence interval for r: Next,
for each ry contained in that interval, one constructs a 1� a level confidence interval
for fij ; acting as if ry were the true parameter. Finally, one takes the union over ry of
all the 1� a intervals for fij : The question is how to choose the model parameter R;
note that the choice R ¼ 1 would correspond to treating r̂n as the true parameter, that
is, the approach of Chan (1993). Based on some simulations, Hansen (2000) suggests
to use R ¼ 0:2: Obviously, this is an ad hoc method whose asymptotic properties are
not clear. On the other hand, the subsampling inference for fij yields confidence
intervals with asymptotically correct coverage probability. It does not under-
represent the true sampling uncertainty, since r is also estimated from the
subsamples.

5. A test for continuity

An important issue that has not been explored in the literature is to test whether a

SETAR model is continuous or not. Chan and Tsay (1998) apply both continuous

and discontinuous models to quarterly U.S. unemployment rates and note that the
two estimated models are close to each other, ‘which is indicative of using a
continuous model’. But they are not able to test whether this hypothesis may be
violated. We will now describe how the general subsampling hypothesis testing
approach of Section 2.2 can be adopted to this end. As was noted earlier, a necessary
and sufficient condition for a SETAR model to be continuous is that f1j ¼ f2j for
1pjadpp and that f10 þ rf1d ¼ f20 þ rf2d : Obviously, this is equivalent to hðWÞ ¼
0; with

hðWÞ ¼ jf10 þ rf1d � f20 � rf2d j þ
X

1pjadpp

jf1j � f2jj:

Hence, it seems plausible to choose

wn ¼ wnðX 1; . . . ;X nÞ ¼ hðŴnÞ



as the test statistic, where the estimation of W is based on model (1). The following
theorem shows that this idea indeed leads to a test with asymptotically correct level.
Moreover, as it should be, under the alternative hypothesis the power tends to 1.
Theorem 5.1. Base the estimation of W on estimating model (1). If the model is

discontinuous, assume Regularity Conditions 3.1. If the model is continuous, assume

Regularity Conditions 3.2. Denote by P0 the class of continuous SETAR models and by

P1 the class of discontinuous SETAR models. Let wn ¼ hðŴnÞ and tn ¼ n1=2: Further,
assume that b ! 1 and b=n ! 0 as n ! 1:

(i) If the underlying SETAR model is continuous, then the subsampling test based on

(5) has asymptotic size equal to a:
(ii) If the underlying SETAR model is discontinuous, then the subsampling test based
th
on (5) has asymptotic power equal to 1.
6.
 Choice of the block size
The application of the subsampling method requires a choice of the block size b;
e problem is very similar to the choice of the bandwidth in applying smoothing or
kernel methods. Unfortunately, the asymptotic requirements b ! 1 and b=n ! 1

as n ! 1 give little guidance when faced with a finite sample. Instead, we propose to
exploit the semi-parametric nature of SETAR models to estimate a ‘good’ block size
in practice. The approach will be detailed for the use of subsampling for confidence
interval construction. An analogous approach can be used when hypothesis tests are
to be constructed; see Remark 6.1.

To illustrate the idea, assume the goal is to construct a 1� a confidence interval
for the univariate parameter of interest y (the threshold parameter r or one of the
regression parameters fijÞ: In finite samples, a subsampling interval will typically not
exhibit coverage probability exactly equal to 1� a; moreover, the actual coverage
probability generally depends on the block size b: Indeed, one can think of the actual
coverage level 1� l of a subsampling confidence interval as a function of the block
size b; conditional on the underlying probability mechanism P—that is, the fully
specified SETAR model in our application—and the nominal confidence level 1� a:
The idea is now to adjust the ‘input’ b in order to obtain the actual coverage level
close to the nominal one. Hence, one can consider the block size calibration function
g : b ! 1� l: If gð�Þ were known, one could construct an ‘optimal’ confidence
interval by finding ~b that minimizes jgðbÞ � ð1� aÞj and use ~b as the block size; note
that jgðbÞ � ð1� aÞj ¼ 0 may not always have a solution.

Of course, the function gð�Þ depends on the underlying probability mechanism P

and is therefore unknown. We now propose a semi-parametric bootstrap method to
estimate it. The idea is that in principle we could simulate gð�Þ if P were known by
generating data of size n according to P and computing subsampling confidence
intervals for y for a number of different block sizes b: This process is then repeated
many times and for a given b one estimates gðbÞ as the fraction of the corresponding



intervals that contain the true parameter. The method we propose is identical except
that P is replaced by an estimate P̂n:
For our application, P is the completely specified SETAR model. It depends on W;
s1; s2; and the marginal distribution of �t: The natural estimator of W is Ŵn; either
based on estimating model (2) in case the model is known to be continuous or based
on estimating model (1) otherwise. In principle, the remaining components could be
estimated explicitly as well. Instead, we opt for an ‘implicit estimation’ by
bootstrapping the residuals from the two distinct regimes. To this end, define, for
t ¼ p þ 1; . . . ; n;

ût;n ¼
X t � f̂10;n � f̂11;nX t�1 � � � � � f̂1p;nX t�p if X t�dpr̂n;

X t � f̂20;n � f̂21;nX t�1 � � � � � f̂2p;nX t�p if X t�d4r̂n;

(

Û1 ¼ fût;n : X t�dpr̂ng; nÛ1
¼ jÛ1j

and

Û2 ¼ fût;n : X t�d4r̂ng; nÛ2
¼ jÛ2j;

where, necessarily, nÛ1
þ nÛ2

¼ n � p: Now, the estimated SETAR model, denoted
by P̂n; gives rise to a sequence X 


1; . . . ;X


n in the following manner.

Algorithm 6.1 (sampling from estimated SETAR model).

1. Generate sequences u

i1; . . . ; u



in by sampling with replacement from Û i; for i ¼ 1; 2:

2. X 

t ¼ X t for t ¼ 1; . . . ; p:



f̂10;n þ f̂11;nX 


t�1 þ � � � þ f̂1p;nX 

t�p þ u


1t if X 

t�dpr̂n

(

3.
R

co
X t ¼
f̂20;n þ f̂21;nX 


t�1 þ � � � þ f̂2p;nX 

t�p þ u


2t if X 

t�d4r̂n

for t ¼ p þ 1; . . . ; n:
H
aving specified how to generate data from estimated SETAR model, we next detail

th
e algorithm to determine the block size b:

Algorithm 6.2 (choice of the block size).

1. Fix a selection of reasonable block sizes b between limits blow and bup:
2. Generate K pseudo sequences X 


k1; . . . ;X


kn; k ¼ 1; . . . ;K ; according to Algorithm

6.1. For each sequence, k ¼ 1; . . . ;K ; and for each b; compute a subsampling
confidence interval CIk;b for y:
3.
4.
Compute ĝðbÞ ¼ #fŷn 2 CIk;bg=K :
Find the value ~b that minimizes jĝðbÞ � ð1� aÞj:
emark 6.1. If subsampling is used to construct hypothesis tests rather than
nfidence intervals, then an analogous algorithm can be used by focusing on the size
of
 the test rather than the confidence level of the interval. Of course, in doing so it is
^
im
portant that the estimated SETAR model Pn satisfy the null hypothesis. For

example, for the continuity test of Section 5, one needs to base the estimation of P on
estimating model (2).



Remark 6.2. Strictly speaking, the Theorems of Section 3 require an a priori
determined sequence of block sizes b as n ! 1: In practice, however, the choice of b

will typically be data-dependent, such as given by Algorithm 6.2. As discussed in

PRW (1999, Section 3.6), this does not affect the asymptotic validity of subsampling
inference with strong mixing data as long as blow ! 1 and bup=n1=2 ! 0 as n ! 1:
This result also implies the consistency of the subsampling inference for r when the
true model is continuous but a discontinuous model is estimated in practice.
While P̂n will be discontinuous with probability one, the data-dependent
choice of block size will result in confidence intervals with asymptotically correct
coverage probability as long as the afore-mentioned conditions on blow and bup are
satisfied.

7. Simulation evidence
The goal of this section is to examine the small sample performance of our
methods via a simulation study. To reduce the computational burden, we consider

the simplest case d ¼ p ¼ 1: The following two SETAR models are included in the
study:

X t ¼
0:52þ 0:6X t�1 þ �t if X t�dp0:8;

1:48� 0:6X t�1 þ 2�t if X t�d40:8

�
(7)

and

X t ¼
0:7� 0:5X t�1 þ �t if X t�dp0;

�1:8þ 0:7X t�1 þ �t if X t�d40;

�
(8)

where the �t are i.i.d. Nð0; 1Þ: Model (7) is the continuous model used in Chan and
Tsay (1998) with s1 ¼ 1 and s2 ¼ 2: The discontinuous model (8) is taken from Tong
(1990, Section 5.5.3) with s1 ¼ s2 ¼ 1: Since it would be cumbersome to simulate X 1

directly from the stationary distribution of X t; we start the simulations at X�99 ¼ 0
and then discard the first 100 observations to avoid startup effects. Fig. 1 shows 500
data points from the two models, where X t is plotted against X t�1 and the true
autoregressive functions are overlaid.

7.1. Confidence intervals for SETAR model parameters

Performance of confidence intervals is judged by estimated coverage probabilities
of nominal 90% and 95% two-sided symmetric subsampling intervals. The
parameters of interest are r and f11: When intervals for r are constructed, we use
both the true and the estimated rate of convergence. The former corresponds to
knowing the (dis)continuity of the model while the latter corresponds to the general
case. The three sample sizes considered are n ¼ 100; 200, and 500.

Some words about the rate estimation are in order. We started out with the
estimator b̂I ;J defined in (6), using I ¼ J ¼ 4: The quantiles tj were evenly distributed



between 0.7 and 0.99. The block sizes bi were chosen according to the rule

bi ¼ bngic with gi ¼ k 
 ½1þ logðði þ 1Þ=ðI þ 1ÞÞ= log 100�; i ¼ 1; . . . ; I ; (9)

where 0oko1 is a model parameter. In small to moderate samples, this produced
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Fig. 1. 500 data points were generated from models (7) and (8), respectively. The plots show X t against

X t 1; with the true autoregressive functions overlaid.
‘overdispersed’ estimates. This means that in the continuous model, b̂I ;J tended to be
less than 0.5 and in the discontinuous model, b̂I ;J tended to be bigger than 1. We
therefore switch to the truncated estimator

b̂
Trunc

I ;J ¼
0:5 if b̂I ;Jp0:75;

1 if b̂I ;J40:75:

(
(10)

For an application, the model parameter k in (9) has to be chosen. Table 1 reports
how often the correct rate was identified in the two models for the parameters
k ¼ 0:7; 0:8; and 0.9 and the sample sizes considered in our simulation study. It is
seen that the method is not very reliable for n ¼ 100 but that starting at n ¼ 200; the
choice k ¼ 0:8 yields a quite good estimator. In the simulations that follow, we
employ the choice k ¼ 0:8 throughout.

Remark 7.1. Based on the simulation experience of Table 1, we make the following

recommendations concerning the use of the rate estimator b̂
Trunc

I ;J in empirical

applications. Choose I ¼ J ¼ 4 and the quantiles tj evenly distributed between 0.7

and 0.99. Choose the block sizes bi as in (9) and k ¼ 0:8: Do not attempt rate
estimation for sample sizes no200:



Remark 7.2. The truncated estimator b̂
Trunc

I ;J can be used as the basis of an alternative
method to construct a confidence interval for the threshold parameter r in the

general case. When b̂
Trunc

I ;J ¼ 0:5; construct the interval assuming a continuous model;

Table 1

Proportions of times the estimator b̂
Trunc

I ;J selected the correct rate as a function of the model parameter k
and the sample size n

n k ¼ 0:7 k ¼ 0:8 k ¼ 0:9

Continuous model

100 0.82 0.82 0.73

200 0.95 0.95 0.86

500 1.00 0.99 0.98

Discontinuous model

100 0.25 0.63 0.89

200 0.55 0.92 0.97

500 0.96 1.00 0.99

The continuous model is (7) and the discontinuous model is (8). The estimation is based on model (1)

always. The results are based on 1000 replications.
when b̂
Trunc

I ;J ¼ 1; construct the interval assuming a discontinuous model. It is

straightforward to see that this method yields consistent inference. For example,

consider the case of the true model being continuous. Since b̂I ;J is a consistent

estimator of b ¼ 0:5; the event fb̂
Trunc

I ;J ¼ 0:5g has probability tending to one. Hence,

with probability tending to one, the confidence interval will be based on a continuous
model, which is the true state of nature. The same reasoning applies to case of the
true model being discontinuous.3

For all scenarios, we include three fixed block sizes in addition to the ‘optimal’
block size chosen according to Algorithm 6.2. Since this algorithm is computation-
ally rather expensive, we had to limit the input block sizes to the corresponding three
fixed block sizes; note that in a concrete application a finer grid should be chosen.
Also, for the parameter K of the algorithm, K ¼ 200 is employed; in a concrete
application, we suggest to employ K ¼ 1000: All estimated coverage probabilities are
based on 1000 repetitions. The results are presented in Tables 2 and 3.

3Note that this alternative method is different from a pretest method. A pretest method would start with

a test for the null hypothesis of a continuous model. If the null is not rejected, the interval is constructed

assuming a continuous model; if the null is rejected, the interval is constructed assuming a discontinuous

model. The pretest method is troubled, though. Consider the case of the true model being continuous.
Even when the sample size tends to infinity, the test will reject the null hypothesis with a positive

probability, the nominal level of the test. Hence, the probability that the inference will be based on a

continuous model remains strictly less than one.



First, we discuss the confidence intervals for the threshold parameter r in the
continuous model. The results for fixed block sizes (columns 2 to 4) and the first
results for the data-dependent choice of block size (column 5) are based on
estimating model (2). This approach corresponds to knowing the continuity of the

Table 2

Estimated coverage probabilities of nominal 90% and 95% subsampling confidence intervals for the

threshold parameter r based on 1000 replications

Continuous model, n ¼ 100

Target b ¼ 15 b ¼ 25 b ¼ 35 ~b ~b and t̂n ~b and b̂
Trunc

0.90 0.77 0.82 0.80 0.81 0.51 0.67

0.95 0.83 0.86 0.84 0.86 0.61 0.72

Continuous model, n ¼ 200

Target b ¼ 30 b ¼ 45 b ¼ 60 ~b ~b and t̂n ~b and b̂
Trunc

0.90 0.88 0.89 0.87 0.88 0.55 0.86

0.95 0.82 0.93 0.91 0.92 0.67 0.91

Continuous model, n ¼ 500

Target b ¼ 70 b ¼ 100 b ¼ 130 ~b ~b and t̂n ~b and b̂
Trunc

0.90 0.93 0.91 0.88 0.91 0.70 0.91

0.95 0.97 0.95 0.92 0.95 0.79 0.95

Discontinuous model, n ¼ 100

Target b ¼ 10 b ¼ 20 b ¼ 30 ~b ~b and t̂n ~b and b̂
Trunc

0.90 0.89 0.94 0.87 0.91 0.92 0.61

0.95 0.93 0.97 0.92 0.95 0.96 0.69

Discontinuous model, n ¼ 200

Target b ¼ 10 b ¼ 25 b ¼ 40 ~b ~b and t̂n ~b and b̂
Trunc

0.90 0.87 0.95 0.86 0.89 0.90 0.81

0.95 0.91 0.98 0.92 0.95 0.95 0.85

Discontinuous model, n ¼ 500

Target b ¼ 15 b ¼ 35 b ¼ 55 ~b ~b and t̂n ~b and b̂
Trunc

0.90 0.91 0.87 0.79 0.90 0.90 0.90

0.95 0.94 0.95 0.87 0.94 0.94 0.94

The continuous DGP is (7) and the discontinuous DGP is (8). Columns 2 4 list the results for fixed block

sizes using the true rate tn; column 5 lists the results for the adaptive choice of block size in conjunction

with the true rate tn; in columns 2 5 the (dis)continuity of the model is assumed known. Column 6 lists the

results when the estimation is based on the discontinuous model (1) always but the estimated rate of

convergence is used. Column 7 lists the results when either the continuous model (1) or the discontinuous

model (2) is used, depending on the outcome of the truncated rate estimator (10); see Remark 7.2. Both

columns 6 and 7 use the adaptive choice of block size.
model and hence the numbers should be compared to the simulations of Chan and
Tsay (1998). It is seen that the intervals undercover for n ¼ 100 and n ¼ 200: Still,
our results for n ¼ 100 are comparable to those of Chan and Tsay (1998) for n ¼

200; and our results for n ¼ 200 are comparable to those of Chan and Tsay (1998)
for n ¼ 1000: When n ¼ 500 the intervals work satisfactorily while those of Chan
and Tsay (1998) still undercover when n ¼ 2000: Hence, in this context, subsampling
offers improved finite-sample performance compared to the asymptotic method



based on normality. The results for the data-dependent choice of block size in
column 6 are based on estimating model (1) in conjunction with estimating the rate
of convergence; this approach corresponds to the general case. The results are
certainly disappointing, though they get less disappointing as the sample size n

Table 3

Estimated coverage probabilities of nominal 90% and 95% subsampling confidence intervals for the

regression parameter f11 based on 1000 replications

Continuous model, n ¼ 100

Target b ¼ 15 b ¼ 25 b ¼ 35 ~b
0.90 0.95 0.90 0.85 0.87

0.95 0.98 0.95 0.90 0.92

Continuous model, n ¼ 200

Target b ¼ 20 b ¼ 35 b ¼ 50 ~b
0.90 0.95 0.91 0.87 0.88

0.95 0.98 0.96 0.92 0.93

Continuous model, n ¼ 500

Target b ¼ 50 b ¼ 80 b ¼ 110 ~b
0.90 0.92 0.89 0.87 0.89

0.95 0.97 0.95 0.92 0.95

Discontinuous model, n ¼ 100

Target b ¼ 20 b ¼ 25 b ¼ 30 ~b
0.90 0.94 0.91 0.87 0.91

0.95 0.96 0.94 0.92 0.95

Discontinuous model, n ¼ 200

Target b ¼ 30 b ¼ 40 b ¼ 50 ~b
0.90 0.92 0.88 0.84 0.89

0.95 0.96 0.93 0.89 0.94

Discontinuous model, n ¼ 500

Target b ¼ 40 b ¼ 60 b ¼ 80 ~b
0.90 0.94 0.90 0.86 0.90

0.95 0.97 0.94 0.92 0.95

The continuous DGP is (7) and the discontinuous DGP is (8). Columns 2 4 list the results for fixed block

sizes and column 5 lists the results for the adaptive choice of block size. The estimation is based on the

discontinuous model (1) always.
increases.4 The results for the data-dependent choice of block size in column 7 are
based on the technique described in Remark 7.2. The coverage probabilities are
much improved and for n ¼ 500 are identical to column 5. This is no surprise, since
according to Table 1 the truncated rate estimator will indicate the continuous model
with probability 0.99 in this case.

Second, we discuss the confidence intervals for the threshold parameter r in the
discontinuous model. When the discontinuity of the model is known, the coverage
probabilities are satisfactory starting at n ¼ 100 already. See column 5 for the results

4Part of the disappointment seems to be due to the unequal innovation standard deviations in model (7).

When the innovation in both regimes have equal standard deviation one the coverage probabilities are

much higher, see Gonzalo and Wolf (2001).



for the data-dependent choice of block size which compare very favorably to the
simulations of Hansen (2000). The results for the data-dependent choice of block size

in column 6 are based on estimating model (1) in conjuction with estimating the rate
of convergence; this approach corresponds to the general case. The empirical
coverage probabilities differ very little from those of column 5, so little is lost in not
knowing the true state of nature in this approach. The results for the data-dependent
choice of block size in column 7 are based on the technique described in Remark 7.2.
The coverage probabilities are worse than those in column 6 for n ¼ 100; 200 but for
n ¼ 500 they are identical to column 5. This is no surprise, since according to Table 1
the truncated rate estimator will indicate the continuous model with probability 1 in
this case.

Based on these simulation results, we would recommend the technique described
in Remark 7.2 for the general case. Starting at n ¼ 500; basically nothing is lost in
not knowing the (dis)continuity of the model, as the truncated rate estimator (10)
will indicate the true state of nature with probability very close to one. For smaller
values of n the coverage probabilities do suffer. On the other hand, for smaller values
of n the confidence intervals for r are not very trustworthy even in the case of a
continuous model with the continuity known; see the simulations in Chan and Tsay
(1998) and column 5 of Table 2. If we require nX500 to make inference for r in the
continuous case5, there is no further detriment if we require nX500 in the general
case.

Table 4 sheds some light on the distribution of the data-dependent choice of block
size in selected scenarios.

Third, we discuss the intervals for the regression parameter f11: In both models,
the results are always based on estimating model (1). The data-dependent choice of
block size works quite satisfactorily, though the intervals undercover somewhat in
the continuous model.6 The results for the discontinuous model compare favorably
to the ad hoc method of Hansen (2000) who employs a Bonferroni-type method (see
Section 4).

7.2. Test for continuity
A similar simulation setup is used to judge the performance of the subsampling
test for the null hypothesis of a continuous SETAR model; see Remark 6.1 for the

data-dependent choice of the block size. The results are presented in Table 5. Note
that the test over-rejects for small sample sizes but as the sample size increases, the
actual level tends to the nominal level and the power tends to one in accordance with
the theory. Moreover, the data-dependent choice of the block size performs well.

5While this might seem a strong requirement, recall that the inference based on asymptotic normality of

Chan and Tsay (1998) would require n42000:
6While not reported, estimated coverage probabilities in the continuous model improve if model (2) is

estimated. When the continuity of the model is known, the intervals works satisfactorily for n ¼ 100

already.



8. Empirical application

Chan and Tsay (1998) fitted the following continuous SETAR(2) model to the first
differences of the quarterly U.S. unemployment rates from 1948 to 1993 (T ¼ 184):

Table 4

Proportions of times the input block sizes b were chosen by Algorithm 6.2 in the determination of the data-

dependent block size ~b in various scenarios

CI for r; continuous model, n ¼ 100

Target b ¼ 15 b ¼ 25 b ¼ 35

0.90 0.16 0.62 0.22

0.95 0.14 0.70 0.16

CI for r; discontinuous model, n ¼ 100

Target b ¼ 10 b ¼ 20 b ¼ 30

0.90 0.39 0.38 0.23

0.95 0.28 0.58 0.14

CI for f11; continuous model, n ¼ 100

Target b ¼ 15 b ¼ 25 b ¼ 35

0.90 0.09 0.21 0.70

0.95 0.13 0.38 0.49

CI for f11; discontinuous model, n ¼ 100

Target b ¼ 20 b ¼ 25 b ¼ 30

0.90 0.24 0.54 0.22

0.95 0.39 0.50 0.11

The continuous model is (7) and the discontinuous model is (8). The results for the confidence interval for r

correspond to column 5 of Table 2 and the results for the confidence interval for f11 correspond to column

5 of Table 3. The results are based on 1000 replications.
X̂ t ¼ 0:0888þ 0:7870X t�1 þ
0:1060 ðX t�2 � rÞ if X t�2p0:134;

�0:5582 ðX t�2 � rÞ if X t�240:134;

�
(11)

where the sample sizes for the two regimes are 130 and 52, respectively. As a
comparison, they also employed a discontinuous SETAR(2) model to the same data.
The following is the estimated model:

X̂ t ¼
0:0207þ 0:6011X t�1 þ 0:0801X t�2 if X t�2p0:034;

0:2280þ 0:8815X t�1 � 0:6903X t�2 if X t�240:034;

�
(12)

where the sample sizes for the two regimes are 115 and 67, respectively. Comparing
with the continuous model in (11), Chan and Tsay (1998) observed that the two
models are similar but were not able to formally test the null hypothesis of a
continuous model

We now apply the test of Section 5. Table 6 presents the estimated rejection
probabilities of the test under the null for various block sizes and nominal levels.
(The smallest block size included is b ¼ 30; since for values smaller than that the
estimation of a SETAR(2) model becomes problematic.) The numbers in the table
indicate that the test tends to over-reject. Given the relatively small sample size of
n ¼ 184; this is consistent with the simulation study in the previous section. For



example, according to the estimation, a test with nominal level a ¼ 0:025 and block
size b ¼ 30 has an actual level of about 0.05. And a test with nominal level a ¼ 0:05
and block size b ¼ 30 has an actual level of about 0.09. Table 7 presents the
subsampling P-values for the null hypothesis of a continuous model and various
block sizes. All the P-values are well above 0.1. This fact together with test being

Table 5

Estimated rejection probabilities of nominal 10% and 5% subsampling hypothesis tests for the null

hypothesis of a continuous SETAR model based on 1000 replications

Continuous model, n ¼ 100

Target b ¼ 20 b ¼ 30 b ¼ 40 ~b
0.10 0.20 0.18 0.21 0.18

0.05 0.12 0.12 0.15 0.12

Continuous model, n ¼ 200

Target b ¼ 20 b ¼ 40 b ¼ 60 ~b
0.10 0.14 0.13 0.13 0.12

0.05 0.07 0.07 0.08 0.07

Continuous model, n ¼ 500

Target b ¼ 90 b ¼ 120 b ¼ 150 ~b
0.10 0.08 0.09 0.11 0.09

0.05 0.04 0.05 0.06 0.05

Discontinuous model, n ¼ 100

b ¼ 20 b ¼ 30 b ¼ 40 ~b
0.89 0.90 0.91 0.91

0.96 0.96 0.94 0.96

Discontinuous model, n ¼ 200

b ¼ 20 b ¼ 40 b ¼ 60 ~b
0.98 0.99 0.99 0.99

1.00 1.00 1.00 1.00

Discontinuous model, n ¼ 500

b ¼ 30 b ¼ 60 b ¼ 90 ~b
1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

The continuous DGP is (7) and the discontinuous DGP is (8). Columns 2 4 list the results for fixed block

sizes and column 5 lists the results for the adaptive choice of block size.

Table 6

Estimated rejection probabilities of the subsampling test for continuity for the unemployment data of

Section 8 as a function of the nominal level a and the block size b

a b ¼ 30 b ¼ 40 b ¼ 50

0.025 0.05 0.1 0.12

0.05 0.09 0.14 0.15

0.1 0.14 0.18 0.20

The probabilities are estimated using the calibration method of Section 6.



somewhat anticonservative implies that we cannot reject the null hypothesis of a
continuous SETAR(2) model.

Table 7

Subsampling P-values for the null hypothesis of a continuous SETAR(2) model for the unemployment

data of Section 8 as a function of the block size b

b ¼ 30 b ¼ 40 b ¼ 50

0.37 0.25 0.16

The P-values are computed as described in Remark 2.1.
9. Discussion
We have proposed the subsampling methodology as a unified inference method in

SETAR models. First, it solves several problems that had not been solved before:
consistent confidence intervals for the threshold parameter r when the model is
discontinuous; and consistent confidence intervals for r and for regression
parameters fij when the (dis)continuity of the model is unknown. Second, it
improves the finite sample performance of some previous approaches: confidence
intervals for r when the model is continuous (Chan and Tsay, 1998), and confidence
intervals for fij when the model is discontinuous (Chan, 1993; Hansen, 2000). Third,
it considers and solves a problem that had been neglected so far: a hypothesis test for
the continuity of a SETAR model.
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Appendix A. Proofs of technical results

Proof of Theorem 3.1. The weak convergence of n1=2ðr̂n � rÞ to a normal distribution

follows from Theorem 2.2 of Chan and Tsay (1998). One of the regularity conditions

of the theorem is that the underlying sequence fX tg is b-mixing, which in return
implies that fX tg is strong mixing (Doukhan, 1994). The result now follows from

Corollary 2.1. &
Proof of Theorem 3.2. The weak convergence of nðr̂n � rÞ to a continuous limiting
distribution follows from Theorem 2 of Chan (1993). Next, consider Z t ¼

ðX t;X t�1; . . . ;X t�pþ1Þ
0: Then fZ tg is a Markov Chain. The regularity conditions of



Theorem 2 of Chan (1993) imply that the chain is geometrically ergodic (Chan,
1993), which in return implies that fZ tg is b-mixing (Chan and Tsay, 1998), which in

return implies that fX tg is strong mixing (Doukhan, 1994). The result now follows
from Corollary 2.1. &

Proof of Theorem 3.3. It suffices to show that both in the discontinuous and in the
continuous case the assumptions of Corollary 2.2 are satisfied. In the continuous
case, this follows from Theorem A.1 at the end of this Appendix and the fact that
fX tg is strong mixing, as discussed in the proof of Theorem 3.2. In the discontinuous
case, this follows from Theorem 2 of Chan (1993) and the fact that fX tg is strong
mixing. &

Proof of Theorem 3.4. It suffices to show that both in the discontinuous and in the
continuous case the assumptions of Corollary 2.1 are satisfied. In the continuous
case, this follows from Theorem A.1 and the fact that fX tg is strong mixing, as
discussed in the proof of Theorem 3.2. In the discontinuous case, this follows from
Theorem 2 of Chan (1993) and the fact that fX tg is strong mixing. &

Proof of Theorem 5.1. The almost sure convergence of wn to wðPÞ ¼ hðWÞ both under
the null and alternative hypothesis follows immediately from Theorem 1 of Chan
(1993). Obviously, under the null hypothesis hðWÞ is equal to zero and under the
alternative it is positive. The convergence in distribution of n1=2 wn under the null
hypothesis to a normal distribution with mean zero follows from Theorem A.1 and
the Delta Method. Finally, as discussed in the proof of Theorem 3.2, the sequence
fX tg is strong mixing. The result now follows from Corollary 2.3. &

Theorem A.1. Base the estimation of W on estimating model (1). Assume Regularity

Conditions 3.2, which include that the true model is continuous.
Then n1=2ððF̂

0

1;n; F̂
0

2;n; r̂nÞ
0
� ðF0

1;F
0
2; rÞ

0
Þ converges weakly to a normal distribution

with mean zero.

Proof. By the reasoning of Chan (1993, p. 527) and of Chan and Tsay (1998, p. 416),
we may assume without loss of generality that d is known for the asymptotic
analysis.7 We proceed by mimicking/extending the proof of Theorem 2.2 of Chan
and Tsay (1998), abbreviated by CT henceforth. To this end, write the general model
(1) in the equivalent form of model (2) plus an extra intercept term for the second
regime.

X t ¼ f0 þ f001fX t�d4rg

þ
Xp

j 1;jad

fjX t�j þ
fd�ðX t�d � rÞ þ s1�t if X t�dpr;

fdþðX t�d � rÞ þ s2�t if X t�d4r:

(
ð13Þ

To match the notation of the proof of CT, introduce the parameter

y ¼ ðf0; . . . ;fd�1;fd�;fdþ; . . . ;fp; r;f00Þ
0

7This follows from the discreteness of d and the consistency of d̂n: Hence, d̂n will be equal to d almost

surely for all sufficiently large n:



and denote the true parameter by y
: We assume that the true model is continuous,
that is, f


00 ¼ 0: It is obviously sufficient for our purposes to demonstrate the
1=2 

asymptotic normality of n ðŷn � y Þ: Next, introduce the error term

etðyÞ ¼ X t � EðX tjFt�1; yÞ

¼ X t � f0 � f001fX t�d4rg

�
Xp

j 1;jad

fjX t�j �
fd�ðX t�d � rÞ if X t�dpr;

fdþðX t�d � rÞ if X t�d4r

(

and let et ¼ etðy


Þ: Finally, HtðyÞ is the vector of partial derivatives of etðyÞ with

respect to the elements of y and Ht ¼ Htðy


Þ:

Now consider the original proof of CT (given in their Appendix). We shall indicate
all quantities that appear in CT by the subscript CT: Since they consider continuous
models only and do not have the extra parameter f00; their terms are ‘smaller’; for
example, y ¼ ðy0CT;f00Þ

0 and HtðyÞ ¼ ðH 0
t;CTðyCTÞ;�1fX t�d4rgÞ0:

As do CT, we can decompose

etðyÞ ¼ et þ H 0
tðy� y
Þ þ jy� y
jRtðyÞ;

where our remainder term RtðyÞ is related to the one in CT in the following fashion:

RtðyÞ ¼
jyCT � y
CTjRt;CTðyCTÞ þ f001fr


oX t�dprg

jy� y
j
:

Next, the decomposition of e2t ðyÞ and the definition of W tðyÞ are exactly as in CT.
To show asymptotic normality now, we need to check conditions (i)–(iii) of CT.

The verifications of (ii) and (iii) are analogous to those in CT and hold no matter
what the value of f


00: On the other hand, the verification of (i) requires that f

00 ¼ 0;

that is, that the true model be continuous. To see why, note that in a continuous
model f00 tends to zero as jy� y
j tends to zero and so the verification of (i) in CT
goes through. On the other hand, if the model is discontinuous, f00 is bounded away
from zero as jy� y
j tends to zero and the verification of (i) in CT no longer holds;
for example, RtðyÞ no longer is a bounded function over a bounded neighborhood
of y
: &

Remark A.1. More specifically, it follows from the extension of the proof of CT that
the limiting covariance matrix of n1=2ðŷn � y
Þ is given by U�1VU�1 where U ¼

EðHtH
0
tÞ and V ¼ Eðe2t HtH

0
tÞ; which is a ðp þ 3Þ � ðp þ 3Þ matrix. Since the last

element of Ht is non-deterministic, the upper ðp þ 2Þ � ðp þ 2Þ block of this matrix is
‘larger’ than U�1

CTVCTU�1
CT; the limiting ðp þ 2Þ � ðp þ 2Þ covariance matrix of CT.

(This is easiest to see when s1 ¼ s2 and the limiting covariance matrices simplify to
s2U�1 and s2U�1

CT; respectively, but is also true in general.) The implication is that
when the true model is continuous but the general, discontinuous model is estimated,
then one pays a price in terms of the efficiency of the estimator. This finding is not
surprising and in agreement with the conjecture of CT in their Section 5:

‘In practice, it may not be known that the autoregressive function is continuous.
Instead of fitting model (2), one may fit the more general model (1) to the data. It is
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hen interesting to investigate the asymptotics of the conditional LS estimators of a
eneral [SE]TAR model when the true autoregressive function is continuous
verywhere. Preliminary study suggests that the asymptotics depend on whether or
ot the estimation scheme assumes the a priori information that the autoregressive
unction is continuous.’
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