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aUniversidad Carlos III de Madrid, Department of Statistics, Escuela Politécnica

Superior, Campus de Leganés, Madrid, SPAIN

Abstract

We propose the use of Penalized splines (P -splines) and individual random effects
for the analysis of spatial count data. P -splines are represented as mixed models to
give a unified approach to the model estimation procedure. First, we introduce a
model where the spatial variation is modelled by a two-dimensional P -spline at the
centroids of the areas or regions. Additionally, individual area-effects are incorpo-
rated as random effects to account for individual variation between regions. Finally,
we extend the model by considering a conditional autoregressive (CAR) structure
for the random effects, these are the so called “Smooth-CAR” models, with the
aim to separate the large-scale geographical trend and the local spatial correlation.
We apply the methodology proposed to the analysis of lip cancer incidence rates in
Scotland.

Key words: Mixed models; P -splines; Overdispersion; Negative Binomial; PQL;
CAR models; Scottish Lip Cancer data.

∗ Corresponding author.
Email addresses: dae-jin.lee@uc3m.es (Dae-Jin Lee),

mdurban@est-econ.uc3m.es (Maŕıa Durbán).
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1 Introduction

Spatial data are geographically distributed over locations in a map. They rep-

resent a continuous phenomena at sampling locations (geostatistical data), or

over spatial indexed units such as regions or countries where data are aggre-

gated (lattice or regional data). In both cases, we are interested in studying

the spatial variation on the response across the spatial domain of interest, by

modelling the correlation structure. Penalized splines (Eilers and Marx, 1996)

are a well established method for smoothing Gaussian and non-Gaussian data

in one or more dimensions (Currie et al., 2006). Their representation as mixed

models (Currie and Durbán, 2002; Wand, 2003) presents attractive features

in spatial statistics: random effects or spatial correlation can be estimated to-

gether with a large-scale spatial trend. Kammann and Wand (2003) presents

a connection between kriging, and (generalized additive models (Hastie and

Tibshirani, 1990) also in the mixed model context.

Other approach to model spatial data are the conditionally autoregressive

(CAR) models (Besag, 1974). They have been very popular in the analysis

of regional data. These models consider the spatial dependence locally across

“neighbouring” areas. Neighbourhoods may be defined in several ways, the

most common definition is to consider two or more regions as neighbors if

they share a common border; other criteria consider the Euclidean distance

between the centroids (see Cressie and Chan, 1989; Besag et al., 1991; Cressie,

1993; Besag and Kooperberg, 1995).

In many applications, it is common to collect count data observed in spatial

locations, and assume a Poisson distribution for the counts. In the analysis of

spatial count data, hierarchical models (mixed Poisson models) allow the in-

corporating of area-specific random effects. However, the equality of the mean

and variance in the Poisson assumption is, generally, too restrictive when data
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present a variance higher than expected. This phenomena is known as overdis-

persion. When considering spatially indexed count data, this overdispersion

phenomena can be viewed as an unobserved heterogeneity caused by an un-

derlying spatial dependency structure, aggregation, or the omission of rele-

vant covariates. Alternatively, Negative Binomial distribution has been used

to allow independent modelling of the mean and variance by an additional pa-

rameter. Examples of modelling overdispersed data can be found in Lawless

(1987); Dean and Lawless (1989); Hinde and Demetrio (1998); Thurston et al.

(2000).

In this paper we propose the use of the mixed model approach for spatial

counts. In a first model, the spatial variation is modelled by a two-dimensional

smooth Penalized spline (or P -spline) where the centroids of the areas or re-

gions are considered as spatial locations in terms of their geographical lon-

gitude and latitude. Then, the counts in each region are assumed have been

observed in the centroid of the region. A similar approach would be to con-

sider the interpolation of regional data as continuous surfaces, as it happens

in geostatistical methods such as kriging or Gaussian Random Fields (Cressie

and Chan, 1989; Diggle et al., 1998; Kelsall and Wakefield, 2002). Addition-

ally, individual area-effects are incorporated as random effects to account for

individual variation between regions. In a second model, we combine a smooth

model and random effects with a CAR structure given by the neighbouring

areas. We called these models: “Smooth-CAR” models. The aim is to be able

to separate the large-scale spatial trend and the small-space regional variation,

and estimate both effects simultaneously. We applied the proposed models to

the analysis of lip cancer incidence cases in Scotland over the period 1975-1980.

The paper is organized as follows. In sections 2 and 3 we present P -splines

as mixed models with individual random effects as method for the analysis of

spatial data. Section 4 extends the previous model by incorporating random
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effects with a CAR structure to account for the local spatial correlation. We

illustrate and compare these models in Section 5 with the Scottish lip cancer

data, and we conclude with a discussion in section 6.

2 P -spline smoothing for spatial data

2.1 Smoothing with P -splines

For simplicity, let’s suppose normally distributed spatial data (x1i, x2j , yij),

where x1 and x2 are respectively geographic longitude and latitude and y is

the response variable. A smooth model for the data would be given by:

y = f(x1, x2) + ǫ = Bθ + ǫ, ǫ ∼ N (0, σ2I) (2.1)

where θ is a vector of coefficients, and B is a regression basis constructed

from the covariates (x1, x2). The P -spline approach minimizes the penalized

sum of squares

S(θ; y, λ) = (y − Bθ)′(y − Bθ) + θ′Pθ (2.2)

where P is a discrete penalty matrix which depends on one or more smoothing

parameters, and impose smoothness over adjacent coefficients.

When data are non-normal (as in the case of spatial count data), Marx and

Eilers (1998) used Penalized splines as an extension of the generalized linear

model (GLM) formulation. Assuming that the distribution of y belongs to the

exponential family, and given a link function g(·), then,

η = g(µ) = Bθ. (2.3)

The penalized sum of squares given in equation (2.1) becomes:

ℓp(θ) = ℓ(θ) − θ′Pθ, (2.4)
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where ℓ(θ) is the ordinary likelihood. This yields the penalized version of the

“scoring algorithm”:

(B′W̃ δB + P )θ̂ = B′W̃ δBθ̃ + B′(y − µ̃) , (2.5)

where W δ is a diagonal matrix, with diagonal elements w−1
ii = (∂ηi/∂µi)

2var(yi),

˜ represents an approximate solution, and ˆ represents the improved approxi-

mation.

2.1.1 Basis and Penalties for spatial data

As we saw above, P -spline regression depends on a regression basis and a

penalty matrix which controls the smoothness of the fit. The literature reflects

the variety of approaches to the construction of such basis and penalties (see

for example: Eilers et al. (2006); Wand (2003); Lang and Brezger (2004)). Each

of them have advantages and disadvantages, and perform differently depending

on the data analyzed and context where they are used (see Welham et al.

(2007) for details). In the case of two-dimensional smoothing (as it is the case

of spatial data) the election of basis and penalty is even more important and

the differences between the approaches are significant. Ruppert et al. (2003)

proposed the use radial basis functions.This basis has the limitation of being

an isotropic smoother and also, the selection of knots to construct the basis

is not trivial. Other authors such as Lang and Brezger (2004); Wood (2006);

Currie et al. (2006) propose the use of tensor product of B-spline basis with

equally spaced knots. This is the approach we take in this article.

In the univariate case, given a single covariate x′ = (x1, . . . , xn), a B-spline ba-

sis B = (B1(x), B2(x), . . . , Bk(x)) is an n×k matrix of B-splines ( k depends

on the number of knots and the degree of the B-spline). The extension to the

two-dimensional case depends on the structure of the data. If we have scat-

tered spatial data (see Eilers et al. (2006) for details), the basis is constructed
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Table 2.1
Tensor products of B-splines basis for array or scattered data.

Data regular GRID/array scattered data

e.g. (image data) (geostatistical data)

Product Kronecker row-wise Kron.

Basis B2 ⊗ B1 B22B1

from the tensor product of marginal B-spline basis defined as the Box-Product

or “row-wise” Kronecker product of the individual basis, denoted by 2:

B = B22B1 = (B2 ⊗ 1c1) ⊙ (1c2 ⊗ B1) , (2.6)

where B1 and B2 are the B-spline basis along the longitude (x1) and latitude

(x2) coordinates of dimensions n×c1 and n×c2. The basis B is of dimension n×

c1c2, and the operator ⊙ is the Hadamard or “element-wise” matrix product

and 1c1 and 1c2 are vectors of ones of length c1 and c2.

When data are in a regular grid, the basis is defined as the Kronecker product

of the marginal basis. Although P -splines are low rank smoothers, when the

data set is large, fitting this type of models could be computationally intensive.

This might be one of the reasons why P -splines, and splines in general, haven’t

been a popular method to model spatial data. However, recently, Currie et al.

(2006) developed algorithms that reduce considerably the computational time.

These methods allow the use of these type of smoothers when the amount of

data is large (which is often the case of spatial and spatio-temporal data). A

summary of the two-dimensional basis can be found in Table 2.1.

The other aspect in which P -splines for two-dimensional data differ is the

penalty applied to the coefficients. Currie et al. (2004, 2006) among others,

proposed a penalty matrix based on the penalties associated with each of the

marginal basis, i.e., if P 1 and P 2 are the penalties corresponding to the basis
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in each dimension, then,

P = λ2P 2 ⊗ Ic1 + λ1Ic2 ⊗ P 1 , (2.7)

where λ1 and λ2 are smoothing parameters which tune the smoothness in each

direction, separately. Therefore, this penalty allow for anisotropy. This is a very

important point when covariates are measured in different scales (such as space

and time), or when different degree of smoothing is needed in each dimension.

Different authors use different definitions of the individual penalties P i (i =

1, 2), Wood (2006) uses the usual spline integrated squared second derivative

penalty, while Currie et al. (2006) use a discrete penalty based on difference

matrices Di to impose smoothness over adjacent coefficients, P i = D′

iDi, in

the case of differences of order two, we have

Di =




1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1




(2.8)

Therefore the penalty is defined by

P = λ2D
′

2D2 ⊗ Ic1 + λ1Ic2 ⊗ D′

1D1 . (2.9)

The Bayesian analogous of P -splines consider the difference matrix D in (2.8)

as random walks of order m used as priors for the regression coefficients (Lang

and Brezger, 2004). In the spatial context, they specify Markov Random Field

priors for the B-spline regression coefficients θ (based on Besag and Kooper-

berg (1995)) constructed from the four nearest neighbors. They also suggest

a prior based on the Kronecker product penalty:

D′

1D1 ⊗ D′

2D2 (2.10)

In both cases the model is isotropic and has a rank deficiency problem. There-

fore, we will take the approach given in Currie et al. (2006) and use the penalty
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defined in (2.9)

2.2 Mixed Models representation

The connection between non-parametric regression and mixed models goes

back to the early 90s (Speed, 1991). Authors like Verbyla et al. (1999) and

Brumback and Rice (1998) developed the topic of smoothing with mixed mod-

els in the context of smoothing splines, and Wand (2003) in the context of

P -splines with truncated lines as basis. However, the mixed model represen-

tation of P -splines as mixed models using B-splines as basis was not studied

until recently (Currie and Durbán, 2002). The mixed model approach of P -

splines allow us to relax the linearity assumptions commonly used in the mixed

model context and combine, for example, a two-dimensional smooth surface

with individual random effects with a correlation structure.

The aim is to set a new basis which allows the representation of Eq. (2.1) and

its associated penalty (2.9) into a mixed model such as

y = Xβ + Zα + ǫ, α ∼ N (0, G), ǫ ∼ N (0, σ2I), (2.11)

where G is a variance component matrix depending on one or more smoothing

parameters λ, and X and Z are respectively the fixed and random effects

matrices.

Following a similar approach to Currie et al. (2006), the idea is to use the sin-

gular value decomposition (SVD) of P in Eq. (2.9) to partition the difference

penalty (D′

1D1 of dimension c1 × c1) into a null penalty (for the fixed part)

and a diagonal penalty (for the random part). Then, D′

1D1 is decomposed

as U 1Σ1U
′

1, where Σ1 is a diagonal matrix, whode diagonal elements are the

eigenvalues of D′

1D1.

We can partition the matrix U 1 = [U 1s : U 1n], where U 1s corresponds to the
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non-zero eigenvalues and U 1n to the zero eigenvalues. Considering a second

order penalty, Σ1 has two zero eigenvalues and U 1n has two columns. Then, we

denote Σ̃1 as the diagonal (c2−2)×(c2−2) matrix of positive eigenvalues of Σ1.

We have similar definitions for U 2s, U 2n and Σ̃2 from the SVD decomposition

of D′

2D2.

We need to find a transformation T , such that BT = [X : Z], where X

and Z are orthogonal. This matrix T is not unique, in fact any one-to-one

transformation such that the model is reparameterized as Bθ = Xβ + Zα,

can be applied and the coefficients as θ = T (β : α)′.

We define T as a orthogonal transformation matrix given by

T = (U 2n ⊗ U 1n : U 2s ⊗ U 1n : U 2n ⊗ U 1s : U 2s ⊗ U 1s) , (2.12)

with this transformation, the penalty term θ′Pθ = ω′T ′PTω, where ω′ =

(β′, α′) and the coefficients β = (U 2n ⊗U 1n)′θ and α = (U 2s ⊗U 1s)
′θ. Now,

P (U 2n ⊗ U 1n) = 0, so there is no penalty on the fixed part and the penalty

becomes α′Fα for some F .

It is straightforward to show that the penalty F in the mixed model is the

block diagonal matrix:

F =




λ2Σ̃2 ⊗ I2

λ1I2 ⊗ Σ̃1

λ1Ic2−2 ⊗ Σ̃1 + λ2Σ̃2 ⊗ Ic1−2




(2.13)

where F = TPT ′ and the covariance matriz of the random effects is G =

σ2F−1.

Using the properties of “row-wise” Kronecker product (Liu, 1999) it is easy to

show that for scattered data we may take define the matrix of fixed effects as

X = X22X1 , (2.14)
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where X2 = [1n : x2], X1 = [1n : x1], and 1n is a vector of ones of length n.

And the random effects matrix as:

Z = [Z22X1 : X22Z1 : Z22Z1] , (2.15)

where Z2 = B2U 2s and Z1 = B1U 1s.

We can expand X and Z in Equations (2.14) and (2.15) as

X = (1n : 1n2 x1 : x22 1n : x22 x1) (2.16)

Z = (Z221n : Z22 x1 : 1n2 Z1 : x22 Z1 : Z22Z1) (2.17)

This partition allows the representation of the fitted surface in terms of a sum

of three components: one for x1 (second block of X in (2.16) and first block

of Z in (2.17)), a component for x2 (third block of X in (2.16) and third

block of Z in (2.17)) and an interaction component which depends on both

covariates and given by the four remaining terms.

Given the new basis (2.16), (2.17) and the new penalty (2.13), the penalized

sum of squares (2.2) transforms in the mixed model into

S(β, α; y, λ) = (y − Xβ − Zα)′(y − Xβ − Zα) + α′Fα (2.18)

In the context of the mixed models, smoothing parameters λ1 and λ2 may be

selected by maximizing the residual log-likelihood (REML) of Patterson and

Thompson (1971), i.e. ℓ(λ1, λ2, σ
2):

−1
2 log |V | − 1

2 log |X ′V −1X| − 1
2y′(V −1 − V −1X(X ′V −1X)−1X ′V −1)y (2.19)

where V = σ2I + ZGZ ′. It may be shown that

|V | = σ2n |G| |G−1 + 1
σ2 Z

′Z| (2.20)

V −1 = 1
σ2

(
I − Z(σ2G−1 + Z ′Z)−1Z ′

)
(2.21)

Equations (2.20) and (2.21) reduce considerably the computational time. We
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do not need to compute V (of dimension n× n) and its inverse, but a matrix

of dimension c1c2 × c1c2 matrix in both cases.

The estimates of the coefficients β and α follow from standard mixed model

theory

β̂ = (X ′V −1X)−1X ′V −1y (2.22)

α̂ = GZ ′V −1(y − Xβ̂) (2.23)

This methodology can be applied to non-Gaussian data in the Generalized

Linear Mixed Model (GLMM) context. This approach consist of two stages:

(i) reparameterizing the linear predictor and (ii) estimating the model parame-

ters, which will be done using the penalized quasi-likelihood (PQL) approach

of Breslow and Clayton (1993).

3 Modelling Overdispersion with P -splines

Count data often present extra Poisson variation caused by an unobserved

heterogeneity, this phenomenon is known as overdispersion, and implies that

the variance of the data is greater than its mean, sometimes much larger. If

the data are overdispersed but this is ignored, we are overweighting the data

and consequently underestimating their variability. The problem of overdis-

persion has been studied by many authors from several points of view (see

for example, Lawless (1987); Dean and Lawless (1989); Hinde and Demetrio

(1998); Thurston et al. (2000)). It is natural to assume that the number of

occurrence of events are realizations of a Poisson distribution and can be fit-

ted by a Poisson regression model. Currie et al. (2004) showed the penalized

GLM approach for Poisson data in two dimensions. We show present here

how P -splines can be used to model spatial count data in the presence of

overdispersion. Spatial variation is modelled by a smooth surface, and we take

11



two approaches to account for overdispersion, which are detailed in next two

subsections: (i) introduce individual random effects and (ii) use of negative

binomial distribution. Using the mixed model representation of P -splines we

can estimate efficiently the spatial effects and overdispersion.

3.1 The PRIDE approach

Perperoglou and Eilers (2007) gave an approach based on penalized likelihood,

using individual random effects which adds extra parameters (γ) to the linear

predictor of a Poisson GLM (with log link) for each observation.

η = Bθ + γI, γ ∼ N (0, κ−1I) (3.1)

This model is called PRIDE (“Penalized Random Individual Dispersion Ef-

fects”). As showed in Section 2.2, model (3.1) can be reparameterized as a

mixed model so the linear predictor becomes

η = Xβ + Zα + γI, α ∼ N (0, G), γ ∼ N (0, κ−1I), (3.2)

where γ is a n× 1 random effect vector which provides a device to absorb the

overdispersion which causes the extra variability. Given that the model has

more parameters than observations we add a ridge penalty on γ to maintain

the identifiability of the model which shrinks γ to zero.

Using PQL we obtain the following set of equations:




X ′WX X ′WZ X ′W

Z ′WX G−1 + Z ′WZ Z ′W

WX WZ κI + W







β

α

γ




=




X ′Wz

Z ′Wz

Wz




, (3.3)

where z is the working vector, z = η + W−1(y − µ), and W is the diagonal

matrix of weights, W = diag(µ) and µ = exp(Xβ + Zα + γI). Equation

(3.3) gives a very large system of equations but it is possible to reduce it by
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eliminating γ, by

γ =
W

W + κI
(z − Xβ − Zα) (3.4)

And defining a modified weight matrix:

W ∗ =
κW

W + κI
. (3.5)

Given (3.5) it is easy to show that (3.3) becomes:




X ′W ∗X X ′W ∗Z

Z ′W ∗X G−1 + Z ′W ∗Z







β

α


 =




X ′W ∗z

Z ′W ∗z


 (3.6)

These equations yield the estimates in a weighted linear Gaussian model with

error variance σ2 = 1, β̂ and α̂ are estimated as in (2.22), (2.23) and γ̂ as in

(3.4). Then, conditional on the estimates of the coefficients, we estimate λ1,

λ2 and κ by REML as in Equation (2.19).

Now the variance components matrix V takes the form

V = W ∗
−1

+ ZGZ ′ (3.7)

Then, again, conditional on the estimates obtained above, we use REML to

estimate the variance components and iterate (2.23), (2.22) and (2.19) till

convergence.

3.2 Negative Binomial regression

The negative binomial regression is used to estimate count models in the

presence of overdispersion. The negative binomial distribution permits more

flexible modelling of the variance than the Poisson case where the assumption

of equal mean and variance is inappropriate. The negative binomial distribu-

tion is derived by letting the mean of the Poisson distribution vary according

to a fixed parameter ζi given by the Gamma distribution.
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Let yi be a set of count data and

yi|ζi ∼ Poisson(ζiµi),

ζi ∼
1
κ
Gamma(κ) ,

the marginal distribution of yi is then the negative binomial with mean µi

and variance µi + µ2
i /κ, where κ is a dispersion or shape parameter.

yi ∼ Neg Bin(µi, κ)

The estimation of this model includes a parameter κ which is an estimate of

the degree of overdispersion. However, the fact that the negative binomial has

two parameters and it is not in the exponential family, makes it more difficult

to extend the methodology developed for Poisson data.

The negative binomial distribution is given by

P (Y i = yi|µi, κ) =

(
yi + κ − 1

yi

)(
µi

κ + µi

)y
i
(

κ

κ + µi

)κ

,

where
(

y
i
+κ−1
y

i

)
= Γ(y

i
+κ)

Γ(κ)·Γ(y
i
+1)

and µi = E[Y i].

Under this model the variance of Y i is µi + µ2
i /κ. Note that, for large values

of κ, this model reduces to the Poisson case.

It is possible to write the log-likelihood as an exponential family:

ℓ(µi, κ|Y i) = Y i ln

(
µi

µi + κ

)
+ κ ln

(
κi

µi + κ

)

+ ln Γ(Y i + κ) − ln Γ(κ) − ln Γ(Y i + 1) + κ lnκ .

(3.8)

Thus, in the case of P -splines for a GLM, the linear predictor is η = Bθ and

in the mixed model context, where η = Xβ + Zα, the joint density for a

Negative Binomial GLMM, with log link is

f(y|β,α, κ) = exp
[
y′(Xβ + Zα − log {κ1 + exp(Xβ + Zα)}) − κ1′ log {κ1 + exp(Xβ + Zα)}

]

+ exp
[
n κ log(κ) + 1′ log(y + κ1) − n log(Γ(κ))

]
,

(3.9)
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Table 3.1
Comparison of count data regression models.

Model log link Inverse link weight matrix

Poisson η = Xβ + Zα µ = eη W = diag(µ)

PRIDE η = Xβ + Zα + γI µ = eη W ∗ =
κ diag(µ)

diag(µ)+κI

Neg. Binomial η = Xβ + Zα µ = eη W = κ diag( µ
κ+µ

)

and the penalized likelihood:

ℓp(β, α, κ, σ2
α) = y′ [Xβ + Zα − log {κ1 + exp(Xβ + Zα)}]

− κ1′ log {κ1 + exp(Xβ + Zα)} + n κ log(κ) + 1′ log Γ(y + κ1)

− n log Γ(κ) − 1
2σ2

α
α′Fα.

(3.10)

It can be shown that the estimation of fixed and random effects and variance

components in negative binomial GLMM is done as in the case of Poisson data

but the matrix of weights is given by

W = κ diag

(
exp(Xβ + Zα)

κ1 + exp(Xβ + Zα)

)
. (3.11)

Table 3.1 shows the main differences in count data regression models, note that

the weights are very similar to the ones in the previous Section 3.1 (PRIDE

approach), but in this case, we can estimate the individual random effect γ,

which also appears in W ∗ through the linear predictor η.

4 Smooth models with CAR structure

The most popular approach in modelling spatial dependency structure for

lattice or regional data are the conditionally autoregressive (CAR) models

introduced by Besag (1974). These hierarchical models allow both spatially

structured variability and unstructured heterogeneity by assuming a prior

distribution for the spatial effects considering the neighboring regions. These
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models have been widely used in the context of regional data (Besag and Green

(1993); Leroux et al. (1999); Dean et al. (2001); Congdon (2006); Wakefield

(2007) among others).

In this section we propose to use simultaneously the P -spline approach given in

previous sections, and a conditionally autoregressive (CAR) structure. We call

these models “Smooth-CAR” models. The smooth component let us model the

spatial trend along larger geographical distances, and the local (non-smooth)

correlation is taken into account by means of a CAR component, so we could

separate the global trend and the purely individual regional effect. The mixed

model representation of P -splines allows us to fit the model in a GLMM.

This is a very challenging task, since it is not clear whether both effects are

identifiable and further research still needs to be done, but as we will see in the

next section, in the example analyzed, this method performs better than the

traditional spatial models and it gives a clearer picture of the spatial variation

in the data.

The model is

η = Xβ + Zα︸ ︷︷ ︸
f(x1,x2)

+ b︸︷︷︸
CAR

, (4.1)

where Xβ + Zα corresponds to the mixed model representation of the 2d

P -spline, and now the regional random effect b ∼ N (0, Gb), has covariance

matrix given by a CAR model.

The basic spatial (intrinsic) CAR model (Besag et al., 1991) uses the adjacen-

cies to define neighbourhoods in a conditional specification of the model. This

model considers the covariance matrix Gb as a sum of two separate variance

components to represent both spatial and non-spatial correlation. One com-

ponent to model the spatially-structured variation, and another to model the

unstructured or individual region-level heterogeneity in the data. In this case,
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Gb has the form

Gb = σ2
sQ

− + κ−1I (4.2)

where Q = {qi,j} is a n×n matrix determined by the neighborhood structure

of the regions. And Q− denotes the Moore-Penrose Generalized inverse of

matrix Q. The ith diagonal elements of Q are the number of neighbors in the

ith region. The elements out of the diagonal are

qi,j =





−1 if ith and jth regions are neighbors

0 otherwise

Alternative formulations of Besag’s model (4.2) have been proposed in the

literature. For example, Leroux et al. (1999) adopts a prior specification of

the random effects b with covariance matrix Gb given by:

Gb = σ2
s (φ Q + (1 − φ)I)−1 , (4.3)

where σ2
s is the random effects variance and φ is a spatial autocorrelation

parameter. Dean et al. (2001) assumes a covariance matrix for the random

effects:

Gb = σ2
s(φ Q− + (1 − φ)I) . (4.4)

Note that (4.4) is a reparameterization of the model (4.2). In both models

(4.3) and (4.4) the covariance parameters are identifiable and φ, measures the

relative weight between structured and unstructured variability, 0 ≤ φ ≤ 1.

When φ = 1, all the overdispersion is due to the spatial correlation so there

is no unstructured heterogeneity and model (4.4) is equivalent to the intrinsic

CAR model in (4.2). When φ = 0, there is an absence of spatial correlation

in the data and the overdispersion is not caused by a spatial heterogeneity.

If 0 < φ < 1, the random effects are correlated and the data presents a

combination of spatial structured and unstructured component.
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The smooth-CAR model (4.1), can be reformulated as

η = Xβ + Z∗u, with Z∗ = [ Z : I ] (4.5)

and the random effect u = (α : b)′ has covariance matrix:

Gu =




G 0

0 Gb


 . (4.6)

which contains the smoothing parameters (λ1 and λ2) and CAR (κ and σ2
b)

variance components. The estimation of the model parameters can also be

done by PQL and REML. The matrix V becomes now W−1 + Z∗GuZ∗
′

and the random effects u is estimated as

û = GuZ∗
′

V −1(z − Xβ̂) (4.7)

5 Application to Scottish Lip Cancer data

The data set consists on the observed (y) and expected (e) number of cases of

lip cancer registered in 56 counties in Scotland during the period 1975-1980.

This data set has been analyzed several times in the literature (see Wakefield

(2007) for a detailed review). Clayton and Kaldor (1987) analyzed the observed

and expected counts using Empirical Bayes estimation, and used several alter-

natives for the distribution of the random effects. Breslow and Clayton (1993)

proposed a conditional independent Poisson model, where the random effect

is modelled by Gaussian intrinsic autoregression. A different approach is taken

by Yasui and Lele (1997), the hierarchical modelling for spatial disease rates

is based on estimating functions. This method led to simpler computations as

in the P -splines case, both approaches are very attractive when data sets are

large. The models presented by Dean et al. (2001) and Militino et al. (2001)

are a reparametrization of Besag (1984), and allow for the determination of

the relative weights between spatial and unstructured variation (these models
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have already been presented in the previous section). Finally, in the last few

years, Congdon (2006) used a generalized additive form that allows regression

to vary over regions, and Congdon (2007) considered continuous and discrete

priors that account for risks that are discordant with those of neighbouring

areas.

We fitted several models to this data set:

(i) Smooth P -spline models

* η = log(e) + f(lon, lat) , where log(e) is the offset term (Poisson model)

* η = log(e) + f(lon, lat) + γI, γ ∼ N (0, κ−1I), (PRIDE model), and

* The Negative Binomial version of the Poisson model presented in sec-

tion 3.2.

(ii) Hierarchical CAR models: η = log(e) + Xβ + b, b ∼ N (0, Gb), with

Gb = σ2
sQ

− + κ−1I (Besag model)

Gb = σ2
s(φ Q− + (1 − φ)I) (Dean model)

Gb = σ2
s (φ Q + (1 − φ)I)−1 (Leroux model)

In order to compare the proposed models we use the Akaike Information Cri-

teria (AIC) and the Bayesian Information Criteria (BIC):

AIC = Dev + 2 × df (5.1)

BIC = 2 × Dev + log(n) × df (5.2)

where df are the effective dimension of the model. This is a measure of the

complexity of the fitted model, calculated as the trace of the so-called Hat

matrix, tr(H) as described in (Hastie and Tibshirani, 1990), and H is defined

such that ŷ = Hy.

Both AIC and BIC correct the fit of the model for the number of parameters

involved in the model’s estimation. Dev is the deviance defined to be twice
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Table 5.1
Comparisons of fitted models to Scottish Lip Cancer data.

Parameters

Model λ1 λ2 σ2
s κ−1 φ AIC BIC df

Smooth: Poisson 11.75 3.63 - - - 114.04 228.46 15.90

PRIDE 30.12 5.50 - 0.12 - 89.64 180.08 31.73

PRIDE∗ 10.45 - 0.12 - 89.82 180.46 32.31

Neg. Bin 8.45 1.34 - 0.10 - 72.63 145.56 11.91

CAR: Besag - - 0.78 10−6 - 89.36 179.56 32.78

Dean - - 0.78 - 0.99 89.36 179.56 32.78

Leroux - - 0.78 - 0.99 89.36 179.56 32.78

Smooth-CAR: Besag 30.40 18.28 0.55 - - 87.48 175.75 30.67

Dean 30.37 18.21 0.55 - 0.99 87.49 175.77 30.67

Leroux 30.11 16.37 0.53 - 0.97 87.46 175.70 30.64

the difference between of the maximum log-likelihood and the likelihood of the

fitted model and is a measure of the discrepancy of the fitted and actual data.

For the CAR models, we follow an Empirical instead of fully Bayes approach

(Clayton and Kaldor, 1987) in order to ease model comparisons. It should

be noticed that in the case of the Negative Binomial model, the adecuacy of

the fitted model must be carefully considered since we are assuming different

distribution for the data. The definition of the deviance in this case is different

as in Poisson distribution (for details see Cameron and Trivedi, 1998).

The results obtained are summarized in Table 5.1. The smooth surface in the

Poisson model is fitted using two-dimensional P -splines, where the B-splines

basis was constructed from marginal basis, the number of knots was 15 for each

basis and the penalties had order two. The PRIDE model incorporates the spa-

tial random effects (γ) for each of the 56 counties which allowed us to consider

individual characteristics of each county and the possible unstructured varia-

tion. The estimation of the spatial effects resultd in the higher values of the
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(a) Smooth trend (b) Overdispersion (c) Trend+Overdisp

−1.0 −0.5 0.0 0.5 1.0 1.5

Fig. 5.1. PRIDE Model: (a) Spatial Smooth Trend (Xβ + Zα) ,(b) Overdispersion
individual random effects (γ) and (c) the sum of trend and overdispersion effects.

effective dimension of the PRIDE model respect to Negative Binomial and

Poisson models. Figure 5.1 illustrates the smooth large-scale spatial trend of

PRIDE model and the unstructured variation between counties. It can be seen

clearly an increasing trend from the more central counties to the ones on the

coast, and also from south to north. We have also fitted an isotropic version

(both smoothing parameters are equal) of the PRIDE model (See PRIDE∗

in Table 5.1), the AIC criteria is slightly lower for the anisotropic model, al-

though there is not much difference. However, it is possible that, even in the

situation where both covariates (longitude and latitude) are measured in the

same scale, using a single smoothing parameter might not be the appropriate

choice.

Neighbourhoods are defined by several criteria, depending on the shape of the

lattice, for example, the distance between the centroids of the regions, border-

ing regions or sharing a common border with a given region, (see Cressie and

Chan, 1989; Besag et al., 1991; Besag and Kooperberg, 1995). However, when
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(a) Breslow's Contiguity
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(b) Common border Contiguity
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Western Isles

Fig. 5.2. Neighbouring structure for Scottish data: (a) Contiguity defined in Breslow
and Clayton (1993), (b) contiguity based on sharing a common border.

applying these CAR models to irregular lattices, the imposed neighborhood

structure and the spatial correlation could be misleading and strongly depen-

dent to the number of neighbours. Furthermore the neighborhood criteria must

be sometimes carefully examined. For instance, in the case of very irregular

regions with different sizes and shapes or in the presence of not contiguous

regions like islands.

Figure 5.2 shows two different adjacency matrix for the Scottish data set.

Considering the common border criteria, the isles of Shetland, Orkney and

Western Isles have no neighbours and the total number of neighbours is 234.

We used the adjacency matrix defined by Breslow and Clayton (1993) in order

to fit the CAR models with a number of 264 neighbours. We show the results

obtained with this last matrix since it is the one commonly used in the liter-

ature. However, it is worth mentioning that results were different depending

on the neighborhood criteria used.

For the CAR models, the parameter φ presents high values (≈ 1) for both

models (4.3) and (4.4), which denotes that all the variation is explained by the

spatial autocorrelation. For the intrinsic Besag’s CAR model, similar interpre-
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tation can be obtained for the estimated parameters, the spatial correlation

structure absorbs the overdispersion without variability in each region, and

the three alternative CAR formulations present similar results on model pa-

rameters.

Table 5.1 shows the better performance of Smooth-CAR models in terms of

AIC and BIC criteria. As we mentioned above, it is important to noticed

that, although the AIC and BIC values of the Negative Binomial are smaller

than the ones obtained in other models, they cannot be compared, since the

distribution assumed for the data is different. In Figure 5.3 we can see both,

large geographical trend and local spatial variation. If we compare Figure 5.3

with Figure 5.1, we can see that in the Smooth-CAR model the large-scale

trend is smoother than in the PRIDE model. This could be expected since

in the PRIDE model all the spatial variation is fitted by the P -spline. The

partition of the spatial variation seems more realistic in Figure 5.3. However,

more research is still needed to check to what extent it is possible to separate

both spatial effects, of whether we could really only look at the overall fit.

A residual analysis was also performed for both PRIDE and Smooth-CAR

models. The spatial deviance residuals exhibit a small-scale spatial dependence

in the data not captured by the models. This dependency appears located

around the high populated urban areas like Glasgow, Dundee or Edinburgh.

6 Discussion

Through the paper we have presented different approaches to the analysis of

spatial count data, based on the combination of two-dimensional P -splines

and individual random effects.

The mixed model representation of multidimensional P -splines for spatial co-

ordinates, using the properties of the “Box-product” yields a fully parametric
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(a) Smooth Trend (b) CAR component (c) Trend+CAR
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Fig. 5.3. Smooth-CAR model: (a) Smooth Trend (Xβ + Zα), (b) CAR structured
random effects (b) and (c) the sum of trend and CAR component.

model which can be easily implemented in standard statistical software. In

this sense, the smoothing and spatial correlation given by the spatial random

effects can be estimated simultaneously in REML and PQL context. The usual

spatial models consider the spatial correlation between two locations si and sj

as Corr[si, sj ] = ρij , where ρ is a function of the distance between centroids of

areas i and j. This type of model assumes the same correlation in all spatial di-

rections. When considering environmental problems where climate factors are

important, the assumption of isotropy is questionable. We give an alternative

by using anisotropic smoothers. The smoothing parameters λ1 6= λ2, permit

different amount of smoothing in each spatial coordinate, through the penalty

matrix F in (2.13). This suppose an advantage on the interpretation of the

spatial correlation structure, which with other models is not so straightforward

to understand.

The Penalized Random Individual Dispersion Effects (PRIDE) model pro-

posed by Perperoglou and Eilers (2007) was applied to spatial counts in the
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mixed model context allowing for individual regional effects. Alternatively,

Negative Binomial distribution was also considered.

Finally, we propose the combination of the P -spline smooth approach with

conditionally autoregressive models. Spatial smoothing is used to model the

large-scale variability as an overall trend, and the small-scale or local neighbour-

based heterogeneity is accounted for by a CAR structure. The analysis of

Scottish lip cancer data showed the attractiveness of this new approach.

Further simulation work needs to be done in order to test the identifiabil-

ity of both smooth and CAR effects, since there might be situations when

the Smooth-CAR model is not identifiable. Another important issue to be

addressed is dependence of the fitted model on the arbitrariness of the neigh-

bourhood criteria (e.g. when the areas are of different shapes or sizes or when

there are discontinuous regions as isles) and the assignment of the centroids of

the spatial locations as a summary of the whole region considered. A further

extension of these models will consider the incorporation of relevant covariates

or more complex structures.
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