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Abstract

This paper proposes a systematic framework for analyzing the dynamic e!ects of
permanent and transitory shocks on a system of n economic variables. We consider
a two-step orthogonolization on the residuals of a VECM with r cointegrating vectors.
The "rst step separates the permanent from the transitory shocks, and the second step
isolates n!r mutually uncorrelated permanent shocks and r transitory shocks. The
decomposition is computationally straightforward and entails only a minor modi"cation
to the Choleski decomposition commonly used in the literature. We then show how
impulse response functions can be constructed to trace out the propagating mechanism
of shocks distinguished by their degree of persistence. In an empirical example, the
dynamic responses to the identi"ed permanent shocks have properties similar to shocks
to productivity, the real interest rate, and money growth, even though no economic
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�For example, the so-called monetary policy shocks we back out of a VAR with money, prices,
interest rate and output will depend on our view about the monetary policy transmission mecha-
nism. See Bernanke and Mihov (1995).

theory was used to achieve the identi"cation. We highlight two numerical issues that
could a!ect any identi"cation of permanent and transitory shocks. � 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In this paper, we propose a simple and coherent framework for isolating the
permanent and the transitory shocks from a system of integrated variables,
making explicit the relationship between the common trends and the innova-
tions underlying the reduced form model. We show how dynamic impulse
response functions can be constructed to trace out the propagating mechanism
of the permanent and the transitory shocks. The analysis is conducted using
a VECM (Vector Error Correction Model), i.e. a vector autoregression (VAR)
that incorporates cointegration restrictions. The procedure consists of two steps.
The "rst step distinguishes innovations that have permanent e!ects from those
that have transitory e!ects only. This is accomplished by a transformation of
the residuals using information that are readily available from the VECM. The
second step uses Choleski decomposition to obtain a set of permanent and
transitory shocks that are mutually orthogonal. The advantage of the method is
its simplicity, since it operates in much the same way a stationary VAR is used to
do impulse response analysis. The only di!erence is that instead of applying
Choleski decomposition to the residuals of the VAR, we apply it to a set of
transformed residuals.
In conventional VAR analysis, the identi"ed shocks are usually viewed as

innovations to the variables in the system. Because identi"cation is typically
based on a priori assumptions, it is only in a limited sense the data reveal the
source of the shock.� As forcefully argued in Cochrane (1994b), after decades of
analysis, we still know very little and perhaps will never know enough about the
origin of shocks. A key feature of cointegrated systems is that the variables
move together at low frequencies. Given this coherence, our ability to identify
the source of the shock is even more limited. But we can exploit the low
frequency comovements to identify shocks according to whether their e!ects are



�This assumption is necessary for the short-run dynamics to be fundamental (i.e. recoverable
through a unique orthogonalization). See Lippi and Reichlin (1993) and Blanchard and Quah (1993)
for discussions on the issue.

permanent or transitory. Accordingly, in our analysis, the shocks are distin-
guished by their degree of persistence, rather than their origin. However, in
general, the low frequency movements alone are not su$cient to identify
permanent and transitory shocks that are mutually uncorrelated. We show how
this can be achieved in a simple framework, and in the process, clarify the limits
of cointegration in identifying the permanent and transitory shocks.
The plan of this paper is as follows. The econometric framework used to

isolate the permanent and transitory shocks is presented in the next section. We
then put into context our decomposition with related work in the literature.
Section 3 presents simulated and empirical examples. Pitfalls of analysis on
permanent and transitory components are discussed in Section 4. A conclusion
completes the analysis.

2. The econometric framework

The objective of this section is to present a framework which systematically
isolates the permanent and the transitory shocks from a VECM.

2.1. Preliminaries

Let the (n�1) vector XI
�
"Z

�
#X

�
be the sum of deterministic components

Z
�
(such as polynomials in time) and a (n�1) vector of I(1) time series, X

�
. Our

focus is on the detrended series X
�
, which has a multivariate moving-average

representation

�X
�
"C(¸)e

�
, (1)

where �"1!¸, ¸e
�
"e

���
, and e

�
is a n�1 vector satisfying E(e

�
)"0 and

E[e
�
e�
�
]"�

0 if tOs,

� otherwise.

The matrix polynomial C(¸)"C(1)#(1!¸)CH(¸) has the property that
C

�
"I

�
, C(z) is 1-summable, and CH(z) is full rank everywhere on �z�41.�

By the Granger Representation Theorem (see Engle and Granger, 1987), the
vectorX

�
is said to be cointegratedwith rank r ifC(1) is of rank (n!r), and there

exist two n�r matrices, � and �, both of rank r, such that ��C(1)"0 and



�Note that because we work with X
�
instead of XI

�
, deterministic components lie outside the

cointegrating space in the sense of Johansen (1991).

�This ensures that DI (¸) is invertible. See Watson (1994) for a discussion of invertibility.

C(1)�"0.� The columns of � are the cointegrating vectors of X
�
. Furthermore,

X
�
has a VECM representation of in"nite order which can be approximated by

�X
�
"���X

���
#�(¸)�X

���
#e

�
, (2)

where �(¸) is of "nite order K!1. The VECM can be used to deduce a
restricted VAR representation:

A(¸)X
�
"e

�
, (3)

the restriction being A(1)"���. The rank of A(1) is r. We are interested in
expressing �X

�
in terms of a set of permanent and transitory shocks. These are

de"ned as follows:

De,nition 1. Let X
�
be a di!erence-stationary sequence whose VECM is given

by (2). Let E
�
denote the conditional expectation taken with respect to the

information set in period t. The (n!r)�1 vector of shocks �� �
�
is said to have

permanent e!ects on the level of X
�
if lim

���
�E

�
(X

���
)/��� �	

�
O0. Analogously,

the r�1 vector of shocks �� 

�
is said to have transitory e!ects on the level of X

�
if lim

���
�E

�
(X

���
)/��� 
	

�
"0.

Since the variables in X
�
are I(1) by de"nition, some of its innovations must

have permanent e!ects on the levels ofX
�
. Therefore, �X

�
also has the following

representation:

�X
�
"DI (¸)��

�
, (4)

where DI (¸)"DI
�
#DI

�
¸#DI

�
¸�#2, and the covariance matrix of �� is ��� .

We assume that ��
�
is a n�1 vector, so that the number of shocks equals the

number of variables in the system,� but only a subset has permanent e!ects.
Without loss of generality, the ��

�
's are ordered such that the "rst n!rO0 of

them have permanent e!ects.

2.2. The permanent and transitory (P}T) decomposition: Unorthogonzalied shocks

Our objective is to recover ��
�
from information available in the VECM. To

accomplish this, we "rst "nd a transformation such that the data can be



�With a slight abuse of terminology, we use the terms permanent and transitory interchangeably
with trends and cycles. Hence, white noise series will also be referred to as cycles. The trend
component in the Granger}Gonzalo decomposition is an integrated process with possibly serially
correlated noise and di!ers from the multivariate Beveridge}Nelson decomposition, considered in
Stock and Watson (1988) and Evans and Reichlin (1994), in which the trend component is a random
walk. In the working paper version of this paper, we show that the e!ect of the permanent
innovations will have the same long run e!ect on the level of X

�
regardless of how the perma-

nent}transitory decomposition of X
�
is attained.

expressed in terms of a set of &unorthogonalized' permanent and transitory
shocks, which we denote by u

�
. We refer to this as the P}T decomposition.

Proposition 1. (The P}¹ decomposition). Let X
�
be a n�1 vector of I(1) pro-

cesses with a Wold moving-average representation �X
�
"C(¸)e

�
. Suppose there

are r cointegrating vectors. Let

G"�
��
�

�� �
(n!r)�n

r�n

with ��
�
�"0. Then the (n!r)�1 vector u�

�
"��

�
e
�
and the r�1 vector u


�
"��e

�
are the permanent and transitory shocks, respectively. The P}T decomposition exists
provided (�

�
,�)� is non-singular.

The proof of the proposition is given in the Appendix. The choice of G is
motivated by the Granger Representation Theorem which suggests that ��

�
and

�� will &knock out' the appropriate terms in the VECM and moving-average
representations of �X

�
to isolate those components with the desired degree of

integration. The shocks u�
�
and u


�
are, respectively, the innovations associated

with the permanent and the transitory components of X
�
as de"ned in Gonzalo

and Granger (1995). Therefore, the G matrix completely identi"es the trend and
cycle of X

�
as well as their underlying innovations.� An implication of the P}T

decomposition is that

�X
�
"C(¸)G��Ge

�
"D(¸)u

�
"�

D
��
(¸) D

��
(¸)

D
��
(¸) D

��
(¸)��

u�
�
u

�
� (5)

must have D
��
(1)"0

������
, and D

��
(1)"0

���
. This is because the last r col-

umns of the polynomial matrix D(¸) are the responses of �X
�
to the transitory

shocks, and by de"nition, they have no e!ects on the "rst di!erence or the level
of X

�
in the long term.

2.3. The P}P and the T}T decompositions: Orthogonalized shocks

TheGmatrix rotates e
�
so that it can be decomposed into u�

�
and u


�
. But these

shocks are not mutually uncorrelated. We now seek a transformation from



�X
�
"D(¸)u

�
to �X

�
"DI (¸)��

�
such that ��

�
are mutually uncorrelated. From

�"DI
�
��� DI �� , it is immediate that we have n(n#1)/2 equations to solve for

n�#n(n#1)/2 unknowns which is possible only with additional restrictions
imposed. Comparing the two representations, we have the following:

(R1) D
�
u
�
"DI

�
��
�
,

(R2) D(1)�
�
D(1)�"DI (1)��� DI (1)�.

We now introduce the following assumption:

Assumption 1. ��
�
"(�� �

�
, �� 


�
)� are serially andmutually uncorrelated and have unit

variance.

The assumption imposes n(n!1)/2 zero restrictions on the o!-diagonals of
cov(�� ). The unit variance property is a normalization assumption and puts
n restrictions on the diagonal elements of cov(�� ). This leaves n(n!1)/2 number
of restrictions to be imposed on DI

�
.

Consider a matrix H satisfying HH�"�
�
. We now exploit the restrictions

imposed by cointegration. First note that D(1) and DI (1) must have the last
r columns equal to zero since transitory shocks cannot have permanent e!ects
on X

�
. But (R1) and (R2) together imply that D(1)D��

�
DI

�
"DI (1). Therefore, if

DI (1) and D(1) were to have the last r columns equal to zero, D��
�

DI
�
must be

a lower block triangular matrix. But by (R1) and Assumption 1, DI
�
"D

�
H.

Hence, H also has to be lower block triangular, thereby determining r(n!r)
coe$cients in DI

�
. This, however, is as far cointegration can guide us. After zero

restrictions onH
��
, we still need (n!r)(n!r!1)/2#r(r!1)/2 restrictions on

DI (1) and DI
�
. The shocks are exactly identi"ed by the P}T decomposition alone

only when if there is exactly one permanent (n!r"1) and one transitory
(r"1) shock. To complete the decomposition, we use the following assumption:

A practical rule. Let H be the Choleski decomposition of cov(u), where u
�
"Ge

�
.

Then H��u
�
"��

�
achieves the P}P and the T}T decompositions.

Since the Choleski decomposition produces a lower triangular matrix, it puts
the exact number of zero restrictions and we have a set of mutually uncorrelated
shocks that also satisfy Assumption 1 by construction. Essentially, the submat-
rix H

��
orthogonalizes u� �

�
by putting (n!r)(n!r!1)/2 zero restrictions, and

the submatrix H
��

orthogonalizes u� 

�
through r(r!1)/2 zero restrictions. The

terms P}P and T}T decompositions are motivated by the consideration that the
two decompositions can in fact be implemented separately.
Although ��

�
is not unique because there is more than one way to choose H,

the lower-block triangularity of H severely restricts the number of alternatives.
The choice of the Choleski decomposition arises as a matter of convenience, but
su!ers from the usual limitation that the ordering of the variables will matter



(except in the bivariate case when n!r"r"1). Nonetheless, the recursive
structure is not as rigid as when Choleski decomposition is applied to cov(e)
because D

�
"G�� is not an identity matrix. Hence, the residuals of the "rst

equation can have a non-zero weight in the second permanent shock via ��
�
.

Furthermore, X
	
can respond contemporaneously to permanent shock j even

if j'i.
The complete P}T decomposition can now be summarized as follows:

�X
�
"C(¸)G��HH��Ge

�
"D(¸)HH��u

�
"DI (¸)��

�
(6)

with DI
��
(1)"DI

��
(1)"0. To obtain this decomposition,

1. Decide the number of cointegrating vectors, r, and estimate a VECM with
�(¸) of orderK!1 incorporating the cointegrating relationships. This yields
consistent estimates of � and �, denoted �( and �( , from which one can
construct �(

�
;

2. Construct GK "(�( �
�

�( �)� and the set of permanent and transitory shocks, GK e(
�
;

3. Obtain a lower block triangular matrix HK , such as by applying Choleski
decomposition to cov(GK e( ). The orthogonalized permanent and transitory
shocks are �(

�
"HK ��GK e(

�
. These have unit variance and are mutually uncor-

related.
4. Post-multiply DK (¸)"CK (¸)GK �� by HK to obtain an estimate of DI (¸).

Thus, DK (¸)HK is the sample analog of the DI (¸) matrix, and �(
�
is the sample

analog of ��
�
. Impulse response functions and the decomposition of variances can

then be constructed by canned routines in software packages, except that
Choleski decomposition is applied to cov(GK e( ) rather than to cov(e( ).
The impulse response functions depend on the parameters of the model in

a complex way and is of little use in constructing con"dence bands, but we can
assess sampling variability by bootstrapping. In our applications, we "rst
condition on the number of cointegrating vectors, �( and �( are then estimated,
and subsequently �K . There is little in the literature on bootstrapping that focuses
on all three aspects of the procedure. We opted for a variant of the method
discussed in Runkle (1987). It is implemented as follows: "rst, estimate �, and
conditional on it, estimate the remaining parameters of the VECM to obtain the
"tted residuals e(

�
. A new sample of data is constructed (using the initial estimates

of �( , �( , �K (¸)) by random sampling of e(
�
with replacement. Given a new sample of

data, all the parameters are re-estimated holding the number of cointegrating
vectors "xed, and the impulse response functions stored. This is repeated
N times. We then evaluate the empirical standard errors from the N samples of
the bootstrapped impulse response functions. In practice, N is set to 1000.
Admittedly, the procedure is time consuming especially when n (the dimension
of the model) and/or K (the lag length) is large.



�Another application using the same approach is Koray et al. (1995).

2.4. Other approaches and limitations

Our two step decomposition gives DI (¸), where DI
�
"D

�
H and DI (1)"D(1)H.

But suppose we seek to obtain a speci"c DI (1). In our framework, this would
require solving H, given DI (1) from economic theory and D(1) from the P}T
decomposition, such that DI (1)"D(1)H, and subject to the condition that
Hmust be lower block triangular. This is in the spirit of structural identi"cation
proposed by Bernanke (1986), and adopted in King et al. (1991) [hereafter,
KPSW].� The permanent shocks in KPSW are also determined by �

�
. This is

not surprising since the permanent shocks are dictated by cointegration analy-
sis. KPSW also invoked Assumption 1 and choose H

��
to be lower triangular.

There appears no way around a subjective choice on H
��

because, as discussed
earlier, cointegration restrictions are not su$cient for exact identi"cation of the
shocks.
Apart from the fact that the proposed decomposition is computationally

simpler, our analysis di!ers from KPSW in two ways. First, KPSW used
economic theory to pin down � and �, whereas as presented, we impose long-run
restrictions that are implied by the data rather than economic theory. However,
our analysis still goes through, if we were to impose restrictions on �, and
e$ciency gains can always be obtained by imposing economic restrictions on
the cointegrating vectors if the restrictions are correct. The second di!erence is
that KPSW did not study the dynamic e!ects of the transitory shocks. In our
setting, this can be accommodated by solving for H

��
, given DI (1) from theory

and D(1) from the data, such that DI (1)
������

"D(1)
������

H
��
.

Another possibility, developed by Warne (1991), is to use ����� (instead of ��)
to de"ne the transitory shocks. The advantage of Warne's approach is perhaps
a sense of consistency since the permanent and transitory shocks both depend
on �. The advantage of our approach is that the two-steps necessary to obtain
the decomposition are made explicit. In Warne's implementation, the identi"ca-
tion is determined in one step. It is thus much less transparent when subjective
assumptions are made, and when restrictions are based on long-run properties
of the data.
Using a bivariate VECM, Cochrane (1994a) showed that shocks to GNP

holding consumption constant are transitory and that shocks to consumption
have persistent e!ects. But Cochrane obtained this result by directly applying
Choleski decomposition to the residuals of the VECM. In other words, he
accomplished the P}T decomposition in one step. To see why this is a very
special case, let X

�
"(c

�
, gnp

�
) denote the logarithmic transforms of consump-

tion and GNP and consider the estimates obtained in Cochrane (1994a). Using
the notation of the previous section, �( � is (1,!1) and �( � is (!0.02, 0.08). Since



�The cointegrating vectors are identi"ed by solving the eigenvalue problem
�	S

��
!S

��
S��
��

S
��

�"0. Let < be the matrix of r eigenvectors associated with the r largest
eigenvalues. The identifying restrictions are that <�S

��
<"I, and < diagonalize S

��
S��
��

S
��
. The

S
	

matrices are the sample moments of the residual cross correlation from projections of �X

�
and

X
���

on �(¸)�X
�
. Details are given in Johansen (1995).

the �( in the consumption equation is not statistically signi"cant and is con-
strained to zero, �( �

�
is of the form (x,0) for some �x�'0. This implies GNP has no

weight in the trend component, and all permanent shocks are due to consump-
tion. In this bivariate model, the ordering of the variables is such that G is
already lower triangular. If the order ofX

�
is reversed, ��

�
would have been (0, x)

and G would not have been lower triangular. Direct application of Choleski
decomposition to cov(e( ) would then be di!erent from Choleski decomposition
applied to cov(u( ). But u

�
"Ge

�
is invariant to the order of the variables in our

P}T decomposition of two variables.

3. Simulations and examples

To see that the P}T decomposition functions well in practice, we provide two
simple simulated examples. We assume that the rank of the cointegrating matrix
is known to focus on orthogonalization issues. We use reduced rank regressions
with two lags to obtain �( .� Conditional on �( , unrestricted estimates of � are
obtained from the VECM (2). For each equation in the VECM, �( is constrained
to zero and the equation is re-estimated if the unconstrained estimate of � is not
statistically signi"cant at the two-tailed 5% level. This is important for the
precision of the results and will be discussed in more detail in the next section.
The null space of �( is spanned by the r#1 through n left singular vectors of �( .
The sample size is 200 and there are 1000 simulations. Monte-carlo standard
errors are also computed. The code is written in Gauss 3.21.

Example (DGP 1). The "rst DGP we considered is based on the following
triangular representation:

�x
�
"u

��
,

!x
�
#y

�
!z

�
"u

��
,

0.5x
�
#0.5y

�
#z

�
"u

��
, (7)

where u
��
, u

��
, and u

��
are N(0,1) random errors that are mutually and serially

uncorrelated. There are two cointegrated vectors and one common unit root.
The dynamics are deliberately made simple so that the long and short run
responses to the shocks can be easily veri"ed.



Table 1
DGP 1 (r"2), �x

�
"u

��
, !x

�
#y

�
!z

�
"u

��
, 0.5x

�
#0.5y

�
#z

�
"u

��

P Shock ¹ Shock 1 ¹ Shock 2

Period x y z x y z x y z

Impulse response functions

1 0.882 0.291 !0.665 0.118 0.035 0.656 !0.005 0.324 0.064
2 0.894 0.295 !0.597 !0.010 0.031 !0.046 !0.005 0.032 !0.019
3 0.893 0.298 !0.602 0.000 0.001 0.002 !0.000 0.002 !0.000
4 0.893 0.298 !0.602 !0.000 0.000 !0.000 !0.000 0.000 !0.000
5 0.893 0.298 !0.602 0.000 0.000 0.000 !0.000 0.000 !0.000
6 0.893 0.298 !0.602 !0.000 0.000 !0.000 !0.000 0.000 !0.000
SE

���
0.000 0.011 0.011 0.006 0.071 0.111 0.004 0.034 0.052

Decomposition of variances

1 0.987 0.112 0.569 0.013 0.001 0.397 0.000 0.886 0.033
2 0.993 0.202 0.703 0.006 0.002 0.273 0.000 0.796 0.025
3 0.996 0.278 0.774 0.004 0.002 0.207 0.000 0.720 0.019
4 0.997 0.341 0.818 0.003 0.002 0.167 0.000 0.658 0.015
5 0.997 0.393 0.848 0.003 0.001 0.140 0.000 0.605 0.013
6 0.998 0.438 0.869 0.002 0.001 0.120 0.000 0.561 0.011

The results are given in Table 1. The response of y
�
and z

�
to the permanent

innovation driving x
�
is close to the theoretical value of 1/3 and !2/3 respec-

tively. The variable x
�
is uncorrelated with u

��
and u

��
, and the simulations

reveal this property. The decomposition of variance correctly assesses the
relative importance of the shocks.

Example (DGP 2). Data for the second DGP is generated as follows:

x
�
"y

�
#2z

�
#u

��
,

�y
�
"u

��
,

�z
�
"u

��
, (8)

where u
�
is 3�1 vector of N(0,1) innovations that are mutually uncorrelated.

This example has one cointegrating vector and hence two permanent shocks.
The results are presented in Table 2. The two permanent shocks are correctly
identi"ed, and the transitory shock has no impact on y

�
and z

�
as should be the

case. In this DGP, 20% of the variance of x
�
is due to the "rst permanent shock

and 80% to the second. The error decomposition suggests a split of 20% and
76%, close to the true values.



Table 2
DGP 2 (r"1), x

�
"y

�
#2z

�
#u

��
, �y

�
"u

��
, �z

�
"u

��

P Shock 1 P Shock 2 ¹ Shock

Period x y z x y z x y z

Impulse response functions

1 1.049 1.000 0.094 2.047 0.000 1.000 1.000 0.000 0.000
2 1.136 1.000 0.094 2.031 0.000 1.000 0.363 0.000 0.000
3 1.168 1.000 0.094 2.026 0.000 1.000 0.132 0.000 0.000
4 1.179 1.000 0.094 2.024 0.000 1.000 0.048 0.000 0.000
5 1.184 1.000 0.094 2.023 0.000 1.000 0.017 0.000 0.000
6 1.185 1.000 0.094 2.023 0.000 1.000 0.006 0.000 0.000
SE

��
0.065 0.000 0.005 0.049 0.000 0.000 0.002 0.001 0.000

Decomposition of variance

1 0.153 1.000 0.007 0.697 0.000 0.993 0.149 0.000 0.000
2 0.176 1.000 0.007 0.734 0.000 0.993 0.090 0.000 0.000
3 0.189 1.000 0.007 0.749 0.000 0.993 0.062 0.000 0.000
4 0.197 1.000 0.007 0.756 0.000 0.993 0.047 0.000 0.000
5 0.202 1.000 0.007 0.760 0.000 0.993 0.038 0.000 0.000
6 0.205 1.000 0.007 0.763 0.000 0.993 0.032 0.000 0.000

�For the sample 1959Q1}1994Q1, the t� (k) statistic of Said and Dickey (1984) with the truncation
lag selected as discussed in Ng and Perron (1997) cannot reject a unit root in either money growth or
in#ation (of the GDP de#ator). The statistics, based upon k

���
"10 are !2.14 and !1.88

respectively. For FYGM3 (3 month t-bill rate) and FFYF (fed-funds rate), the unit root tests are
!1.68 and !1.88, respectively.

3.1. Is money superneutral?

There is a vast literature in empirical macroeconomics questioning the e!ects
of monetary policy variables on real variables. As discussed in Fisher and Seater
(1993), the ability to interpret coe$cients purporting to test money neutrality
crucially depends on the order of integration of the variables. In the data, M2
and price are I(2) processes, while interest rates, output, and consumption are
I(1).� A model consisting of the level of money, prices, interest rates, and output
is an &unbalanced'model in the sense that the variables are integrated of di!erent
orders. Nevertheless, one can assess whether money is superneutral. That is, if
a change in the growth rate of money leaves the real variables unchanged. The
issue was analyzed theoretically in Sidrauski (1967), and empirically in Geweke
(1986), among others.



�The critical values for cointegration tests are taken from Osterwald-Lenum (1992). The 10%
values for r"0 are 43.95 and 24.73 for the Trace and Max-	 statistics. For r"1, the critical values
are 26.79 and 18.6. These assume there is an unrestricted constant in the VECM.

In this example, we present a P}T view to the issue of superneutrality using
four variables: the growth rate ofM2 (�m2), the Fed Funds rate (FF), the log of
total consumption, and in#ation (
, de"ned in terms of the GDP de#ator). The
estimation is over the sample 1959Q2 to 1994Q2. A constant and four lags are
used in the VECM. The Trace and Max-	 statistics for the null hypothesis
of r"0 are 46.66 and 43.95, and are 20.21 and 9.34 for testing r"1.� The
cointegration tests suggest one cointegrating vector and it is estimated by
reduced rank regressions. The whole analysis is deliberately made atheoretical.
Our objective is to see if we can still use economic reasoning to interpret the
impulse response functions.
The cointegrating vector for X

�
"(�m

�
,FF, c,
) is (1,!0.378, 0.045,

!0.805). The coe$cient on consumption is numerically small and not signi"-
cant when four lags are used, but is sometimes statistically signi"cant (at the
10% level) when we vary the lag length of the VECM. This coe$cient is
therefore left unconstrained, and uncertainty around it is to be resolved through
the standard errors of the impulse response functions. The vector �( is
(!0.346, 0.090, 0.081, 0.16)� with t statistics of !3.44, 2.09, 1.71, and 2.59. The
three columns of �(

�
are [(0.225, 0.973,!0.024, !0.049)�, (0.203,!0.024, 0.978,

!0.044)�, (0.407,!0.049,!0.044, 0.911)�]. Accordingly, none of the perma-
nent shocks come exclusively from one variable alone.
The impulse response functions are presented in Fig. 1. The corresponding

standard errors are small and not reported to conserve space. A unit increase in
the "rst permanent shock raises the interest rate and in#ation, but increases the
latter by less than in proportion. The result is a permanent increase in the real
interest rate. The dynamic responses are akin to those to the real interest rate
shock identi"ed by King et al. (1991), except that we have not imposed balanced
growth or neutrality assumptions on the VECM. Consumption eventually falls
by 1.2%, showing a large semi-elasticity of consumption to the real interest rate.
Note that the short-run response of consumption to this increase in the real
interest rate is small, consistent with the small interest elasticity of consumption
found in estimations of Euler equations.
The second permanent shock leads to a permanent increase in consumption

that is similar in shape and magnitude as that found in Cochrane's consump-
tion}output analysis. A one percent shock raises consumption by 1.4% similar
to what one commonly "nds from a productivity shock. Note that money
growth also increases temporarily; this can be interpreted as monetary policy
accommodation to higher output induced by the productivity shock, consistent
with the passive role of money suggested by some real business cycle model
proponents.



Fig. 1.

The third permanent shock raises money growth and in#ation by roughly the
same proportion. These responses are what one would expect of a money
growth shock. The shock leads to a mild reduction in consumption of !0.2 of
one percent with a maximum standard error of 0.09. Therefore, if we were to



Table 3
�m

�
, FF, c, 


P-Shock 1 P-Shock 2

Period �m
�

FF c 
 �m
�

FF c 


Decomposition of variance

1 0.040 0.720 0.057 0.000 0.268 0.068 0.801 0.006
2 0.054 0.798 0.028 0.057 0.302 0.028 0.877 0.005
3 0.073 0.782 0.043 0.068 0.298 0.020 0.902 0.008
4 0.073 0.791 0.051 0.081 0.301 0.026 0.913 0.007
5 0.079 0.816 0.083 0.119 0.299 0.032 0.891 0.013
6 0.077 0.829 0.123 0.125 0.294 0.035 0.853 0.016
7 0.077 0.829 0.155 0.120 0.293 0.045 0.821 0.020
8 0.078 0.824 0.187 0.122 0.287 0.058 0.788 0.028
9 0.086 0.820 0.216 0.121 0.279 0.070 0.758 0.033
10 0.097 0.813 0.240 0.116 0.270 0.083 0.731 0.039
11 0.109 0.805 0.261 0.111 0.260 0.095 0.709 0.046
12 0.123 0.798 0.278 0.107 0.250 0.107 0.691 0.051
13 0.137 0.791 0.292 0.102 0.241 0.117 0.677 0.055
14 0.150 0.785 0.303 0.098 0.233 0.126 0.665 0.059
15 0.162 0.780 0.312 0.095 0.226 0.134 0.656 0.062
16 0.171 0.775 0.319 0.091 0.221 0.141 0.649 0.065
17 0.179 0.772 0.324 0.088 0.217 0.147 0.643 0.067
18 0.185 0.769 0.329 0.085 0.213 0.152 0.639 0.069
19 0.191 0.766 0.332 0.083 0.211 0.157 0.636 0.070

P-Shock 3 ¹-Shock

Period �m
�

FF c 
 �m
�

FF c 


1 0.228 0.039 0.026 0.736 0.464 0.172 0.116 0.258
2 0.183 0.015 0.017 0.693 0.461 0.159 0.078 0.245
3 0.177 0.032 0.010 0.710 0.451 0.167 0.045 0.214
4 0.172 0.046 0.007 0.726 0.454 0.138 0.029 0.186
5 0.170 0.042 0.006 0.711 0.452 0.110 0.020 0.157
6 0.189 0.040 0.008 0.717 0.441 0.096 0.016 0.143
7 0.204 0.042 0.010 0.730 0.427 0.084 0.014 0.129
8 0.218 0.042 0.013 0.731 0.417 0.075 0.013 0.118
9 0.234 0.041 0.015 0.736 0.401 0.069 0.012 0.110
10 0.246 0.040 0.017 0.743 0.388 0.064 0.011 0.102
11 0.259 0.039 0.019 0.747 0.373 0.060 0.010 0.096
12 0.271 0.038 0.021 0.751 0.355 0.057 0.009 0.091
13 0.282 0.037 0.023 0.755 0.339 0.055 0.008 0.087
14 0.293 0.036 0.024 0.759 0.323 0.053 0.008 0.083
15 0.303 0.035 0.025 0.764 0.309 0.051 0.007 0.080
16 0.312 0.035 0.026 0.767 0.296 0.049 0.007 0.077
17 0.320 0.034 0.026 0.771 0.285 0.047 0.006 0.074
18 0.327 0.033 0.027 0.775 0.274 0.046 0.006 0.071
19 0.334 0.033 0.027 0.778 0.265 0.044 0.006 0.068



��Additional empirical examples can be found in the working paper, Gonzalo and Ng (1996).

��The problem is most easily seen in a univariate framework. Suppose X
�
"e

�
is white noise, so

that rH"1. If we assume r"0, the VECM is �X
�
"u

�
but u

�
"(1!¸)e

�
is not an innovation.

Suppose, on the other hand, �X
�
"e

�
so that rH"0. If we assume r"1, the VECM

is �X
�
"�X

���
#u

�
, where u

�
"e

�
!�X

���
. Although u

�
is a transitory shock, it is not an

innovation.

rationalize this permanent shock as a shock to money growth, money is
approximately superneutral.
Although we have not explicitly used economic theory to identify the cointeg-

rating vectors, the results can still be rationalized by a monetary growth model
with multiple shocks. The decomposition of variances reported in Table 3 sug-
gests that one-third of the variations in consumption is due to the real interest
rate shock, and two-thirds are due to innovations in productivity, with only
small contributions from the money growth shock. Results using the 3 month
treasury bill rate are similar.��

4. Two caveats

The procedure outlined above necessitates estimates of r, �, and �
�
. One can

use the reduced rank analysis of Johansen (1988) to obtain r and �. An
alternative is to use the common trend statistic of Stock and Watson (1988) to
determine r, and then estimate � by fully e$cient estimators. Which method (or
combination of methods) to use is at the user's discretion. In this section, we
stress the strong dependence of any P}T decomposition on precise and consis-
tent estimation of these parameters.

4.1. The cointegrating rank

In practice, all permanent}transitory decompositions assume the cointegrat-
ing rank is correctly speci"ed. Suppose the true number of cointegrating vectors
is rH, and the practitioner imposes rOrH cointegrating relationships. Consider
a VECM with no lags, and hence A(¸) is of order one. The assumed A(1),
denoted AI (1), is related to the truth by AI (1)"A(1)!(I

�
#���!�� �� �), where

�� and �� are of rank r rather than rH. But when rOrH, the identi"ed shocks will
not, in general, be innovations.�� There will be little systematic relationship
between the genuine and the identi"ed shocks. Whether the misspeci"cation
arises from imposing too many or too few transitory shocks, incorrect dynamic
response functions will result.
Consider the two simulated examples once again. Suppose instead of two

cointegrating vectors in Example 1, we assume there is only one. Likewise,



Table 4
DGP 1 (r"1, rH"2); �x

�
"u

��
, !x

�
#y

�
!z

�
"u

��
, 0.5x

�
#0.5y

�
#z

�
"u

��
; decomposition of

variances

P Shock 1 P Shock 2 ¹ Shock 1

Period x y z x y z x y z

1 1.000 0.066 0.269 0.000 0.236 0.731 0.000 0.698 0.000
2 1.000 0.099 0.269 0.000 0.432 0.731 0.000 0.469 0.000
3 1.000 0.116 0.269 0.000 0.528 0.731 0.000 0.356 0.000
4 1.000 0.126 0.269 0.000 0.587 0.731 0.000 0.287 0.000
5 1.000 0.133 0.269 0.000 0.626 0.731 0.000 0.241 0.000
6 1.000 0.138 0.269 0.000 0.655 0.731 0.000 0.207 0.000

Table 5
DGP 2 (r"2, rH"1); x

�
"y

�
#2z

�
#u

��
, �y

�
"u

��
, �z

�
"u

��
; decomposition of variances

P Shock 1 ¹ Shock 1 ¹ Shock 2

Period x y z x y z x y z

1 0.749 0.007 1.000 0.116 0.017 0.000 0.134 0.975 0.000
2 0.791 0.007 1.000 0.066 0.017 0.000 0.142 0.975 0.000
3 0.809 0.007 1.000 0.045 0.017 0.000 0.146 0.975 0.000
4 0.818 0.007 1.000 0.035 0.017 0.000 0.148 0.975 0.000
5 0.823 0.007 1.000 0.028 0.017 0.000 0.149 0.975 0.000
6 0.826 0.007 1.000 0.024 0.017 0.000 0.150 0.975 0.000

instead of two permanent shocks in Example 2, we assume one. The decomposi-
tion of variances for the misspeci"ed models are given in Tables 4 and 5.
Misspecifying the cointegrating rank apparently gives very misleading assess-
ments of the importance of the shocks (compare with Tables 1 and 2). Not
imposing the cointegrating restrictions can likewise mix up the permanent and
the transitory components of the model. Essentially, the number of permanent
shocks will always be n!r, where r is what we assume. All analysis of this
nature are subject to potential misspe"ciation of the cointegration rank.

4.2. The estimation of � and �
�

Conditional on �( , the VECM provides an estimate of �( . Various methods are
then available for calculating �

�
. Among these (1) the eigenvectors associated

with the n!r smallest eigenvalues of the matrix ���, (2) the eigenvectors
associated with the smallest n!r eigenvalues of the matrix �(���)����, and (3) the



generalized eigenvectors associated with the n!r smallest eigenvalues of the
matrix S

��
S��
��

S
��

with respect to S
��

as proposed in Gonzalo and Granger
(1995). We have experimented with all three methods. Although the non-
uniqueness of �

�
makes it di!uclt to compare the various methods, our experi-

ence is that Method 3 is numerically less precise unless the sample size is very
large, in the sense that ��

�
� is closer to zero with Methods 1 and 2. From

a practical standpoint,Method 2 could be unstable when ��� is closer to singular,
a case which we cannot rule out in practice.We have therefore opted forMethod
1 in our empirical analyses.
The role of � in any P}T decomposition is crucial since �

�
de"nes the

permanent shocks. But as discussed in Podivinsky (1992), �( can have poor "nite
sample properties. To the extent that �(

�
depends directly on �( , we always adopt

the strategy of constraining insigni"cant estimates of �( to zero before construct-
ing �(

�
. The rationale for this is most clearly seen from the following three

variable example. Suppose the true value of � is (1,0,0)� as in DGP2 of (8). Then

�"�
1

0

0�N��
�

"�
0 1 0

0 0 1�.

This implies that there are two permanent shocks, one due solely to y
�
, and one

due solely to z
�
. Now suppose estimation of � yields

�("�
1

0.1

0.1�N�( �
�

"�
0.197 !0.985 !0.985

3.43 !16.68 !17.68�.

Although 0.1 seems not too far from the true value of 0, the permanent shocks
now attribute rather misleading weights to the second and the third variable.
The problem arises because the orthogonal complement of a matrix, say, z, is
not continuous in small perturbations in z. This problem persists irrespective of
how �(

�
is constructed. Thus, D(1) (which depends on �(

�
) can be very sensitive to

small variations in �.
Finally, note that the choice of the truncation order (K) for the VECM is also

important. If the model is underparameterized, e
�
will be serially correlated

which will also a!ect the estimation of r and �.

5. Conclusion

Vector autoregressions is a valuable framework for dynamic economic ana-
lyses. When some variables share common stochastic trends, the system of



variables is bind together by cointegrating restrictions. This paper shows that
information on these linear relationships can be used to decompose shocks into
permanent and transitory components. The analysis (i) presents the two steps
necessary to obtain a permanent}transitory decomposition, and (ii) clari"es that
cointegration restrictions are used in G and that it is the block in the lower
triangular matrix H that is at the discretion of the practitioner. The main
advantage of the proposed procedure is its simplicity. Once the permanent and
transitory shocks are isolated, standard VAR identi"cation tools can be used to
make them mutually uncorrelated. However, all P}T decompositions are sensi-
tive to assumptions on the cointegrating rank and estimation of �

�
. These are

issues that practitioners should take seriously when conducting perma-
nent}transitory decompositions of any kind.

Appendix

Proof of Proposition 1. Without loss of generality, we assume �(¸)"�
�
,

so that A(¸)"I
�
!A

�
¸!A

�
¸�, A

�
"�#I

�
#�

�
, and A

�
"!�

�
. Let

f
�
"��

�
X

�
and z

�
"��X

�
. Using the result in Gonzalo and Granger (1995) that

�
�
"��

�
(��

�
�
�
)�� and �

�
"��(����)��, we can have

X
�
"�

�
f
�
#�

�
z
�
"P

�
#¹

�
. (9)

Write the AR representation of (� f
�
, z

�
) as

�
I
�
!(��

�
�
�
A

�
)¸ (!��

�
�
�
A

�
)¸(1!¸)

(!���
�
A

�
)¸ I

�
!(���!I

�
#���

�
A

�
)¸#(���

�
A

�
)¸���

� f
�

z
�
�

"�
��
�
e
�

��e
�
�"�

u�
�

u

�
� ,

which we write more compactly as

�
F
��
(¸) F

��
(¸)

F
��
(¸) F

��
(¸)��

� f
�

z
�
�"�

u�
�

u

�
� . (10)

Note that F
��
(1)"0. Inverting (10),

�
� f

�
z
�
�"�

F��(¸) F��(¸)

F��(¸) F��(¸)��
u�
�

u

�
� , (11)



where the elements F	
 are assumed to exist and are determined by partitioned
inverse. Of note is that

F��(¸)"F��
��
(¸)F

��
(¸)[F

��
(¸)F��

��
(¸)F

��
(¸)!F

��
(¸)]��.

Since F
��
(1)"0, we have F��(1)"0. Using the de"nition of X

�
, we have the

MA representation of �X
�
as

�
�
�

0

0 �
�
(1!¸)��

� f
�

z
�
�"�

�
�

0

0 �
�
(1!¸)��

F��(¸) F��(¸)

F��(¸) F��(¸)��
u�
�

u

�
� ,

and hence

�
�P

�
�¹

�
�"�

�
�
F��(¸) �

�
F��(¸)

�
�
(1!¸)F��(¸) �

�
(1!¸)F��(¸)��

u�
�

u

�
�.

Thus,

�X
�
"�P

�
#�¹

�

"[�
�
F��(¸)�

�
(1!¸)F��(¸)��

�
F��(¸)#�

�
(1!¸)F��(¸)]"�

u�
�

u

�
�
(12)

"�
D

��
(¸) D

��
(¸)

D
��
(¸) D

��
(¸)��

u�
�

u

�
�. (13)

and note that D
��
(1)"D

��
(1)"0, because �

�
F��(1)#�

�
�0�F��(1)"0.
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