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1. INTRODUCTION
 

Discriminant analysis is a widely applied technique in multivariate 

data 

with 

...•g, 

analysis. Given 

corresponding 

the problem is 

g groups, populations or classes. G. G. ...• G. 
1 2 g 

probability density functions f (x)
I 

on i=l. 

allocating an individual to one of these groups on 

J 

the basis of his measurements x=(x. . ...x)· which are considered as an 
1 p 

observation from a population described by a random vector X=(X.X.
1 2 

...•X)· such that X-f under G
I
• i=l, ...•g. The allocation should be 

p I 

"optimal" in the sense of minimizing. on average. the number of 

) 

incorrect assignments. When the densities fl(x) are known. a suitable 

discriminating rule is the rruudrnwn tiJc,eU,ha,ad (MU ~ tU..Lte 

(Mardia et al. (1979), p. 

We will assume, for 

301). defined as follows: Assign x to G 
I 

f (x)= max f (x). 
I 1 :s J:Sg J 

the rest of this work. that the 

if 

a 

(I) 

priori 

,I 
~I 

! 

probabilities of the classes are equal. When this is the case. it can be 

shown that the rule (I) minimizes the total probability of 

misclassification (see Seber (1984), p. 331). When the 

depend on unknown parameters al' Le.. if fl(x)=fa (x). 
I 

use the ~ Ml (SML) ~ tU..Lte (Mardia et 

densities f (x)
I 

i=l. .. .•g. we 

al. (1979). p. 

309). which is obtained by replacing, in rule (I). 

efficient estimates ~I=~I(:X)' where XI is a nlxp 

the 

data 

parameters al 

matrix from 

by 

GI• 

i=l .....g. 

An important example of the ideas above appears when 

and the parameters (JlI.I:I) are unknown. i=l. .. .•g. Let i 
I 

respectively. the sample mean and the covariance matrix 

f -N (Jl .I: ). 
I p I I 

and S be. 
I 

of XI' i=l • 
) 

... •g. The SML rule can adopt two possible different forms: (i) If 

I: =I: = 
1 2 

... =I: =I:. 
g 

say. we assign x to G 
I 

if 

1 



l'x+c = max [l'x+c ]. (2) 
1 1 4' j j

1 ... 
4' 

j ...g 

- -1­where l =S-IX c =-(1/2)x'S X .i=l, '" ,g, and S is the pooled
1 p	 l' lip 1 p 

g e 
estimator S = L (n -OS I(N-g), N= L n; W.) If the dispersion matrices 

1p 1=1 I 1 1 =1 

are unequal, we assign x to G if 
I 

Q (x)= min Q (x), (3) 
1 1 :!i j:!ig j 

where Q (x)=(1/2)log[ IS I]+(1/2)[(x-x )'S-I(X-x )], i=l, ....g.
1	 1 1 1 1 

It is well-known that, when g=2. the rule (2) is equivalent to the 

'!fWte!l' <l. fi.J1,eQ/1. 7)~ '!fun.cti,.an, obtained by Fisher (1936) not 

assuming normality but looking for a "sensible" rule for discriminating 

between the groups. For g~2, if we assume that the possible 

distributions of the random vector X=(X.X, ...•X)' are continuous but 
1 2 p 

not multivariate normal, the rules (2) and (3) above are. in general, no 

longer appropriate, and alternative procedures should be used. For 

example (see, e.g., chapter 6 in Seber (1984) or chapter 13 in 

Krzanowski (1990) for details) we could use a logistic discriminant rule 

or we could use the ML discriminant rule (1) replacing f (x) by a 
I 

c nonparametric density estimator computed from :rI' i=l, ." ,g. 

In this paper, we present a new method for discriminating among 

continuous populations which are not multivariate normal. The method is 

based on the multivariate generalization of the transformation of Box 

and Cox (1964) given by Andrews et al. (1970. In section 2, we 

introduce the general ideas of this new discrimination procedure. In 

section 3. we explicitly construct the associated discriminating rule 

and suggest a cross-validation method for assessing its performance. 

Section 4 contains an example of application and section 5 some final 

comments. 

c 
2 
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2. MOTIVATION 

:) 

Let X be a random variable which takes values denoted by x. If X is 

not normal, it is often convenient to consider a transformation that 

might help to normalize the data. A useful family of transformations is 
) 

the family of Box and Cox (1964): 

A
(A),X -1 , A'ltO x - A (4.1) 

logx , A=O. 

We assume that the following model holds 

X(A)-N(J!.cr2 
), (4.2) 

at least approximately. When we have a random vector X=(X.X .....X)'
1 2 p 

whose distribution is not N (J!.I:). Andrews et al. (1971) have given 
p 1 1 

the following multivariate generalization of the setup (4.1)-(4.2). We 

have a p-vector /\=(A. .. .• A)' of transformation parameters, one for 
1 p 

each dimension. such that. approximately. the model 

(5) 

i):holds. In both (4) and (5). it is assumed that x and the components X 

are positive. 

constants. 

Write the 

x=(x, .... x ).
1 P 

where J A (x) 
" 

now face the 

J 

If not. x and X must be shifted by adding suitable 
J 

parameters in model (5) as S=(/\.J!.I:). 

from the model (5). the likelihood of x 

is the jacobian of the transformation, 

JGiven an observation 

is given by 

(6) 
) 

p A-1 
J A (x)= TT x J • If we 

" j=1 j 

problem of discriminating among groups G, .... G such that 
1 & 

the respective densities f (x)
1 

are not multivariate normal but can 

be. in turn. modelled by (5). Le. such that f (x)=fS(x)=l(x;e ),
I I 

where 
I 

e =(/\ .J! .I: ).
I 1 I I 

i=l. ... ,g. we can construct the following SML 

) 

3 
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discriminant rule: Assign x to G if 
I
 

t(x;~ )= max t(x;~ ), (7)
 
I I ~ J~g J
 

where ~ =~ (X) is an efficient estimator of 8 , i=I, ... ,g. In the next
 
I I I	 1
 

section, we show how to compute explicitly the discriminant rule (7), we 

relate it to the rules (Z) and (3), and suggest a procedure for 

assessing its performance. 

3.	 CONSTRUCTION AND ASSESSMENT or THE DISCRIMINANT RULE 

3.1	 Two groups 

We will consider first the case when we have only two groups, G and 
I
 

G. For i=I,Z, we are given a data matrix X of n xp from G such that 
2 I I I
 

for some unknown vector A =(A ... A )' in IRP the rows of the nlxp
I 11' 
~ 

Ip
 

X(AI)=(a:(\ k)),
transformed data matrix	 j=l, ... ,ni' k=l, ... ,p, are 
I I Jk 

LLd. N (1-1 ,r). We also assume independence between XI and X . 
P	 I i 2
 

3.1.J Parameter estimation 

Standard normal likelihood theory shows (see, e.g. Gnanadesikan 

(977), p. 141), that, for i=I,Z, the maximum likelihood estimator (MLE) 

of the parameter e =(A ,1-1 ,r ), denoted by ~ =(7\ ,D ,t ), is given by
I	 I I I I I I I
 

f:.. 
A	 -CA) (7\ ) -(7\ ) (7\ ) 
I-ItXI I , t =«n -1)/n)S i, where XI i and S I are, respectively,


i I I I	 I
 

(7\ )
the sample mean and the covariance matrix for X I. For i=I,Z, 7\ is
 

I	 I
 

obtained by maximizing the corresponding concentrated log-likelihood 

which is (up to an additive constant) 

(A )' (A ) 
L (A )=-(n IZ)log[ IX I Q X I Il+log[JA (X )l, (8)


me-x,l I I I I I I I
 
r 

P 

where Q =(1 -1 I' In ) and JA (1')= IT J.. ,
Inn n I H I k=1 1\ 

I I I I Ik 

4
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n n
 
I (A) I A-1
 

JA	 = TT Ida: Ik Ida: I=( TT a: ) Ik • k=1. · ... P. are the jacobian
Ik j =1 I j k Ijk j =1 Ijk 

terms. Define. for each column k of the n vector of normalized )XI' I 

variables k=1. .. ·.P. of jth coordinate 

\ ..~ 

LEMMA 3.1 For i=1.2. let Z(/\)=(Z(AU )••.••Z(\p) be the n xp matrix of
I 11 Ip I 

normalized variables associated with X. We can write 
I I 

. ) 
I 

L (A )=-(n 12llog[ IZ(A/ Q Z(AI) I]. (9)
max,l I I I I I 

Proof. Define. for i=1.2. the matrix DI=diag(JAl/nl. .... , 
Ik 

) 
follows from (8). and by observing that 

-(n 12Hog[J- unl(X )]=-(n 12)Iog[ ID 1-2]. and that Z(AI)=X(A t )D-1. 
1 A 1 1 1	 1 I I­

I 

For computational purposes. expression (9) is more convenient than 

(8)	 in order to determine the MLE 1\. In experience of the authors. the 
I 

functions -L (A) are typically convex. a convenient feature for
max.1 I 

solving the optimization problem by means of a canned numerical routine. 

3.1.2	 Expression of the rule 

Given a new individual x=(x ....x ). define the p vector 
l' p 

u(x)=-(]ogx • ... , logx )'. Two possible different situations arise: 
1 p 

) 
(t.) If is estimating 8 =(A .J.l .E) with (1\.~.~ ).I III III 

where rule (7) can be written equivalently in the form: 

Assign x to G ifI 
) 

e(x)+1\'u(x)= min le (x)+~·u(x)].	 (l0) 
I I 1:s j:52 j j 

)1 
5	 I 

I 

I 
I 

1 

I 

, )' 
1 



where i=1,2. We 

can interpret (l0) as the estimated normal theory discriminant rule (3) 

(~ ) (~ )
applied to the transformed data matrices X I and X 2 and shifted by

I 2 

a linear term in u(x) which reflects the effect of the transformation; 

W.) If I: =I: =I: it is reasonable to estimate I: by the pooled
12' 

estimator ~ = [(n -1)~ +(n -l)~ 1/(N-2), where N=n +n . The rule (7) 
p 1122 12 

becomes now: Assign x to G if 
1 

~ ~ ~ ~ 
Q (x)+!\'u(x)= min [Q (x)+!\'u(x)], (1) 

1 1 1 ~ J:!';2 J j 

A criterion for deciding whether (l0) or (lll should be used is 

suggested in the analysis of the example in section 4 below. 

3.1.3 Cross-validation assessment 

To evaluate the performance of the rules (l0) and (111, we need to 

compute estimates of the error rates p =P[Assign x to GIG 1, Le., the 
Ij 1 J,., 

'.. 
probabilities of allocating an individual to G when, in fact, it comes 

1 

from G. A well established method for estimating the p is the method 
J U 

of cross-validation proposed by Lachenbruch and Mickey (1968). The 

general idea in cross-validation is determining the allocation rule 

using the training data deleting one observation, and then using the 

rule to classify the observation left out. The estimates are 

1\ =a In where a is the number of observations from G which havePU IJ I' U 1 

been misclassified. 

~ 
For the rules (10) and (11), we need to compute Ji. , the MLE of A 

l{J) 1 

deleting the jth row of the data matrix Xl' i=l,2, j=l, ... ,n.. This is 

computationally expensive and, therefore, an approximation is in order. 

6 
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By (9), the MLE of A is obtained by minimizing \M (\)\, where
I 1

M (A )=Z(AI}'Q Z(\). ~ minimizes anI I I I I Hj) IMHj)(t\} I, Let A
1,0 

initial 
) 

guess for ~ (typically ~) and let 'iJ (A )=a IM (A) IlaA andHj) I Hj) I Hj) I I 

HHj) (AI )=a
2 IMI(j)(\) I I aAIaA;, be, respectively, the gradient vector 

and the hessian matrix of IMl(j)(AI}I· In the first-order Taylor 
UI. 

useexpansion 'iJ Hj) (AI}~'iJHj) (AI,o}+HHj)(\,o)(AI-\,o)' we can the 

b.
fact that 'iJ (~ }=O to obtain a one-step approximation for !\Hj)'Hj) l{j) 

~1 =A -(H (A »-I'iJ (A ). (12)
l{j) 1,0 Hj) 1,0 Hj) 1,0 

Equation {12} is a multivariate extension of equation {15} in Tsai and 

Wu (1990). 

To compute 'iJ (~) and H in {12}, we define, for i=I,2;Hj) I l{j)(~)I 
n 

I 
lIn ( U )-lIn {n -0j=l, and k=l, ... ,p: a =a: I a; II

Ijk Ijk m j Imk ' 

q (? )=(a /Ik-1; (U) Z·(\k)= (? }Z(?'I/ and (ill)
Ijk Ik Ijk Ijk qljk Ik Ik ' _)1 

A -Q B Q B =1 -[l-(l/n }r1
e e' where e is the J'th canonicalIj- I Ij I' Ij n I Ij Ij' lj

I
 
n
 

vector of IR I. We have the following result. 

THEOREM 3.1 For i=I,2 and j=l, ... ,n define the n xp matrix
l
, 

I
 

·(A) (Z·(?' ) • (? )

Z I = 11 ... , Z Ip}. We can write: 

I j I j 1 ' Ijp 

M (A )=Z·(AI}A Z·(A1}. {13}
Hj) I I j Ij I j 

Proof. We will use the following formula (see Atkinson (1986, p.3I)}: If 

a, b are two vectors in IR
n 

and P=(p ) is an nxn orthogonal projection )uv 

matrix, we have, for 1=1, ... , n, 

a'O -P)b=a' 0 -P }b -1 • 04}+(1-p ) ab,• 
n tll n-l (l) tll 11 1 I 

The subscript (I) means that the corresponding quantity has been ) 

• b•computed deleting the Ith row or coordinate. a and are the Ith 
1 1 

coordinates of the residual vectors a =0 -P}a and b =0 -P}b. For 
n n 

) 

7 
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c 

c 

above. we get m =Z·(\r)A Z·(\/ •
Irs(J) IJr IJ IJB 

c 
It is important to observe that. by (3). ~ minimizes aI(J) 

determinant which is structurally similar as the determinant which 

. .. ~ 
1\. canmInImIZeS Expressions for the partial derivatives of IMI(J) (AI) I

I 

c 
be seen in the appendix. 

3.2 More than two groups 

c 
When g>2, the construction and assessment of the discriminant rule 

(7) can be done following straightforward extensions of the ideas in 

sections 3.1.1, 3.1.2 and 3.1.3. 
r 

4. A PRACTICAL EXAMPLE 

In DELPHI. one of the detectors of LEP, a particle collider at the 

( 
European Center for Nuclear Research (CERN. Geneva, Switzerland), 

several variables are observed by measuring the events produced in the 

particle collisions. The problem is classifying. or "tagging", on the 

c 
basis of the observed measurements, the event containing a quark into 

one of three different groups: 

G: Up and Down (u+d) or Strange (s);
I 

c: 
G : Charm (c);

2 

G : Beauty (b).
3 

Among the set of variables which are observed, we will consider only a 

c 
special subset of 9 continuous variables (X , ... ,X ), called 

I 9 

Microvertex variables. We are given simulated data matrices X from the 
I 

c 
8 

c 

i=I.2. j=l. 

M (A )=(m
I(J) I 

an analog 

. ..•n and r.s=l, ...•P, the (r.s) element in the pxp matrix 
l 

(A.A)) is m =z(A)' Q )z(\s). By usingIrs(j) Ir Is Irs(j) Ir 0) I(J) Is 0) 

of expression (3) in Tsai and Wu (990) and formula (4) 



groups G , such that X- is n x9, with n =182, n =52 and n =66. We 
I I 1 1 2 ' 3 

illustrate, with reference to this example, the discriminant techniques 
i 

JI! 
presented in section 3. The problem of classification has been also 

treated by de la Vaissiere and Palma-Lopes (1989), two physicists at 

CERN. 

The use of the rule in section 3 arises because of the strong 

nonnormality of the data. For example, figure 1 below shows the skewed 

histograms for the variable X for the groups G, G and G. We decided 
412 3 

then, applying the multivariate transformation given in (5). Since, for 

other variables, negative data appear, we consider, for i=1,2,3, j=l, 

and k=l, ... ,9, the translation x ~x +a where 
IJk IJk k' 

a =-x +.5 and x is the global minimum of the kth variable over 
k mln,k mln,k 

the three data matrices :r, :r, :r, k=1, '" ,p. We could have considered 
1 2 3 

a shifted version of the transformation (4). Unfortunately, shifting the 

transformation (4) causes the maximum likelihood estimation of the 

transformation parameters to become a non-regular problem and not a well 
I 
I 

established procedure exists yet. However, see a recent work of Atkinson I 

:)', 
et al. (1991). 

FIgure 1 

By maximizing the respective functions (9) for each class, we found the 

set of estimated transformation parameters displayed in table 1 below. 
) 

Ta.ble 1 

)
In order to use (l0) or (1ll we need now to decide whether or not the 

I 
dispersion matrices of the transformed data are the same. A reasonable 

) 

9 



1 

~ , 

procedure is to test for homoscedasticity treating the transformed data 

(~ ) (~ ) (~ )
matrices :x 1, :x z and :x 3 as data matrices from a multivariate 

1 z 3 

normal distribution. The standard likelihood ratio test, as described 

for example in Mardia et al. (979), p. 140, revealed strong evidence 

again homoscedasticity and, therefore, we decided to use the rule of 

section 3 in the form (0). It is important to remark that these 

procedure for choosing between (0) and (1) is not entirely rigorous 

because we are ignoring the effect of the sampling variability of the ~ 

in the null distribution of the likelihood ratio test statistic for 

homoscedasticity, Le. we are treating the ~ as known constants. This 
1 

procedure should be therefore taken as merely an indicative guideline 

for choosing between (0) and (11). 

Finally, table 2 shows the estimated error rates by cross-validation. 

The rule classifies correctly slightly less than 707. of the events 

containing a beauty quark. This is remarkable because, from a physical 

point of view, these are the events where correct classification is more 

important. The relatively poor performance of the rule regarding events 

containing a quark of type c is not unexpected because G 
z 

is a 

transition class between G 
1 

and G 
3 

and, therefore, not very well 

differentiated from G and G . 
1 3 

Table 2 

5. CONCLUSIONS 

This paper presents a new discriminant rule for the case when the 

groups do not have a multivariate normal distribution but can be 

10 



•• • 

• • • • 

J
 

modelled approximately as normal after a suitable transformation. From a 

practical point of view, the rule presented is particularly useful in 

the presence of long tailed asymmetric marginal distributions which are 

susceptible of treatment under the framework (4.1)-(4.2). The 

implementation of the rule should be accompanied with a diagnostic check 

of normality and heteroscedasticity of the transformed data. 

For a general nxp matrix H=(h, ... ,h), we will write H (u) for the 
1 p J 

nxp matrix obtained from H by replacing its jth column by the nxl vector 

u. We will also write H (u,v) for the nxp matrix obtained from H by
JI 

replacing its jth and lth column by, respectively, u and v. 

THEOREM A.I Write, for i=I,2, ~ =(~ .... ,~ )' and define, for i=I.2,
I 11 Ip 

j=l. .. .• P, and k=l, ... ,p, the n xl vectors Z·(;~·lk)=q (A )Z(\k)
I IJk Ijk Ik Ik 

(see section 3.1.3), W·(Alk)=BZ·(Alk )IBA and U·(Alk )=B2Z·(\k)IBA 2 . 
Ijk Ijk Ik IJk Ijk Ik 

We will write Zljk' Wand U for the corresponding vectors
IJk A.. IJk 

t. • .(1\ ) evaluated at A • If Z =Z I (see section 3.1.3), we have, for r,s=l.
Ik Ij Ij 

· .. ,P. 

(a) BIM (1\ )IIBA I A..=2I Z·' <W· )A Z·"I(J) I Ir 1\ =1\ Ij,r Ijr Ij Ij ,
I I 

(C)B2IM (I\)IIBA BA I A..=2[IZ·' (W· ,W· )AZ·I
I(J) I Ir Is 1\ =1\ . Ij.rs IJr IJs IJ Ij

1 1 

+ IZ I~,r (W Ijr)\? Ij.s (W IjS) Il. (r~s). 

11 

- J: - i 

) 
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c 

c 

To obtain these expressions we need the following lemma.
 

LEMMA A.I Let C, 0, and B be three nxp matrices and let E be a symmetric
 

matrix of nxn. If e represents the ith 
I 

for i=l, ... ,n, j=l, ... ,p, 

c formulae: a)aIC'EDl/ac =IC'(e )EDI;
Ij J I 

c)a IB'EB 1lab =21 B'(e )EB I.
IJ J I 

c Proof. See lemma 3.1 in Velilla (992). 

2 r IZ (w e)A Z 1=2IZ' (W )A Z I. Expressions b) and c)
1=1 IJ,r IJlr 11 IJ IJ IJ,r IJr Ij IJ 

are obtained in a similar way by using, respectively, parts a) and b) of 

lemma A.1. 

• 
c Finally, if from Z(\k) (see section 3.1.1), we define

Ik 

W(Alk)=aZ(Alk )laA d\k)=a2Z(\k)/aA2 
and Z W U stand for

Ik Ik Ik' Ik Ik Ik Ik' 1k' Ik 
I 

i the corresponding functions evaluated at ~ it is easily seen that
Ik' 

c W· =q (~ )[log(a )Z +W I and U· =q (~ )[(Iog(a »2Z + 
IJk IJk Ik IJk Ik 1k I Jk IJk Ik IJk Ik 

2log(a )W +U I. As a conclusion, for the cross-validation assessment
Ijk Ik Ik 

t- t­of the rules (0) and (11), we need the two MLE's li. and li., the array
1 2 

c of constants (a ) and the n xl vectors Z ,Wand U . An explicit
IJk I Ik Ik Ik 

. f th f t' Z(\k), W(\k) and d\), can be found inexpresslOn or e unc Ions Ik Ik Ik 

Atkinson and Lawrance (989). 

c 

c 12 

c 

Proof of theorem 

aiM (A )llaA lAI(J) I Ir 1\
I
= 

n 
I •• 

• 
A.1. By the chain 

canonical vector of IRn
, we have, 

the following differentiation 

b)aIC'EDl/ad =IC'ED (e )1; and
IJ J I 

rule and part a) of lemma A.I, 

li.t-=2 r 
n 

l I: IZ·' (e)A z·l(a/(AI~/aA lA li.t-)=IJ,m 11 IJ IJ I J Im Ir 1\ = 
I 1= 1m=l I I 
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