
Probabilistic load flow in systems with high wind power

penetration.

Julio Usaola

Departamento de Ingenieŕıa Eléctrica
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1 Introduction.

The great proliferation of intermittent generation in power networks has increased the uncertainty in
power systems. This uncertainty affects both the long and medium term system planning, and the
day-ahead operation.

Probabilistic power flow is one of the best known probabilistic tools. From the first proposals in the
seventies ([1], [2]), a great deal of literature can be found about this subject. The most straightforward
method of solving this problem is Monte Carlo simulation. This technique involves repeated simulation
with values obtained from the Probability Density Function (PDF) of the random variable considered.
But for an adequate representation, many simulations must be considered in real systems. This makes
this approach unpractical. One of the alternatives is the convolution of the PDF of the random vari-
ables involved, when they are independent of each other, and linearly related. Although this reduces
the computational burden, it is still costly to obtain the PDF of a single line when several random
power injections are considered. Fast Fourier Transform (FFT) techniques were proposed to reduce the
computational burden [3], but this method is linked to the convolution technique, and does not solve
the problem efficiently. In the early references, it was the uncertainty of the load what was considered.
Reference [5] proposed the use of FFT and convolution in distribution networks, and makes a simplified
estimation of the PDF for short term wind power prediction. A recent proposal is the Point Estimate
method [4], that approximates the moments of the system variables of interest.

All these approaches assume that the random variables considered are independent. However, depen-
dence between the uncertainties of power injection should be considered for loads and for wind generation.
The generalization of some of these methods for considering the dependence between random variables
is very complex, or unfeasible. There are some proposals that consider this dependence, only between
loads, in [7], where it is modeled with a linear relation, and in [8], where the covariance has been taken
into account in the equations.

Probabilistic load flow has mostly included the uncertainty of load. This uncertainty is not usually
very high, especially for day-ahead operation, and it can be modeled using Gaussian probabilistic density
functions. Wind energy proliferation, however, poses new challenges, since the variability of wind power
production is much higher, usually the PDF are not Gaussian, and inputs are strongly correlated. Long
term planning studies must consider PDF based on Weibull distributions, while short term operation
analysis need to use PDF whose estimation is still under study.

The use of cumulants and the approximation of a PDF by orthogonal series (Gram Charlier A expan-
sion series) have also been recently proposed [22]. It has interesting properties, and is computationally
inexpensive. For large transmission networks it seems that this approach is very adequate due to the low
computational requirements. It has the disadvantage of the necessary linearization but it may be easily
generalized for dependent random variables. However, for non-Gaussian PDF, Gram Charlier A expan-
sion series have serious convergence problems, and other approaches, such as Cornish Fisher expansion,
give better results, without more computational burden [6].

The aim of this paper is to propose an analytical method (that will be called Enhanced Linear Method

(ELM)) for the problem of probabilistic load flow. This method can be applied to grids where the wind
power uncertainty, load uncertainty and generation availability must be considered. Mathematically, this
means that the considered random variables may be continuous and/or discrete, and also dependent
and/or independent.

The report is estructured as follows. First, the statistical theoretical background is given, with all
the necessary definitions and concepts for the subsequent sections. Then, a short description of short
term wind power prediction and its associated uncertainty follows. The load flow equations are written in
order to give the nomenclature of the used variables and the conditions for their linearization. Afterwards,
the probabilistic power flow methods examined are described, first the point estimate method, and its
limitations, are given, with the necessary computational implementation. Then, the ELM approach is
described under different assumptions, from simple conditions (independent continuous random variables)
to a more general case (dependent continuous and discrete random variables). The study cases follow,
with results commented and explained. A conclusion ends the report, with the main points of the study.
Some appendices are given with additional information.
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2 Statistics.

2.1 Basic concepts.

In this section, the basic concepts of Statistics are defined for an easier reading hereafter. The definitions
follows [9]

Random Variable A random variable is a number x(ζ) assigned at every outcome ζ of an experiment.
The resulting function must satisfy the following two conditions but is otherwise arbitrary.

1. The set {x ≤ xo} is an event for every x.

2. The probability of the events {x = ∞} and {x = −∞} equals zero.

Probability distribution function The probability cumulative distribution function (CDF) of the
random variable x is defined as:

F (xo) = P (x ≤ xo) (1)

The properties of probability distribution functions are:

1. F (+∞) = 1, F (−∞) = 0

2. It is a non-decreasing function, if x1 < x2, then F (x1) < F (x2)

3. If F (xo) = 0, then F (x) = 0, ∀x ≤ xo

4. P (x > x) = 1 − F (x)

5. F (x) is continuous in the right, F (x+) = F (x)

6. P (x1 < x < x2) = F (x2) − F (x1)

7. P (x = x0) = F (x0) − F (x−
0 )

8. P (x1 ≤ x ≤ x2) = F (x2) − F (x−
1 )

Probability density function The probability density function (PDF), f(x) is defined as:

f(x) =
dF (x)

dx
(2)

2.2 Moments, cumulants and characteristic functions.

Moments Moments of order n are defined as:

mn = E[xn] =

∫ ∞

−∞

xnf(x)dx (3)

m1 = η is the mean.

Central moments Central moments, or moments about the mean are defined as:

µn = E[(x − η)n] =

∫ ∞

−∞

(x − η)nf(x)dx (4)

µ2 = σ2 is the variance.

It can be demonstrated that:

µn =

n∑

k=0

(
n
k

)
mk(−m1)

(n−k) (5)

mn =

n∑

k=0

(
n
k

)
µkm

(n−k)
1 (6)
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where

(
r
j

)
=

r!

j!(r − j)!

Characteristic function The characteristic function φ(ω) associated to a random variable is defined
as:

φ(ω) = E[ejωx] =

∫ ∞

−∞

f(x)ejωxdx (7)

There is an inversion formula, that gives f(x) as a function of φ(ω)

f(x) =
1

2π

∫ ∞

−∞

φ(ω)e−jωxdω (8)

the similarity between these formulas and the Fourier transform must be remarked. The definitions
of the Fourier transform and the inverse Fourier transform follow.

X(w) =

∫ ∞

−∞

x(t)e−jωtdt

x(t) =
1

2π

∫ ∞

−∞

X(ω)ejωtdω

Moment generating function The moment generating function is similar to the characteristic func-
tion. It is defined as:

φ(s) = E[es] =

∫ ∞

−∞

f(x)esxdx (9)

The following expression is called the Moment Theorem, and it says that

φ(n)(s) =
dnφ(s)

dsn
= E[xnesx]

and, therefore,

φ(n)(0) = E[xn] = mn (10)

Hence, φ(s) could be expanded in its Taylor series

φ(s) =

∞∑

n=0

1

n!
φ(n)(0)sn =

∞∑

n=0

mn

n!
sn (11)

This series converges only if the moments are finite, and in a close environment of s = 0.

Second characteristic function The second characteristic function, ψ(ω), is defined as:

ψ(ω) = lnφ(ω) (12)

and, inversely,
φ(ω) = eψ(ω)
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Cumulants Cumulants of order n, κn are defined as

dnψ(0)

dsn
= κn (13)

and it can be also written that

ψ(s) =
∞∑

n=0

κn

n!
sn (14)

From the expansion of both characteristic functions, it can be written that

∞∑

n=0

mn

n!
sn = exp

{
∞∑

r=1

κr

r!
sr

}

If the exponential is expanded in its Taylor series, and the terms of powers of s are equalled, the
relations between moments and cumulants can be found. These expressions are better expressed in
the recurrent formula (15).

κr+1 = mr+1 −
r∑

j=1

(
r
j

)
mjκr−j+1 (15)

and κ1 = m1

The inverse formula for the central moments may also be written as (16).

µr+1 = κr+1 +

r∑

j=1

(
r
j

)
mjκr−j+1 (16)

In the Appendix A, these relations are developed for the first terms.

2.3 Several random variables.

Let consider x = (x1, . . . , xn) the vectorial variable formed from n scalar variables. In the following
sections we will make n = 2 for simplicity’s sake.

2.3.1 Distribution and density functions.

Joint distribution function The joint bivariate distribution function F (x, y) is defined as

F (x1o, x2o) = P (x1 ≤ x1o, x2 ≤ x2o) (17)

The properties of this joint distribution function are:

1. F (−∞, x2) = 0, F (x1,−∞) = 0, F (∞,∞) = 1

2. It holds that

P{x1a ≤ x1 ≤ x1b, x2 ≤ x2o} = F (x1b, x2o) − F (x1a, x2o)

P{x1 ≤ x1o, x2a ≤ x2 ≤ x2b} = F (x1o, x2b) − F (x1o, x2a)

3. It also holds that

P{x1a ≤ x1 ≤ x1b, x2a ≤ x2 ≤ x2b} = F (x1b, x2b) − F (x1a, x2b) − F (x1b, x2a) + F (x1a, x2a)
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Joint density The joint density of x1 and x2 is by definition the function:

f(x1, x2) =
∂2F (x1, x2)

∂x1∂x2

From this and property 1 follows that

F (x1, x2) =

∫ x1

−∞

∫ x2

−∞

f(α, β)dαdβ

Joint statistics It can be demonstrated that

P{(x1, x2) ∈ D} =

∫

D

∫
f(x1, x2)dx1dx2

where {(x1, x2) ∈ D} is the event consiting of all outcomes ζ such that the point [x1(ζ), x2(ζ)] is
in D.

Marginal statistics In the study of several random variables, the statistics of each are called marginal.
Thus Fx1

(x1) is the marginal distribution and fx1
(x1) is the marginal density of x1. It holds that

Fx1
(x1) = F (x1,∞) Fx2

(x2) = F (∞, x2)
fx1

(x1) =
∫ ∞

−∞
f(x1, x2)dx2 fx2

(x2) =
∫ ∞

−∞
f(x1, x2)dx1

Independence Two random variables x1 and x2 are called (statistically) independent if the events
[x1 ∈ A] and [x2 ∈ B] are independent, that is, if

P{x1 ∈ A, x2 ∈ B} = P{x1 ∈ A}P{x2 ∈ B}

where A and B are two arbitrary sets on the x1 and x2 axes, respectively. If the random variables
x1 and x2 are independent, then

F (x1, x2) = Fx1
(x1)Fx2

(x2)

hence
f(x1, x2) = fx1

(x1)fx2
(x2)

2.3.2 Joint moments

The joint moment of order k + r = n of the random variables x1 and x2 is

mkr = E
[
xk

1xr
2

]
=

∫ ∫ ∞

−∞

xk
1xr

2fx1x2
(x1, x2)dx1dx2 (18)

Thus m10 = η1, m01 = η2 are the first order moments, and the second order moments are

m20 = E[x2
1] m11 = E[x1x2] m02 = E[x2

2]

The joint central moments of x1 and x2 are the moments of x1 − η1 and x2 − η2

µkr = E
[
(x1 − η1)

k(x2 − η2)
r
]

=

∫ ∫ ∞

−∞

(x1 − η1)
k(x2 − η2)

rfx1x2
(x1, x2)dx1dx2 (19)

Clearly µ10 = µ01 = 0 and

µ20 = σ2
x1

µ11 = Cx1x2
µ02 = σ2

x2
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The covariance C or Cx1x2
of two random variables x1 and x2 is by definition the number:

Cx1x2
= E[(x1 − η1)(x2 − η2)] = E[x1x2] − E[x1]E[x2] (20)

where E[x1] = η1 and E[x2] = η2

The correlation coefficient ρ or ρx1x2
of the random variables x1 and x2 is by definition the ratio

ρx1x2
=

Cx1x2

σx1
σx2

(21)

we maintain that |ρx1x2
| ≤ 1 and |Cx1x2

| ≤ σx1
σx2

Two random variables are called uncorrelated if their covariance is 0. this can be expressed as

Cxy = 0 ρxy = 0 E[x1x2] = E[x1]E[x2]

Two random variables x1 and x2 are called orthogonal, notated as x1 ⊥ x2, if

E[x1x2] = 0

2.3.3 Characteristic function of joint random variables

The joint characteristic function of the random variables x1 and x2 is defined as:

φ(ω1, ω2) =

∫ ∞

−∞

∫ ∞

−∞

f(x1, x2)e
j(ω1x1+ω2x2)dx1dx2 (22)

From this definition, it can be followed that

f(x1, x2) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

φ(ω1, ω2)e
−j(ω1x1+ω2x2)dω1dω2 (23)

It is clear that

φ(ω1, ω2) = E
[
ej(ω1x1+ω2x2)

]

The joint logarithmic-characteristic function of x1 and x2 is

ψ(ω1, ω2) = lnφ(ω1, ω2) (24)

The marginal characteristic functions φx1
(ω) = E

[
ejωx1

]
and φx2

(ω) = E
[
ejωx2

]
of x1 and x2 can

be expressed in terms of their joint characteristic function φ(ω1, ω2) as φx1
(ω) = φ(ω, 0) and φx2

(ω) =
φ(0, ω).

The joint moment generation function is given by

φ(s1, s2) = E [es1x+s2x2 ]

Expanding the exponential and using the linearity of expected values, we obtain the series

φ(s1, s2) =

∞∑

n=0

1

n!

n∑

n=0

(
n
k

)
E

[
xk

1xn−k
2

]
sk
1sn−k

2 (25)

= 1 + m10s1 + m01s2 +
1

2

(
m20s

2
1 + 2m11s2 + m02s

2
2

)
+ . . .

From this it follows that

∂k∂r

∂sk
1∂sr

2

φ(0, 0) = mkr

The derivatives of the function ψ(s1, s2) = lnφ(s1, s2)
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∂k∂r

∂sk
1∂sr

2

ψ(0, 0) = κkr

are by definition the joint cumulants κkr of x1 and x2. It can be shown that

κ10 = m10, κ01 = m01, κ20 = µ20, κ02 = µ02, κ11 = µ11 = Cx1x2
= ρx1x2

σx1
σx2

2.3.4 Functions of two random variables

Given two random variables x1 and x2, and a function g(x1, x2), we form a new random variable z as

z = g(x1, x2)

Then, the distribution function Fz(z) may be found as

Fz(zo) = P{z(ξ) ≤ zo} = P{g(x1, x2) ≤ zo} = P{(x1, x2) ∈ Dz} =

∫ ∫

x1,x2∈Dz

fx1x2
(x1, x2)dx1dx2

where Dz in the x1x2 plane represents the region where the inequality g(x1, x2) ≤ z is satisfied. Dz

need not to be simply connected.
The expected value of the random variable z = g(x1, x2) is given by

E[z] =

∫ ∞

−∞

zfz(z)dz =

∫ ∞

−∞

∫ ∞

−∞

g(x1, x2)f(x1, x2)dx1dx2

It is straightforward that

E

[
n∑

k=1

akgk(x1, x2)

]
=

n∑

k=1

akE [gk(x1, x2)] (26)

Let z = x1 + x2. Then, the distribution function can be written as

Fz(z) = P{x1 + x2 ≤ z} =

∫ ∞

x1=−∞

∫ z−x2

x=−∞

fx1x2
(x1, x2)dx1dx2

The probability density function is

fz(z) =

∫ ∞

−∞

fx1x2
(z − x2, x2)dx2 =

∫ ∞

−∞

fx1x2
(x1, z − x1)dx1

If x1 and x2 are independent, then

fx1x2
(x1, x2) = fx1

(x1)fx2
(x2) (27)

and then

fz(z) =

∫ ∞

−∞

fx1
(z − x2)fx2

(x2)dx2 =

∫ ∞

−∞

fx1
(x1)fx1

(z − x1)dx1

If two random variables are independent, then the density of their sum equals the convolution of their
densities. Then,

fz(z) = fx1
(x1) ∗ fx2

(x2) (28)
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2.3.5 Characteristic functions and moments of linear combinations of two random vari-
ables.

Let z be a random variable that is a linear combination of two random variables x1 and x2

z = a1x1 + a2x2

The characteristic functions of a linear combination of random variables can be found as follows.

φz(ω) = E
[
ej(a1x1+a2x2)ω

]
= φ(a1ω, a2ω)

If the random variables x1 and x2 are independent, then

E
[
ej(ω1x1+ω2x2)

]
= E

[
ejω1x1

]
E

[
ejω2x2

]

From this it follows that

φ(ω1, ω2) = φx1
(ω1)φx2

(ω2) (29)

If the random variables x1 and x2 are independent and z = x1 + x2, then

E
[
ejω1z

]
= E

[
ejω1(x1+x2)

]
= E

[
ejωx1

]
E

[
ejωx2

]

Hence

φz(ω) = φx1
(ω)φx1

(ω) ; ψz(ω) = ψx1
(ω) + ψx1

(ω)

In this case, the moments n order of z are:

mz,n = E[zn] = E[(a1x1 + a2x2)
n]

the term in the parentheses above is the well known Newton binomial

(a1x1 + a2x2)
n =

n∑

j=0

Cj
n(a1x1)

n−j(a2x2)
j

where

Cj
n =

n!

j!(n − j)!

and, therefore,

mz,n =

n∑

j=0

Cj
nan−j

1 aj
2m(n−j)j (30)

where m(n−j)j = E[xn−j
1 xj

2] is the joint moment of orders (n − j) and j of the variables x1 and x2.
The central moments of order n of z can be also be written as:

µz,n = E[(z − ηz)
n] = E[(a1x1 + a2x2 − ηz)

n]

where ηz is the mean of the variable z, and can be written as ηz = a1η1 + a2η2, where η1 and η2 are
the means of the random variables x1 and x2. Therefore,

µz,n = E[(z − ηz)
n] = E[(a1(x1 − η1) + a2(x2 − η2))

n]

that can be also developed as the Newton binomial and, hence,

µz,n =

n∑

j=0

Cj
nan−j

1 aj
2µ(n−j)j (31)
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It could be also demonstrated (see [10]) that

κz,n =

n∑

j=0

Cj
nan−j

1 aj
2κ(n−j)j (32)

where κz,n is the cumulant of order n of the variable z, and κ(n−j)j is the joint cumulant of order
(n − j) and j of the variables x1 and x2

When x1 and x2 are independent, these equations can be expressed in an easier way as:

mz,n = an
1mn,0 + an

2m0,n (33)

µz,n = an
1µn,0 + an

2µ0,n (34)

κz,n = an
1κn,0 + an

2κ0,n (35)

2.3.6 Moments of linear combination of several random variables.

When there are more than two random variables, it is difficult to generalize the notation used in the
previous section. In these cases it is better to denote the moments and cumulants in the following way.
Let Y be a vector of random variables that are transformed from a set of random variables X as

Z = AX

or zr = arixi, where the subscripts specify the variable in the sets.
The joint moment of second order of the variables xi and xj will be called mij

x . The joint cumulant
of order three of the variables xi, xj and xk will be called κijk

x ,and so on. The indices i, j and k can be
equal.

Then, the equations (30), (31) and (32) can be written for the cumulants of order 3, for instance, as

κrst
z =

∑

i

∑

j

∑

k

ariasjatkκijk
x (36)

It can be easily verified that equation (36) gives the same results than equation (32), for the third
order moments, and two variables.

Similar equations could be written, as in the previous sections, for moments. However, it is better to
work with cumulants for the following reasons [10]:

• Most statistical calculations using cumulants are simpler than the corresponding calculation using
moments.

• For independent random variables, the cumulants of a sum are the sum of cumulants.

• For independent random variables, the cross-cumulants are zero.

• Series expansion, such as the Cornish-Fisher expansion are most conveniently expressed using cu-
mulants.

• Where approximate normality is involved, high order cumulants can usually be neglected, but not
higher order moments.

2.4 Generation of correlated random numbers

This section shows how to generate multivariate dependent random numbers. The way of modelling this
dependence is through the correlation matrix. Although the approach shown here is not able to reproduce
the dependence among variables with total accuracy, due to the nonlinearity of the process, the method
is accurate enough for a first approach. The method has been thought for being used in MATLAB, that
from the multivariate normal distribution, makes possible to generate random numbers with, as said, any
other marginal distribution, even different among them.
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The fundamental of the method is the inverse transformation of a uniform distribution. Let x1 be
a random variable with uniform distribution U(0, 1). Let x1,k be the sample k of the U(0, 1). Then, to
generate random numbers of a given distribution with CDF F (x), x2,k, it is necessary to perform the
simple operation x2,k = F−1(x1,k). If we transform this new variable, forming x3,k = F (x2k), then x3k

will have a U(0, 1) distribution.
The method begins by generating random numbers of a multivariate normal random variable, with a

given correlation matrix, forming the array x1, where there are as many rows as variables, and as many
columns as numbers desired, or samples. Each element could be written as x1,ij , where i is the variable,
and j the sample. Then, a normal transformation is made to this values in order to obtain a multivariate
uniform distribution, x2. x2 = F (x2), where F (x) is a multivariate normal CDF.

The third step consists in transforming the obtained marginal distributions in the wished distribution
G. Then, the sample j of the new variable i x3,ij will be obtained as x3,ij = G−1(x2,ij).

These transformations, however, being nonlinear, do not keep the exact value of the correlation
coefficient, although the new correlation coefficient is quite close to it. More complex methods, such as
copula modeling could be used to preserve the desired correlation among variables, that is in the origin
of the transformations.

2.5 Approximation of distribution functions.

The problem that is going to be considered here is how to obtain a distribution (or density) probability
function, given its moments or cumulants. Different approaches have been made, some of them based on
series expansions that obtain the PDF in terms of a base function.

2.5.1 Gram-Charlier A series.

Let consider the series expansion of a probability density function f(x) with mean η = 0 and σ = 1 in
terms of a base function ϕ(x), where ϕ(x) is N(0,1). This expansion may be written as:

f(x) =

∞∑

j=0

cjϕ
(j)(x) (37)

where ϕ(j)(x) is the j-th derivate of ϕ(x). This equation may be written in terms of the Tchebycheff-
Hermite polynomials (see Appendix B), Hj as,

f(x) =
∞∑

j=0

cjHjϕ(x) (38)

multiplying by Hr(x) and integrating from −∞ to ∞ we have, in virtue of the orthogonal relationship
between Tchebycheff-Hermite polynomials

cr =
1

r!

∫ ∞

−∞

f(x)Hr(x)dx (39)

From equation (39), the values of cr may be obtained as funcions of the central moments µ. The first
terms are:
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c0 = 1

c1 = 0

c2 = 0

c3 =
1

3!
µ3

c4 =
1

4!
(µ4 − 3)

c5 =
1

5!
(µ5 − 10µ3)

c6 =
1

6!
(µ6 − 15µ4 + 30)

c7 =
1

7!
(µ7 − 21µ5 + 105µ3)

c8 =
1

8!
(µ8 − 28µ6 + 210µ4 − 315)

A distribution with variance σ2 should be normalized, and the values µr in the previous equation
should be changed to µr

σr .
This is the so-called Gram-Charlier series of Type A.
It can be demonstrated [15] that this infinite series converges if the integral

∫ ∞

−∞

e
x2

4 dF (x) (40)

converges and if f(x) tends to zero as |x| tends to infinity. This limits the valid distributions only
to a reduced number of the most common distributions. From the statistical viewpoint, however, the
important question is not whether an infinite series can represent a frequency function, but whether a
finite number of terms can do so to a satisfactory approximation. It is possible that even when the infinite
series diverges, its first few terms will give an approximation of an asymptotic character. Actually, the
series in the Charlier form may behave irregularly in the sense that the sum of k terms may give a worse
fit than the sum of (k − 1) terms. In many statistical inquiries we are more interested in the tails of a
distribution than its bejaviour in the neghbourhood of the mode, and it is here that the Type A series
appears particularly inadequate (see [11]).

2.5.2 The Cornish-Fisher expansion.

The Cornish-Fisher expansion (see [13], [16] [17] for details) provides an approximation of a quantile
α of a distribution function F (x) in terms of the quantile of a normal N(0, 1) distribution Φ and the
cumulants of F (x). Using the first five cumulants, the expansion is [19], [11],

x(α) ≈ ξ(α) +
1

6
(ξ2(α) − 1)κ3 +

1

24
(ξ3(α) − 3ξ(α))κ4 (41)

− 1

36
(2ξ3(α) − 5ξ(α))κ2

3 +
1

120
(ξ4(α) − 6ξ2(α) + 3)κ5

− 1

24
(ξ4(α) − 5ξ2(α) + 2)κ3κ4 +

1

324
(12ξ4(α) − 53ξ2(α) + 17)κ3

3

where x(α) = F−1(α) and ξ(α) = Φ−1(α) and κr is the cumulant of orden r of the distribution
function F .

Although the convergence properties of Cornish-Fisher series are difficult to demonstrate [17], and
are somehow related to Gram-Charlier series, their behavior for non-Gaussians PDF is better than the
latter, as shown below.
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2.5.3 Comparison between Gram-Charlier and Cornish-Fisher expansions.

As explained before, Gram-Charlier A series converge with difficulties to non-Gaussian functions, and
numerical errors may even make worse this convergence, as noted by [12].

For instance, the reconstruction of the cumulative density function (cdf) of a Weibull (a = 2 and
b = 2) distribution when 6 terms of the Gram-Charlier series are considered, is given in the figure 1. It
can be seen that the fitting is bad. If more terms of the series are used, the result is even worse.

−3 −2 −1 0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4
−− Gram−Charlier, − original

Figure 1: Reconstruction of a Weibull cdf using Gram-Charlier expansions. a = 2, b = 2.

The same approximation, using the Cornish-Fisher expansion yields Figure 2. It can be seen that the
approximation is better.

A numerical comparison may be made between both approximations. This comparison will be per-
formed to the tail values, since they are the most important for system security analysis. For this case,
the values for the .9 and .95 values of the original CDF and the approximations is given in table 1. The
values are expressed as a fraction of the distribution mean.

Gram-Charlier Cornish-Fisher
6 terms 4 terms 11 terms 6 terms

.9 0.1015 0.064 .0331 .0571

.95 .1595 .1557 .0733 .1058

Table 1: Comparison between Cornish-Fisher and Gram-Charlier approximations. Values in p.u. of the
mean.

In this table, it can be noticed that the accuracy of the Cornish-Fisher approximation is better than
the Gram-Charlier series. Besides, the accuracy of the latter is smaller if more terms are used, while the
former increases it with the number of terms. For both approximations, the error is greater when they
consider values closer to the distribution tail.

2.5.4 Multimodal distributions.

A multimodal distribution is a distribution of a random variable with several modes. A multimodal
distribution comes from a combination of a continuous and a discrete random variables.
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1
− Cornish−Fisher, −− original

Figure 2: Reconstruction of a Weibull cdf using Cornish-Fisher expansions. a = 2, b = 2.

In the case of a multimodal distribution, to know the values of the moments ais not enough to estimate
the PDF or CDF of the random variable through series expansion. The percentiles of the function cannot
be, hence, properly estimated either by this means.

An example of multimodal CDF compared with a unimodal CDF with the same moments is given in
Figure 3.

In the following approach a linear combination of variables will be considered. Let z be a linear
combination of the discrete variable xd and the continuous variable xc. Both variables are independent.
Then,

z = xc + adxd

where ad is a real constant. The most obvious approach to the estimation of the PDF of z is the
convolution of those variables (see section 2.3.4), since they are independent.

It is a well known property of the Fourier transform that the transform of a convolution of two
functions is the product of their Fourier transform. Therefore,

fz(z) = fx1
(x1) ∗ fx2

(x2) ↔ Fz(ω) = Fx1
(ω) · Fx2

(ω)

Where F stands for the Fourier transform of f . It must be recalled that the Fourier transform of
a discrete function renders a periodic function in the complex domain. An example of a transform of a
continuous PDF, a discrete PDF, and its product is given in Figure 4. An exponential and a binomial
distributions have been chosen. The result of the convolution is given in Figure 5. It can be seen that
the transform of the discrete distribution is a periodic function.

Not all linear combinations of discrete and continuous variables render z a multimodal distribution.
This depends on the nature of both, and on the coefficient ad. For instance, the functions whose transforms
are given in Figure 6, render the PDF shown in Figure 7, which is unimodal. In this example, the
continuous PDF is a normal, while the discrete random variables has a binomial distribution.

Since the convolution is a computationally expensive procedure, if there are many discrete variables
and many combinations to be considered, the computational burden increases hugely. Therefore, it is
interesting to determine under which conditions the convolution of a discrete and a continuous variables
would yield a multimodal PDF in order to reduce the number of convolutions as much as possible. When
the distribution is unimodal, the Cornish-Fisher series expansion gives a good approximation, as if it
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Figure 3: Multimodal and unimodal CDF with the same moments.
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Figure 4: Transforms of a discrete and continuous PDF, and their product. Multimodal case.
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Figure 5: Multimodal PDF from a combination of a discrete and continuous functions.
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Figure 6: Transforms of a discrete and continuous PDF, and their product. Unimodal case.
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Figure 7: Unimodal PDF from a combination of a discrete and continuous functions.

were a linear combination of continuous variables. In practice, only a limited number of convolutions is
necessary.

To obtain the condition for a multimodal distribution, it is better to work in the frequency domain,
as can be expected from the previous figures. This condition is that the transform of the continuous
variable has a sufficiently low value at the frequency of the, say, second peak of the Fourier transform of
the discrete variable. This peak is given by

flim =
1

ad∆xd

where ∆xd is the separation between two non zero values of the discrete distribution. Therefore, the
unimodality condition is:

|Fc(flim)| < εf (42)

Where εf is a number sufficiently small and Fc is the Fourier transform of the continuous function.
If this condition is fulfilled, then the result of the convolution would be an unimodal function, and
a Cornish-Fisher expansion would render a good approximation. Otherwise, a convolution should be
performed.

3 Short term wind power prediction. Uncertainty.

3.1 Short term wind power prediction.

Short term wind power prediction programs are tools that provide an estimation of the future power
production of a wind farm, or a group of wind farms, in the next hours. For this purpose, they use
meteorological forecasts coming from a Numerical Weather Prediction (NWP) tool, and sometimes real
time SCADA data from the wind farms, as wind power production, measured wind speed, etc. Data
of the wind farms, such as rated power, type and availability of wind turbines, etc. are also necessary.
The output of these programs is the hourly average wind farm production for the next hours. Typically,
predictions are issued for the next 48 hours, but longer time horizons are possible, sometimes at the price
of a lower accuracy.
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These predictions tools are less accurate than load prediction programs and their accuracy decreases
with the time horizon. A survey of the accuracy of these tools is given in [25], and an example for a typical
wind farm, where the output from the prediction program SIPREOLICO is compared to persistence is
shown in Figure 8. Persistence is a prediction method that assumes that the future production, for
the entire time horizon considered, is the current production of the wind farm, i.e. p̂(t + k|t) = p(t),
where p̂(t + k|t) is the power predicted at time t for k hours later, and p(t) is the wind farm generated
power at time t. This method is considered as a threshold of the performance of a forecasting method.
SIPREOLICO is a prediction program used since year 2002 in Red Eléctrica de España, the Spanish
TSO, and developed by Universidad Carlos III de Madrid, to forecast wind power production of the next
42 hours, every 15 minutes, for the 14 GW of wind power connected to the Spanish peninsular grid.
Details of SIPREOLICO can be found in [26].

NMAE
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look-ahead time (hours)

p
.u

.

Pred. Tool Pers

Figure 8: NMAE of SIPREOLICO and persistance for a typical wind farm.

Figure 8 represents the Normalized Mean Average Error, defined as

NMAE(k) =
1

Pn

∑N
t=1 |e(t + k|t)|

N
(43)

Where

e(t + k|t) = p(t + k) − p̂(t + k|t)
And p(t + k) is the production of the wind farm at time (t + k). Pn is the nominal power of the wind

farm, and N is the number of predictions examined along the considered time. It can be seen that the
wind power prediction accuracy allows for much uncertainty, and that the actual value may differ widely
from the predicted one.

3.2 Uncertainty of short term wind power prediction.

The predictions provided by a short term wind power prediction program are uncertain, and it is in-
teresting to estimate this uncertainty in order to have more information about the future production of
a wind farm. Let p be the random variable associated with the power output of a wind farm. Then,
the probability of producing p MW, having predicted p̂ MW k hours before, is given by the probability
density function fp̂,k(p). The uncertainty, and hence the probability density function, changes with the
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range of the wind farm power otuput, since this value is bounded between zero and the rated power.
Besides, the power curve of a wind turbine or wind farm is nonlinear. If we assume that the wind speed
predictions have gaussian uncertainty, then the probability density functions of the power predictions will
not be gaussian. The shape of these probability density functions is also affected by the time lag elapsed
between the prediction and the operation times. As shown before, predictions with a shorter time lag are
more accurate, and the variance of their uncertainty distribution is likely to be smaller than those pre-
dictions produced longer before. To obtain analytically, or in real time, the uncertainty of this prediction
is difficult, but accurate estimations can be made from past data, and some research has already been
made in this field. Given the past predictions and wind production for these predictions, the accuracy of
these predictions can be tabulated, and then their frequency can be used as an approximation of these
probability density functions. If the power range of a wind farm is comprised between 0 and Pmax, and
this range is divided in Q intervals, the power p would be included in the interval q, if

q − 1

Q
Pmax ≤ p ≤ q

Q
Pmax

The probability density function fp̂,k(p) changes into fq̂,k(p), where q̂ is the interval in which the
predicted power p̂ is included. As an example, the following figures give the frequency distributions of
the produced powers for different values and time lags of the prediction. Figure 9 shows the frequency
distribution when a low power had been predicted 7 hours before real time, while Figure 11 shows the
frequency distribution when the power level is near the average. All these values have been obtained
from real production of three months of a wind farm whose rated power has been normalized to 1.
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Figure 9: fq̂,k(p) for q∗ = 2 and k = 7. Q = 14.

Figure 10: fq̂,k(p) for q̂ = 7 and k = 7. Q = 14.
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Figure 11: fq̂,k(p) for q̂ = 13 and k = 7. Q = 14.

Figure 12: fq̂,k(p) for q̂ = 13 and k = 36. Q = 14.
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It is not the purpose of this work to propose a model for this uncertainty, and a reasonable assumption
will be used as an approximation. Due to the bounded nature of the power produced by a wind farm, a
Beta PDF will be used, as proposed in [27]. Heuristic PDF, as shown in [28], supports this assumption,
although this is still an open field for research. The Appendix D.1 gives the analytical expression of Beta
distribution. In our case, the mean of the distribution will be the predicted power at the time of interest,
while the standard deviation σ will depend on the level of power injected, with respect to the wind farm
rated power. This dependence has been obtained heuristically for some wind farms, and the results are
shown in Figure 13, where the value of standard deviation is normalized to the rated power of the wind
farm. Although there are wide variations, an approximation by a quadratic curve (shown in the picture)
will provide realistic results.
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Figure 13: Relation between standard deviation and mean for the uncertainty of predictions.

The uncertainty of short term wind power prediction of geographically close wind farms are correlated,
since the wind power in all of them are due to similar meteorological simulations. This dependence has
not been modeled up to now, but the studies such as [18] show the dependence between productions in
a wide area (Germany). These results may be considered as an estimation of actual correlation values,
although it is necessary to wait until more specific studies are made.

4 Load flow equations.

In order to give the notation used in the probabilistic load flow, the load flow equations will be recalled
here. Two general formulations will be given, DC and AC, and in the last case the linear sensitivities of
the line flows to the nodal power injections with distributed slack bus will be found.

4.1 DC load flow.

The well-known DC load flow equations are:

B′δ = P
Pf = X−1Tt = X−1TtB′−1P = AP

(44)

Where Pf is the vector of power flows through lines, P is the vector of net nodal power injections, B′

is the susceptance matrix whose terms are Bij = −1/Xij , Bii =
∑

i6=j 1/Xij and δ is the vector of nodal

voltage angles, X−1 is a diagonal matrix whose terms are the inverse of the branch reactances, T is the
branch-node incidence matrix, and A = X−1TtB′−1 is the coefficient matrix that relates the line power
flows to the nodal power injections. This establishes the linear relation between power flows and nodal
power injections.

For this purpose the DC load flow equations provide a good estimate of the power flows. Figure
14 shows the relative error in % of power flows in lines between AC and DC solution. This has been
calculated for all the lines in the Transmission network of the Peninsular Spanish Power system, for 72
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representative cases along year 2004. The minimum power limit of the lines in the studied case is around
220 MW. Beyond this power, the error is less than 5% between DC and AC power flows. Therefore, for
large powers (with risk of overload, or congestion) the errors are small enough, so DC load flow can be
considered as an adequate first approximation, at least as a approach.

Figure 14: Comparison between AC and DC load flows in the Spanish peninsular transmission grid.

4.2 Linearization of AC load flow equations.

Let us write the nonlinear load flow equations for a power system as:

S = g(Z) (45)

Pf = h(Z)

Where Z is the vector of nodal voltages and angles, S is the input vector of real and reactive power
injections, and Pf is the output vector of line active power flows; g and h are nonlinear functions.
Linearizing these equations around a working point yields, after some calculation,

∆Pf = JhJP
−1∆P = Λf∆P (46)

∆P is the vector of active power injections taken from vector S. Jh is the jacobian matrix of nonlinear
function h, while JP is the submatrix of the jacobian matrix of function g that relates line active power
flows to state variables. Reactive power injections have not been considered because of the low interaction
between reactive power injections and active power flows, and because modern wind generation tend to
control the reactive power injections due to economic incentives. Therefore, variations of reactive power
injected by wind farms may be overlooked. The power factor of loads will be considered constant, and
hence the changes in the reactive power demanded are just proportional to the active power.

Matrix Λf is, therefore, a sensitivity matrix whose terms are the system Power Transfer Distribution
factors (PTDF). The definition of these PTDF assumes that the power injections are compensated by
opposite power injections at the slack bus. This could be an acceptable assumption when the injections
have a small value. However, large fluctuations due to variation of power in wind farms may be compen-
sated by the combined operation of several generators. For this reason, the sensitivity coefficients used
in this work have been calculated considering a distributed slack bus. Evidently, conventional PTDF are
a particular case of this scheme. The new sensitivities can be easily calculated in the following way.

Let be ∆P1 and ∆P2 the injected power of two wind farms, and ∆P3 and ∆P4 the compensation of
the regulating generators. Then, the linear approximation to the flow in a line, ∆Pf is:

∆Pf = λ1∆P1 + λ2∆P2 − λ3∆P3 − λ4∆P4
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Let us call ∆P = ∆P1 + ∆P2 = ∆P3 + ∆P4. Then, the power injected by the regulating generators
would be ∆P3 = k3∆P , and ∆P4 = k4∆P

The power increase in the considered line could be written as:

∆Pf = λ1∆P1 + λ2∆P2 − (k3λ3 + k4λ4)∆P

or

∆Pf = (λ1 − (k3λ3 + k4λ4))∆P1 + (λ2 − (k3λ3 + k4λ4))∆P2

or, in general,

∆Pf =
∑

j

(
λj −

R∑

r=1

krλr

)
∆Pj

Hence, the new sensitivity coefficients, with the distributed slack bus are defined as:

λ′
qi = λqi −

R∑

r=1

krλqr (47)

Where λqi is the term (q, i) of the sensitivity matrix Λf , that is to say, the PTDF of line q with
respect to an injection in node i, kr is the part of power injection in node i that the regulating generator
r assumes, as defined previously, for example

(
kr = 1

R

)
. R is the number of generators that compensate

the injection in node i. Of course, any other sharing of load variation among generators is possible, and
even economic criteria could be considered. Finally, it may be written that

∆Pf = Λ′
f
∆P (48)

Where ∆P includes only the considered power injections, i.e., the random power injections in our
case.

A similar approach may be made for the estimation of reactive power and voltage. The accuracy of
these approximations would be, however, smaller. This approximation can be written as (49).

∆Qf = Γ′
f
∆P (49)

5 Probabilistic load flow.

Probabilistic power flow is a tool that provides the probability of a system variable taking a value. These
variables may be node voltages, or power through lines, or any other. The aim of this program is to
estimate the risk of line overloading and congestion for the next hours.

In the following sections, the fundamentals and practical implementation of two different proposed
methods will be described. Firstly, the point estimate method, that has been recently proposed to
solve this problem. Then, a method that make use of the properties of a linear combination of random
variables and will be called Enhanced Linear Method (ELM). To do this, it is necessary to use a linear
approximation of the load flow equations.

Point estimate method are useful for independent power injections, but become very cumbersome for
dependent random variables. ELM can be used both for dependent and independent variables, and its
implementation will be described in three steps. First, the method for independent variables, only with
continuous distributions of the random variables, and using DC load flow (ELM-IDC) will be explained.
Then, the method for dependent continuous random variables (ELM-C) will follow. Finally, the more
general case with continuous and discrete dependent variables will be described (ELM).

In both cases, the final result of these methods are the moments of the distribution of the power flows
and other system variables. It is necessary to estimate the CDF of the resulting magnitudes to know the
probability of the line flow to surpass the line flow limits. Thus, a method should be used to build this
CDF from the obtained moments. These methods have been described in previous sections, and they
will be Cornish-Fisher expansion series and convolution when necessary. Their accuracy in achieving this
task will be evaluated in next sections.
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5.1 Point estimate methods.

Point estimate methods have been recently proposed for the load flow problems in the works of [4] and
[30]. The next sections explains the fundamental of the method, and its practical implementation.

5.1.1 Independent random variables.

Functions of one variable. Let x be a random variable with probability density function fx(x), and
z = h(x). The moment of order n of variable x will be called mx,n, and the central moment of order n
µx,n. The mean of x will be ηx = mx,1 and its variance σ2

x = µx,2. Let’s call

λx,n =
µx,n

σn
x

Then, λx,1 = 0, λx,2 = 1 and λx,3 and λx,4 are the skewness and kurtosis coefficients respectively.
If we write the Taylor expansion series of z = h(x) around its mean ηz, we get the following expression:

h(x) = h(ηz) +
∞∑

n=1

1

n!
h(n)(ηx)(x − ηx)n

where h(n)(ηx) means the derivative of order n of the function h(x) evaluated at ηx.
Then, the value of ηz may be also obtained as:

ηz = E[h(x)] =

∫ ∞

−∞

h(x)fx(x)dx (50)

= h(ηz) +

∞∑

n=1

1

n!
h(n)(ηx)µx,n

= h(ηz) +

∞∑

n=1

1

n!
h(n)(ηx)λx,nσn

x

The point estimate method intents to approximate the mean (and higher order moments) by a linear
combination of the value of function h in several points. For two points, x1 and x2 this approximation
can be written as:

ηz ≃ p1h(x1) + p2h(x2)

where x1 = ηx + ξ1σx and x2 = ηx + ξ2σx and p1 and p2 are the weights to be found, together with
the values of ξ1 and ξ2. The approximation may be written as

ηz ≃ p1h(x1) + p2h(x2) = h(ηx)(p1 + p2) +

∞∑

n=1

1

n!
hn(ηx)(p1ξ

n
1 + p2ξ

n
2 )σn

x (51)

since

h(xi) = h(ηz) +

∞∑

n=1

1

n!
h(n)(ηx)(xi − ηx)n

and xi = ηx + ξiσx. Since there are four unknowns, four equations are necessary to find them. These
equations are obtained equalling the first four terms of the series developments (50) and (51):

p1 + p2 = 1 (52)

p1ξ1 + p2ξ2 = 0

p1ξ
2
1 + p2ξ

2
2 = 1

p1ξ
3
1 + p2ξ

3
2 = λx,3
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The solution to this system is, [24],

ξj =
λx,3

2
+ (−1)3−j

√

1 +

(
λx,3

2

)2

(53)

pj = (−1)j
ξ(3−j)

ζ

where

ζ = ξ1 − ξ2 = 2

√
1 +

λx,3

2

since the third first terms of the series development of ηz have been equalled, it is a third order
approximation

ηz = p1h(x1) + p2h(x2) +

∞∑

n=4

1

n!
h(ηz)

(n)(λx,n − (p1ξ
n
1 + p2ξ

n
2 ))σn

x

A similar way can be used to approximate higher order moments, for instance,

E[z2] ≃ p1h(x1)
2 + p2h(x2)

2

This method can be extended to more points. This implies a higher order approximation to the
moments.

Functions of several variables. Let z be a random variable that is a funcion of several independent
random variables, z = h(x), where x = (x1, . . . , xn). The probability density functions of each variable

xk will be fk(xk), and the joint probability density function will be fx(x1 . . . , xn), and ∂(kn)fx

∂xk1...∂xkn
= 0, if

∃ ki 6= kj. µk,n will be the central moment of order n of the variable xk, whose mean and variance are
ηk and σ2

k = µk,2.
Let consider the points xk,i = ηk + ξk,iσk for i = 1, . . . ,m points and k = 1, . . . , n variables. Each

point will be associated to a weight pk,i such that
∑n

k=1

∑m
i=1 pk,i = 1.

Then, z = h(x) can be expanded in multivariate Taylor series around the point ηx = (η1, . . . , ηn).
Using this series expansion, the mean of z may be approximated, arriving at the following expression:

ηz = E[z] = E[h(x)] =

∫
. . .

∫ ∞

−∞

h(x)fx(x) =

∫
. . .

∫ ∞

−∞

fx(x)



h(ηx) +

∞∑

j=1

n∑

i=1

1

j!

∂jh

∂xj
i

(xi − ηi)
j



 dx

since

∫
. . .

∫ ∞

−∞

(xk1 − ηk1)
j . . . (xkl − ηkl)

qfx(x)dx = 0

for every q, . . . , j, if ∃ km 6= kn m, n ∈ {1 . . . l}. Then

ηz = h(ηx) +
∞∑

j=2

n∑

i=1

1

j!

∂jh

∂xj
i

µj,i (54)

since
∫ ∞

−∞
(xk − ηk)fk(xk)dxx = 0 ∀k.

If we want to approximate the mean ηz by

ηz
∼=

n∑

i=1

m∑

k=1

pk,ih(η1, . . . , xk,i, . . . , ηn) (55)
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from the series expansion of the terms of (55) and its aproximation to the series (54) in a similar
fashion to the univariate case, equalling terms, we arrive at the following system of equations:

m∑

i=1

pk,iξ
j
k,i = λk,j (56)

for j = 1, . . . , 2m − 1 and k = 1, . . . , n. For m = 2 these equations take the following form for the
variable k.

pk,1ξk,1 + pk,1ξk,1 = 0 (57)

pk,1ξ
2
k,1 + pk,2ξ

2
k,2 = 1

pk,1ξ
3
k,1 + pk,2ξ

2
k,3 = λk,3

To these equations, it can be added, for each variable k, that

m∑

i=1

pk,i =
1

n
(58)

Therefore, there are 2m equations with 2m unknowns for each variable k, forming a nonlinear system.
If m = 2, the solution of this system is:

ξk,i =
λk,3

2
+ (−1)(3−i)

√

n +

(
λk,3

2

)2

(59)

pk,i =
1

n
(−1)j ξk,3−i

ζk

where ζk = 2

√
n +

(
λk,3

2

)2

, for i = 1, 2, and k = 1, . . . , n.

if m = 3, but one of the chosen points if the mean ηx, only the first four moments of each variable
can be fitted. The solution, in this case, is, for each variable k,

ξk,i =
λk,3

2
+ (−1)(3−i)

√

n +

(
λk,3

2

)2

(60)

ξk,3 = 0

pk,i = (−1)(3−i) 1

ξk,i(ξk,1 − ξk,2)

pk,3 =
1

n
− pk,1 − pk,2 =

1

n
− 1

λk,4 − λ2
k,3

for i = 1, 2, and k = 1, . . . , n. Since m of the 3m point concentrations are in the point ηx, with a
weight p0, with value

p0 =
n∑

k=1

pk,3 = 1 −
n∑

k=1

1

λk,4 − λ2
k,3

this 3m concentration scheme can be viewed as a 2m+1 concentration scheme. The moment of order
j of the variable z,mz,j , can be then approximated by (61) for the case 2m + 1.

mz,j = E[zj ] ∼= p0hj(ηx) +
n∑

k=1

m∑

i=1

pk,ih
j(η1, . . . , xk,i, . . . , ηn) (61)

and in general,
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mz,j = E[zj ] ∼=
n∑

k=1

m∑

i=1

pk,ih
j(η1, . . . , xk,i, . . . , ηn) (62)

The proposed point concentration method should be interpreted as a weighting method rather than
a method that discretizes probability distributions. This interpretation must be emphasized since the
proposed point estimate method is not a probability distribution transformation method, and the obtained
concentrations pk,j , j = 1, . . . , 2m − 1, and k = 1, . . . , n, are not always nonnegative.

Variable z with low dependance on a variable xi It must be remarked that when the dependence
of the variable z with respect to a variable xi is very low, or null, the results are similar to consider that
this power injection is fixed. For instance, let us consider the case of two random variables, x1 and x2.
Then, the mean of z = h(x1, x2), ηz, if we consider the two variables, must be approximated by

ηz = p012h(η1, η2) + p1,1h(x11, η2) + p1,2h(x12, η2) + p2,1h(η1, x21) + p2,2h(η1, x22)

where p012 is the value of p0, considering the two variables x1 and x2. If z does not depend on x1,
h(x11, η2) = h(x12, η2) = h(η1, η2). Then,

ηz = h(η1, η2)(p012 + p1,1 + p1,2) + p2,1h(η1, x21) + p2,2h(η1, x22)

= p02h(η1, η2) + p2,1h(η1, x21) + p2,2h(η1, x22)

and p02 is the value of p0, when only the variable x2 is considered in the system.

Number of equations and unknowns The number of unknowns in the point estimate method, when
the x variables are independents are, for m points (different from the mean) and n variables,

NU = 2mn

The number of equations that we have, when we make equal the q first moments are qn, and the n
equations of the type (58). Therefore, the total number of equations are:

NE = n(q + 1)

Then, equalling these two numbers, we obtain that the order of the needed moment is q = 2m − 1.

5.1.2 Dependent random variables.

When the random variable z depends on a set on dependent random variables x, the Taylor series

developement of h(x) must take into account the partial derivatives ∂(kn)fx

∂xk1...∂xkn
, and the formulation

becomes more complex. In order to give a view of this added complexity, the analysis of this section will
be limited to two variables and the third first central moments.

For these conditions, the series expansion for ηzis given by

ηz = h(η1, η2) +
1

2!

∂2h

∂x2
1

µ20 +
1

2!

∂2h

∂x1∂x2
µ11 +

1

2!

∂2h

∂x2
2

µ02 + (63)

1

3!

∂3h

∂x3
1

µ30 +
1

3!

∂3h

∂x2
1∂x2

µ21 +
1

3!

∂3h

∂x1∂x2
2

µ12 +
1

3!

∂3h

∂x3
2

µ03 + . . .

since, for making an approach of the first third moments, it is necessary to use 10 equations, it is also
necessary to have 10 unknowns. If 2 points are considered for each variable, we only have 8 unknowns.
Therefore, we need two more, k1 and k2 in order to get an approximation of the mean ηz in the following
way
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ηz
∼= p11h(x11, η2) + p12h(x12, η2) + k1h(x11, x21) + k2h(x12, x22) + p21h(η1, x21) + p22h(η1, x22)

The series expansion of these terms are shown below

h(x11, η2) = h(η1, η2) +
∂h

∂x1
ξ11σ1 +

1

2!

∂2h

∂x2
1

(ξ11σ1)
2 +

1

3!

∂3h

∂x3
1

(ξ11σ1)
3 + . . .

h(x12, η2) = h(η1, η2) +
∂h

∂x1
ξ12σ1 +

1

2!

∂2h

∂x2
1

(ξ12σ1)
2 +

1

3!

∂3h

∂x3
1

(ξ12σ1)
3 + . . .

h(x11, x21) = h(η1, η2) +
∂h

∂x1
ξ11σ1 +

∂h

∂x2
ξ21σ2 +

1

2!

∂2h

∂x2
1

(ξ11σ1)
2 +

1

2!

∂2h

∂x1∂x2
ξ11σ1ξ21σ2

1

2!

∂2h

∂x2
2

(ξ21σ2)
2 +

1

3!

∂3h

∂x3
1

(ξ11σ1)
3 +

1

3!

∂3h

∂x2
1∂x2

(ξ11σ1)
2ξ21σ2

1

3!

∂3h

∂x1∂x2
2

ξ11σ1(ξ21σ2)
2 1

3!

∂3h

∂x3
2

(ξ21σ2)
3 + . . .

h(x12, x22) = h(η1, η2) +
∂h

∂x1
ξ12σ1 +

∂h

∂x2
ξ22σ2 +

1

2!

∂2h

∂x2
1

(ξ12σ1)
2 +

1

2!

∂2h

∂x1∂x2
ξ12σ1ξ22σ2

1

2!

∂2h

∂x2
2

(ξ22σ2)
2 +

1

3!

∂3h

∂x3
1

(ξ12σ1)
3 +

1

3!

∂3h

∂x2
1∂x2

(ξ12σ1)
2ξ22σ2

1

3!

∂3h

∂x1∂x2
2

ξ12σ1(ξ22σ2)
2 1

3!

∂3h

∂x3
2

(ξ22σ2)
3 + . . .

h(η1, x21) = h(η1, η2) +
∂h

∂x2
ξ21σ2 +

1

2!

∂2h

∂x2
1

(ξ21σ2)
2 +

1

3!

∂3h

∂x3
1

(ξ21σ2)
3 + . . .

h(η1, x22) = h(η1, η2) +
∂h

∂x2
ξ22σ2 +

1

2!

∂2h

∂x2
2

(ξ22σ2)
2 +

1

3!

∂3h

∂x3
2

(ξ22σ2)
3 + . . .

Equalling these terms to the moments of equation (63), we arrive at the following system of nonlinear
equations

p11 + p12 + k1 + k2 + p21 + p22 = 1 (64)

(p11 + k1)ξ11 + (p12 + k2)ξ12 = 0

(k1 + p11)ξ21 + (k2 + p12)ξ22 = 0

(p11 + k1)ξ
2
11 + (p12 + k2)ξ

2
12 = 1

(k1 + p21)ξ
2
21 + (k2 + p22)ξ

2
22 = 1

k1ξ11ξ21 + k2ξ12ξ22 = ρ

(p11 + k1)ξ
3
11 + (p12 + k2)ξ

3
12 = λ1,3

(k1 + p21)ξ
3
21 + (k2 + p22)ξ

3
22 = λ2,3

k1ξ
2
11ξ21 + k2ξ

2
12ξ22 =

µ21

σ2
1σ2

k1ξ11ξ
2
21 + k2ξ12ξ

2
22 =

µ12

σ1σ2
2

This system can be solved numerically using the Newton-Raphson method. The equations of the error
functions and the jacobian matrix can be found in Appendix C.

If moments of higher order, and more variables must be considered, then the number of unknowns and
equations changes. The number of moments of order q, when n variables are correlated is the number of
combinations with repetition of n variables taken in q, that is to say,
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CRn
q =

(
n + q − 1

q

)
=

(n + q − 1)!

q!(n − 1)!

This gives the number of equations to be considered, namely,

NE = 1 +

Q∑

q=1

(
n + q − 1

q

)

where Q is the maximum order of the moments considered.
The number of unknowns depends on the number of points to be considered, and the number of

variables. It is given, when one of the points is the vector of the mean values, by:

NU = 2(m + 1)n

where m is the number of points (excluded the vector of the means), and n the number of the variables
considered. Therefore, it is not always possible to match the number of unknowns and equations, and
some additional unknowns must be added, as in the case above, when necessary. A table with the values
for several numbers of points, order of moments and number of variables are given below.

Number of moments No. of variables(n)
Q 2 3 4 5 6
1 3 4 5 6 7
2 6 10 15 21 28
3 10 20 35 56 84
4 15 35 70 126 210
5 21 56 126 252 462

Table 2: Number of equations

Number of points No. of variables(n)
m 2 3 4 5 6
2 10 15 20 25 30
3 14 21 28 35 42
4 18 27 36 45 54
5 22 33 44 55 66
6 26 39 52 65 78
7 30 45 60 75 90
8 34 51 68 85 102
9 38 57 76 95 114

Table 3: Number of unknowns

5.1.3 Computational procedure.

The Point Estimate method can be applied to the Probabilistic load flow to find the uncertainty of the
branch power flows and node voltages in the following way 1:

1. Evaluate the moments of the power injections of each random power source.

2. Solve the system equations (57) and (58). For m = 2 and for the 2m + 1 systems, these solutions
are given by (59) and (60), respectively.

3. From these values, run deterministic power flows for the different values of (η1, . . . , xk,i, . . . , ηn).
The solution provides an ensemble of values for the branch power flows and node voltages.

1Only for independent random variables.
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4. From this ensemble of values, the moments of these variables are found using the equation (61) (or
in general (62)).

5. Once the moments found, however, it is still necessary to obtain the values of the PDF or the
CDF for the variables of interest. This can be made, for instance, through Gram Charlier or
Cornish-Fisher series expansion.

5.2 Computational procedure of ELM.

The ensemble of methods described here make use of the properties of linear combinations of random
variables. The theoretical background is given in section 2, and therefore, it will not be repeated here.
This section is devoted, thus, to the practical implementation of the method and to show the choice of
equations used in it. It must be remarked that the method obtains, at first, the moments of the system
variables of interest, and them the values of the CDF at different points.

The methods presented here go from the simplest one, to more general procedures. First, it will
be considered only independent random variables, and the DC load flow equations will be used, with a
single slack bus. Then, a more general method that considers continuous dependent random variables,
and make use of the linear approximation of load flow equations with a distributed slack bus will follow.
The most general case presented here considers discrete and dependent continuous variables an uses also
linearized AC load flow equations. To obtain a greater accuracy, a Point Estimate method has been
used to approximate the mean, while higher order moments are found, as explained, making use of the
properties of linear combinations of random variables.

From these values, an estimation of the CDF must be made in all cases. For this, the Cornish-Fisher
expansion series is used, and convolutions, whenever the presence of discrete variables make it necessary.

5.2.1 Independent random variables. DC load flow equations. (ELM-IDC)

The proposed method begins from a deterministic evaluation of line flows, using wind power predictions,
that will be considered independent random variables. Then, the probabilistic load flow follows, which
provides the CDF of the lines of interest. It must be remarked that the deterministic prediction is the
expected value of the PDF of the predicted power. Hence, the following steps should be followed to find
the CDF of the line flows.

1. Solve a DC load flow with the expected value of the wind power injected to the system. This gives
the mean (expected value) of line power flows PDF.

2. Calculate the cumulants of the CDF of the wind power injections, using (3) and (15).

3. Use equation (32) to find the cumulants of the PDF of the power flows through the lines of interest.
Coefficients aij are obtained from equation (44).

4. Use the Cornish-Fisher expansion (41) to find the value of the CDF of the power in the lines of
interest.

5.2.2 Dependent continuous random variables. Linearized AC load flow equations (ELM-
C).

In this section it is assumed that the random variables are dependent and continuous. The proposed
method calculates the CDF of the line flows from the PDF of the power injections through a linear
approximation of the load flow equations, taking into account the dependence among the power injections,
who are random variables with continuous distributions. It is assumed that there is a forecast of wind
power, as well as of load, and a generation scheduling. These set of data will be considered as the
base case, around which the linearization is made. The values forecasted are considered to be the mean
values of the uncertain power injections. After having modeled the uncertainty of the power injections,
it is necessary to calculate the PDF of the line power flows. This is made in two ways: the mean of
the distribution is estimated using a point estimate method, without considering the dependence among
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variables, while the higher order moments are obtained through the linearization of power flow equations,
to take the dependence among variables more easily into account.

The procedure is shown in Figure 15 and explained in the following sections. In this figure rmax is
the number of lines of interest, and the dotted lines represent the evaluation process, that compares the
analytical results to Monte Carlo simulations.

Random generation of

power injections

System sensitivities

Moments and cumulants

of power injections

Line power flow of line r (mean)

by point estimation method

Moments and cumulants of line r

power flows.

r = rmax

Calculation of the a-quantile by

Cornish Fisher expansion.

END

Comparison of results

Monte Carlo simulation

r = r+1

yes

no

Base case:

• grid data

• load forecasted + uncertainty

• wind power forecasted + uncertainty

Results
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r = r+1
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• grid data

• load forecasted + uncertainty

• wind power forecasted + uncertainty

Results

Figure 15: Computational procedure of the proposed method. Dependent continuous random variables.

Base case. The needed data are the grid data, the wind power and load forecasts for the time of
interest and the conventional generation scheduling. This is the case that would give the state of the
system in a deterministic approach. It is in this base case that the sensitivities described in section 4.2
are calculated.

Uncertainty of power injections. Two kinds of uncertainties are considered in this paper: un-
certainty coming from wind power predictions, and load forecast uncertainty. These uncertainties are
modeled through their PDF and the dependence among the different power injections are also consid-
ered by means of the correlation between random variables. The PDF of the wind power uncertainties
considered are modeled as described in section 3.2, taking into account the dependence between the un-
certainties. The load uncertainty is modeled as a normal distribution whose mean is the forecasted value.
Correlation between load uncertainties has also been considered.

Estimation of the mean values. The line flows in the base case could be taken as an approximation
of the mean values of the line flows distributions. However, due to the nonlinearity of the load flow
equations, and in order to have a better approximation to the real values, a (2m + 1) point estimate
method [4] is used for finding the mean of the line distribution. For this estimation, the dependence
among uncertainties is not considered. It has been checked (as shown in the numerical results), that the
accuracy is very high for the mean (not for the variance and higher moments) even with this simplification.
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Linearization. Calculation of higher order moments of the line flows. The second and higher
order moments of the line flows are found using the sensitivity coefficients defined in section 3, by means
of the equations provided in section 2.3.6. In order to have a good approximation of the line flows CDF,
up to the 5th order moments of the power injections are taken.

Cornish-Fisher expansion. After having found the moments of the distribution of the line flows, a
Cornish-Fisher expansion is applied to find the CDF, as explained in section 2.5.2. This allows to find
the 90% quantile, for instance, of the line flows, and therefore to check that the probability of surpassing
the flow limit is low enough.

5.2.3 Dependent continuous and discrete random variables. Linearized AC load flow equa-
tions (ELM).

When discrete variables are considered, the process changes. While the moments are obtained in an
identical way, the building of the CDF must be made taking into account the possible multimodal
distributions and therefore some convolutions could be made. A flowchart of the method is given in
Figure 16.
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Figure 16: Computational procedure of the proposed method with convolution for discrete and dependent
continuous variables.

Base case. It is necessary to have the grid data, the forecasted load and wind power and the scheduled
power of the power plant. For this case, the sensitivities of the line power flows to power injections are
calculated.

Uncertainty of power injections. These uncertainties are modelled in the following way. Wind
power uncertainties are modeled as correlated beta functions whose mean is the forecasted power, and
whose variance is estimated as shown in section 3.2. Load uncertainty is modelled as a normal variable
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with a given variance. Loads can be dependent or independent. Power plant uncertainties are modelled
as binomial variables, as in [30]. Random numbers with the mentioned distributions are generated, taking
into account the correlation between variables, as shown in section 2.4.

Calculation of the moments of input variables and mixed moments. There is little or no
information about the moments (specially of higher order) of the uncertainty distributions. For this
reason, the method used here is to calculate them numerically, using equation (19) from a sample of
random numbers of a given PDF. These numbers are generated as described in section 2.4 . They are
also used for the Monte Carlo simulation process that has been run to evaluate the accuracy of the results.

Estimation of mean values. The mean values of the line flows are estimated using a (2m + 1)
point estimate method, without considering the correlation between random variables. In spite of these
simplification, the accuracy of the approximation is very good, as will be shown later.

Higher order moments. Moments of order 2 and higher are calculated using the sensitivity coeffi-
cients, by means of the equations provided in section 2.3.6, irrespectively of the continuous or discrete
character of the random variables. The moments up to the 5th order are obtained, since they are needed
for an accuarate enough Cornish-Fisher expansion, as shown in equation (41).

Building the CDF of branch flows. In this case, discrete and continuous random variables are dealt
with in a different way. The process has three steps.

First, the CDF of the branch flows, without considering the discrete variables are estimated using
Cornish-Fisher expansion series.

Then, the multimodality condition shown in equation (42) is checked for each line of interest and for
each power plant.

If the resulting CDF is not multimodal, then, a simple Cornish-Fisher expansion series is used to
approximate the CDF.

If the CDF is multimodal, then the necessary convolutions are made in order to obtain the estimation
of the CDF. This process is made at the end, in order to minimize the number of necessary convolutions.

In this way, an approximation of the 90 % quantile (for instance) of the power flow may be obtained,
in order to assess the probability of a branch overloading.

In this approach, the moments up to the 5th order have been considered. An easier and reasonable
approximation is to consider only up to the second order moments. It will be seen that this alternative
approach renders good results, especially in great networks, where conditions are closer to those required
by the central limit theorem.

6 Study cases.

In order to show the possibilities of the proposed methods and to quantify their accuracy, a simulation
study has been made for different test grids. The chosen grids have been based on the IEEE-RTS grid
[21] and the IEEE-118 nodes grid [29], which have been slightly modified to include wind generation.

6.1 Independent wind power productions. DC load flow equations (ELM-
DC).

This example is aimed at showing the better approximation properties of the Cornish-Fisher expansion
series when compared to Gram-Charlier A series. for this example only continuous independent random
variables will be considered, and the DC load flow equations will be used. This does not affect the main
conclusions of this study case. The case have been taken from [20].
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6.1.1 Network IEEE-RTS

The IEEE-RTS96 system [21] has been modified to include two wind farms. The grid, with the changes
from the original system, is shown in Figure 17. The wind farms may represent, in reality, groups of wind
farms connected to the transmission network. In the figure, both the rated power (Pn) and the predicted
power for a certain moment (P ) are written. The lines of interest, where the PDF of the power flows
are to be found are the lines 17-16 and 17-22, marked in the same figure. The predicted powers are 300
and 200 MW, which are the expected values of the PDF of the injected power. Since the power ranges
of the predictions are low with respect to the wind farm nominal values, the PDF of the injected powers
have been modeled as gamma functions. The frequency distribution for a Monte Carlo sampling of 1000
samples, are shown in Figure 18 and in Figure 19. Power base is 100 MW. The two random variables are
considered independent.
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Figure 17: IEEE-RTS96 System with wind farms connected.

Figure 18: PDF of the power injected by the wind farm connected to node 17.
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Figure 19: PDF of the power injected by the wind farm connected to node 22.

6.1.2 Results. Comparison between Gram-Charlier A and Cornish-Fisher series.

For this case, the results obtained using the Gram-Charlier series and the Cornish-Fisher expansion are
compared to the results from Monte Carlo simulation. Computation times between Gram Charlier and
Cornish-Fisher are equivalent, and it has been already demonstrated in other publications, as [22], the
smaller computation times of Gram-Charlier series method compared to Monte Carlo simulation, so a
comparison of computation times will not be made here. Figure 20 and Figure 21 show the CDF of the
lines of interest, using Gram-Charlier expansion series, in comparison with the results using Monte Carlo.
It can be seen that the behavior of the Gram-Charlier is poor for both lines.

Figure 20: CDF obtained with Monte Carlo simulation and with Gram Charlier expansion series (dotted
line). Line 17-22.

Figure 22 and Figure 23 show the CDF for both lines obtained using the Cornish-Fisher expansion,
in comparison with the result obtained using Monte Carlo. It can be observed that the fitting in this
case is very good.

In order to assess the goodness of the fitness reached by the Cornish-Fisher expansion a Kolmogorov-
Smirnov (K-S) test has been made to the results. K-S test [23] is used to determine whether two underlying
one-dimensional probability distributions differ, or whether an underlying probability distribution differs
from a hypothesized distribution, in either case based on finite samples. In both cases, the K-S test has
succeeded, and therefore, the distribution could be considered sufficiently alike to that obtained from
Monte Carlo simulation. Results obtained through Gram-Charlier series did not pass this test, as could
be expected. Another numerical comparison given here is the difference between the values given by
Monte Carlo method and Cornish-Fisher expansion for a quantile of 90%. This is shown in Table 4.
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Figure 21: CDF obtained with Monte Carlo simulation and with Gram Charlier expansion series (dotted
line). Line 17-16.

Figure 22: CDF obtained with Monte Carlo simulation and with Cornish-Fisher expansion (dotted line).
Line 17-22.

Figure 23: CDF obtained with Monte Carlo simulation and with Cornish-Fisher expansion (dotted line).
Line 17-16.

Lines Absolute error (p.u.) Relative error (%)
17-22 0.0236 -0.03
17-16 0.0329 0.01

Table 4: Comparison of the results for the 90% values of the lines of interest.
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WF Node Group Wind power (MW) σ(MW) Rated power (MW)
1 52 1 59.3 25.6 98
2 44 1 31 13.2 51
3 53 1 14.8 6.48 25
4 50 1 8.5 3.66 14
5 84 2 20.1 9.4 36
6 86 2 17 7.2 28
7 83 2 33 15.11 58
8 82 2 50.3 20.84 82
9 2 3 33 14.1 55
10 5 3 20 9.4 36
11 16 3 27 11.2 44
12 13 3 37.5 16.1 62
13 3 3 27 10.5 42
14 14 3 37.5 16.1 62

TOTAL 416 693

Table 5: Power System Data. Wind Farms included in the the IEEE-118 system.

6.2 Dependent wind power productions (ELM-C).

The method described in section 5.2.2 has been implemented in MATLAB and applied to a grid based
on the IEEE-118 nodes case. In this section, the main results of this application are shown. They are
compared with the output of a Monte Carlo simulation procedure with 10000 samples, using the AC load
flow equations.

This example is aimed at showing the accuracy of the linear approximation, when compared to a point
estimate method and Monte Carlo simulation. it intendes also to show the importance of considering the
dependence between random continuous variables, that has shown crucial for a reasonable accuracy of
results.

6.2.1 Data.

The case considered is the IEEE-118 nodes test system [29], modified to include wind generation with
a significant degree of penetration. In order to keep the load level of the system, the wind power has
substituted the conventional generation, which has been reduced proportionally. The data of the wind
generation are given in Table 5. The standard deviations of the uncertainty distributions are given in
column 5. These values have been obtained according to the heuristical rule given in section 3.2.

The wind powers shown are the forecasted production. The wind power installed is 693 MW, for
a system load of 3670 MW. The injected wind power in this situation, 416 MW, is the 60% of the
rated power. It can be seen from the values of the standard deviation of the random variables, that the
actual wind power may differ widely from the forecasted values. In Table 5, the groups of wind farms
with dependent production are shown. Wind power predictions of wind farms belonging to different
groups are considered independent. The uncertainty of wind farms power predictions is modeled as a
multivariate beta function, as described in section 3.2. Correlation coefficients between the wind farms
of the same groups are also given. Since there is no documentation available for the dependence between
uncertainties of power predictions, realistic correlation coefficients between wind farm power productions
has been taken.
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Independent Dependent
Moment ELM-C P.E.(2m+1) ELM-C P.E.(2m+1)

1 0.249 0.197 0.197 0.211
2 1.234 2.751 1.317 28.607

3(*) 29.356 33.208 13.169 78.856
4(*) 1.892 72.472 1.651 79.740
5(*) 21.098 - 12.740 -

(*) selected values

Table 6: Error in % between analytical methods and Monte Carlo simulation.

Group 1 Group 2 Group 3





1 0.38 0.47 0.41
0.38 1 0.45 0.47
0.47 0.45 1 0.55
0.41 0.47 0.55 1









1 0.72 0.65 0.6
0.72 1 0.65 0.68
0.65 0.65 1 0.59
0.6 0.68 0.59 1









1 0.35 0.46 0.23 0.32 0.21
0.35 1 0.28 0.33 0.19 0.22
0.46 0.28 1 0.25 0.15 0.17
0.23 0.33 0.25 1 0.19 0.21
0.32 0.19 0.15 0.19 1 0.22
0.21 0.22 0.17 0.21 0.22 1





The active and reactive power of the load buses are modeled as normal distributions, whose mean
values equal the base case data, and whose standard deviations are set arbitrarily as follows [22]: 7%
from bus 1 to bus 33, 4% from bus 34 to bus 59, 9% from bus 60 to bus 79, and 5% from bus 80 to bus
118. It has been considered that the demand of four nodes (107, 108, 109, 110) is also correlated, being
the correlation matrix:

ρload =





1 0.3 0.4 0.25
0.3 1 0.64 0.3
0.4 0.64 1 0.29
0.25 0.3 0.29 1





6.2.2 Results.

The problem has been solved using two methods, the ELM-C approach proposed here and the Point
Estimate method of order (2m + 1) without considering dependence between variables, just as proposed
in [4] and described in section 5.1. The results show the accuracy of the ELM-C approach, which
is similar to the point estimate method in the non-correlated case, and the importance of considering
correlation among variables. This dependence does not involve any difficulties with the ELM-C approach,
as previously shown. Table 6 includes the average relative difference in % between mean and the central
moments of all the lines in the system, with and without considering dependence between variables. Due
to the small values of third and higher order in many lines, only those lines whose values are higher than
10−6 are considered2. This number is an upper limit of the value of the third moment of a Monte Carlo
series of values of a normal random variable, i.e., if we generate a Gaussian random sample, the third
moment of the series (which should be null) have a value whose upper limit is around 10−6. This will be
made in the next study case. The relative error of central moment of order n, εn, is defined as:

εn =
1

NB

NB∑

j=1

|µan
n,j − µMC

n,j |
|µMC

n,j | · 100 (65)

Where µan
n,j is the moment onf order n of branch j found analytically (either with ELM-C or PE),

while µMC
n,j is the same moment obtained by Monte Carlo method. NB is the number of branches in the

grid.
The values in Table 6 show the good accuracy of the approximation of the mean and the variance of

both methods, when the variables are independent. The third moment approximation, however, has less

2It is better to consider skewness to discriminate small values.
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accuracy. However, a bootstrap analysis of the results show that for most lines, the obtained value is
within the 95% confidence limit, that is to say that the sparsity of results from the Monte Carlo method
is very high. The accuracy of the fourth moment is also higher for the linear approach, even in the
independent case. The fifth moment cannot be approximated with the (2m + 1) point estimate method.
However, when the dependence between variables is considered, the error in the point estimate method
becomes higher even for the second moment. This shows the importance of considering correlation for
an accurate simulation. In order to show the accuracy of the linear approximation for selected lines, even
with this high error of the third moment, the CDF of powers of lines 8-5, 30-38 and 65-68 (those with
the highest variations) are shown in Figure 24, together with the result of Monte Carlo simulation.

Figure 24: CDFs of selected lines in the IEEE-118 nodes system. MC: Monte Carlo simulation; CF:
estimation using Cornish-Fisher expansion.

The relative differences for the 90% quantile are 0.6332%, 1.3370% and 4.4675%. The differences in
p.u. are 0.0152 p.u., 0.0136 p.u. and 0.0140 p.u. respectively (absolute value). The average relative error
of all the lines of the system is 2.195%. This relative error is defined as

ε90 =
1

NB

NB∑

j=1

|pELM
90,j − pMC

90,j |
|pMC

90,j |
· 100 (66)

Where pELM
90,j and pMC

90,j are the 90% quantile of branch j for ELM and the Monte Carlo simulation,
respectively.

The program has been run in MATLAB, and the run times of the linear method and the Monte Carlo
simulation are 37 s and 443 s respectively, on a processor Intel Pentium of 2.13 GHz with 1 Gb of RAM,
for 184 lines in the system.

6.3 Dependent wind power productions with discrete variables (ELM).

In this section, it has been studied the accuray of the linear approach when considering continuous
and discrete variables (full ELM) . Results are compared with point estimate method and Monte Carlo
simulation.

This method has been applied to two test systems, the IEEE-RTS [21] and the IEEE-118 nodes [29].
The first system is smaller and the AC nonlinearities have a greater effect, specially when the wind
penetration is high. In the IEEE-118 system, the conditions are closer to those of the central limit
theorem, and the linearity assumption fits also better.

6.3.1 Network IEEE-RTS.

Data. The method has been applied to the IEEE-RTS96 system [21], modified to include wind farms
with different generation levels shown in Table 7. The three wind generation scenarios correspond to
different productions levels, and have been chosen in order to show the effect of a higher wind power
production level. The second scenario is called normal because these are the usual levels of wind power
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Node Base case (%) Normal (%) High (%) Rated power (p.u.)
116 51.67 30 80 3
117 50 25 90 6
118 40 24 70 5
122 40 20 85 5

Table 7: Different wind power levels for IEE-RTS case. In % over the rated power.

production of average wind farms. It must be remarked that the shape of the uncertainty PDF changes, as
corresponds to the beta distributions (see the Appendix D.1), when the relative production level changes.

The dependence between wind farm powers are given by the following correlation matrix:

ρwind =





1 0.28 0.37 0.41
0.28 1 0.25 0.47
0.37 0.25 1 0.15
0.41 0.47 0.15 1





Loads have a variance of 5% of the rated load, and the loads of nodes 103, 104, 105 and 108 are also
dependent with the following correlation matrix,

ρload =





1 0.3 0.4 0.25
0.3 1 0.64 0.3
0.4 0.64 1 0.29
0.25 0.30 0.26 1





The availability of power plants has also been considered, and it has been modelled as a binomial
variable. Each generation plant is divided into four units with the same power production and a forced
outage rate of 0.09, as in [30].

It has also been considered that the plants that compensate load and generation variation are those
located in nodes 102, 115 and 123. The changes in generation or load power are equally shared among
them.

Results. Probabilistic power flows has been run using Point Estimate (2m + 1) method, and the ELM
approach described in section 5.2.3. The results are compared with the DC and AC load flow results, to
evaluate the effect of system nonlinearities.

The mean values of the linear approach are approximated using the Point Estimate (2m+1) method.
The comparison have been made for the three levels of wind production considered. Comparison between
moments of active power are summarized in Table 8. This table shows the difference in % between the
moments obtained analytically, by the point estimate and the linear approach and those obtained through
Monte Carlo simulation. Two cases, AC and DC, have considered for the linear approach. The DC case
uses the DC load flow equations for the analytical approach and the Monte Carlo simulation, while the
AC case uses the sensitivities obtained in section 4.2, and the results are compared to those of an AC
load flow. Again, the error is defined as in equation (65).

The line reactive power flow distributions have been also obtained by the mentioned methods. The
mean values of errors for the reactive power are given in Table 9. In this case, only those lines whose
variance is higher than 0.05 has been considered. In general, variances and higher order moments of
reactive power flows are smaller than those of active power flows. This accounts for one part of the
higher values (they are relative values) of the errors associated to these variables. This also reduces the
importance of finding the CDF or reactive powers in the system, for the conditions of the problem.

It also interesting to consider the error in the 90% percentile, that is calculated as in equation (66).
This value for the branch active powers is summarized in Table 10. In this table, they are shown the
average relative errors between the analytical linear approach and the Monte Carlo simulation for all
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Independent Dependent
ELM P.E. ELM P.E.

Moment DC AC (2m + 1) DC AC (2m + 1)
Base case

1 0.95 0.19 0.22 0.46 0.75 0.67
2 0.61 1.98 0.65 0.26 1.54 33.85
3 7.92 32.28 53.71 3.91 39.50 68.34
4 1.84 5.89 67.04 0.61 4.87 77.20
5 11.36 28.76 - 6.46 44.92 -

Normal
1 0.29 0.14 0.16 0.48 0.23 0.29
2 0.33 3.01 1.09 0.32 3.01 29.43
3 5.04 18.16 21.84 1.14 12.42 52.62
4 1.61 7.88 61.24 0.86 10.03 73.78
5 6.93 21.66 - 2.43 17.78 -

High wind power
1 0.12 1.65 0.42 1.14 1.28 1.46
2 1.00 2.06 0.82 0.44 3.06 30.06
3 4.58 20.29 18.96 2.25 18.35 56.96
4 1.62 6.53 58.74 1.16 10.94 72.83
5 5.13 25.19 - 2.77 27.03 -

Table 8: Values of εn. Continuous and discrete variables. Active power. Grid IEEE-RTS.

Independent Dependent
Moment ELM P.E. (2m + 1) Linear AC P.E. (2m + 1)

Base case
1 0.25 0.29 3.90 4.33
2 10.55 5.27 15.25 40.40
3 84.38 91.53 82.69 86.37
4 30.36 71.45 35.65 81.34
5 76.71 - 79.67 -

Normal
1 0.22 0.40 3.92 4.34
2 14.21 1.19 12.61 38.65
3 48.67 35.21 69.65 93.04
4 38.69 62.63 33.91 80.09
5 79.09 - 94.73 -

High wind power
1 0.24 0.31 2.81 2.49
2 11.60 1.67 14.05 30.73
3 111.45 49.52 102.99 89.10
4 61.98 50.59 79.35 73.69
5 223.34 - 282.52 -

Table 9: Values of εn. Continuous and discrete variables. Reactive power. Grid IEEE-RTS.
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Independent Dependent
DC AC DC AC

C-F Normal C-F Normal C-F Normal C-F Normal
Base case

average (%) 1.96 2.39 1.89 2.37 2.09 2.77 1.88 2.50
max. (p.u.) 0.078 0.148 0.084 0.170 0.109 0.212 0.097 0.198

Normal
average (%) 1.95 2.73 1.72 2.61 2.12 3.28 1.86 3.20
max. (p.u.) 0.057 0.135 0.058 0.134 0.083 0.210 0.100 0.227

High power
average (%) 1.67 1.94 1.48 1.72 1.74 2.46 1.38 2.48
max. (p.u.) 0.059 0.140 0.069 0.169 0.070 0.167 0.057 0.162
C-F: Cornish-Fisher expansion; Normal: Normal distribution.

Table 10: Values of ε90. Continuous and discrete variables. Active power. Grid IEEE-RTS.

the lines in the system, and the maximum absolute error, in order to better quantify the quality of the
approximation.

In order to show the necessity of considering higher order moments, it has been also calculated the
same values when only the mean and variance are considered and assuming that the result follows a
normal distribution.

From these results, the following conclusions may be derived. In the independent case, the linear
approximation provides results comparable to the point estimate method. The approximation of the
second order moment is better with the point estimate method, but the third moment has similar error
level, while the fourth order moment is better obtained with the linear approximation. The error in the
third moment is quite high due to the sparsity of the values. it has been found that in some lines, with
more than a 40% error for this moment, the analytical value is within the 95% confidence interval, when
a bootstrap analysis is performed.

With dependent random variables, the results provided by point estimate methods have high errors.
It seems, therefore, important to take into account this dependence. The linear approximation yields
results accurate enough when dependence is considered. Both with dependent and independent variables,
if DC load flow equations are used for the Monte Carlo simulation, the accuracy is very good. System
nonlinearities are, as expected, the main source of error.

The accuracy of the linear approximation to moments is high enough to give a good estimation of
the probability of a value to be surpassed, as shown in Table 10. In this table, it can also be seen the
90% value of a normal distribution with the same mean and variance. The Cornish-Fisher result yields
a higher accuracy, but the normality assumption gives also an useful approximation to the simulated
values. This seems to show that, for the giveninput distributions, to consider just the two first moments
is enough as a first approach. This will be commented further in the next example.

6.3.2 Network IEEE-118 nodes.

The same method is applied here to a larger network in order to see what happens in more realistic
systems. The chosen system is, again, the IEEE-118 nodes network.

Data. The same base case of section 6.2.1 is used here, with some changes. The correlation matrices
of wind farms have been changed to:
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Branches Conv. Analytical Monte Carlo
28 23 14.52 332,26
172 43 AC 43.98 311.7

DC 27.23 271.14

Table 11: Computation times, in seconds.

Independent Dependent
ELM P.E. ELM P.E.

Moment DC AC (2m + 1) DC AC (2m + 1)
1 0.31 0.36 0.13 0.35 0.36 0.40
2 0.88 2.00 0.78 0.91 1.82 29.93
3 8.55 13.39 10.07 9.97 12.94 60.56
4 2.24 5.34 59.36 2.72 5.39 77.86
5 11.47 25.97 - 13.65 17.26 -

Table 12: Values of εn. Continuous and discrete variables. Active power. Grid IEEE-118

Group 1 Group 2 Group 3





1 0.88 0.87 0.91
0.88 1 0.85 0.87
0.87 0.85 1 0.85
0.91 0.87 0.85 1









1 0.82 0.85 0.9
0.82 1 0.85 0.88
0.85 0.85 1 0.89
0.9 0.88 0.89 1









1 0.85 0.86 0.83 0.82 0.91
0.85 1 0.88 0.83 0.89 0.92
0.86 0.88 1 0.85 0.95 0.87
0.83 0.83 0.85 1 0.89 0.91
0.82 0.89 0.95 0.89 1 0.82
0.91 0.92 0.87 0.91 0.82 1





The availability of power plants has also been considered, and it has been modelled as a binomial
variable. Each generation plant is divided into four units with the same power production and a forced
outage rate of 0.09, as in [30].

It has also been considered that the plants that compensate load and generation variation are those
located in nodes 10, 25, 46, 54, 61, 66 and 100. The changes in generation or load power are shared
equally among them.

Results. The problem has been solved using two methods: point estimate (2m + 1) and the linear
approach described in section 5.2.3. In this case the results have been compared to an AC load flow, and
also to simulations using DC load flow, to show the influence of nonlinearities of AC equations on the
final results.

Computation times depend largely, for the analytical case of the lines of interest and of the number
of convolutions performed. Some values are given for the IEEE-118 test system used, under different
conditions, in Table 11. They have been obtained with a processor Intel Pentium of 2.13 GHz with 1 Gb
of RAM. Roughly, it could be said that the computation times needed are a 10% of those necessary in a
Monte Carlo simulation, with 10000 samples.

The accuracy of the approximation of moments is shown in Table 12 for different cases. It must be
remembered that the mean in both cases is obtained with the Point Estimate method.

From these results, the following conclusions may be made.
The point estimate method yields a good approximation for the independent case up to the second

order moment. Estimation of higher order moment has also higher errors. The method, however, behaves
poorly when the input random variables are dependent.

The linear approximation, on the other hand yields worse results for the independent case, although
the error remains similar to the point estimate case. For the dependent case, the results have similar
accuracy, and they yield satisfactory results.

This is better seen in the comparison between 90% percentile errors given in Table 13.
Normality assumption also gives good results, even better than in the IEEE-RTS system. This higher

accuracy may be due to the better compliance with the conditions of the Central Limit Theorem, as there
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Independent Dependent
AC DC AC DC

C-F Normal C-F Normal C-F Normal C-F Normal
average (%) 1.93 2.73 1.95 3.06 1.83 2.03 1.81 2.13
max. (p.u.) .160 .089 .142 .094 .077 .061 .064 .066
C-F: Cornish-Fisher expansion; Normal: Normal distribution.

Table 13: Values of ε90. Continuous and discrete variables. Active power. Grid IEEE-118

Independent Dependent
Moment ELM P.E. (2m + 1) ELM P.E. (2m + 1)

1 1.01 0.95 2.04 1.80
2 25.41 9.40 22.88 30.36
3 102.24 152.46 97.42 155.48
4 58.45 82.26 45.74 86.84
5 142.33 - 132.12 -

Table 14: Values of εn. Continuous and discrete variables. Reactive power. Grid IEEE-118

are more random variables.
The results for the reactive power are given in Table 14. Again, the mean is calculated in both

cases with the point estimate method. The results of the point estimate method in the independent case
are better than the linear approximation for the second moment, but in the dependent case the linear
approximation behaves better than the point estimate method. In all the cases the result is not very
good, as could be expected. This is due, not only to the higher nonlinearity of reactive power with respect
to input power, but to the smaller variability of this variable. For instance, for the case of linearized AC
equation with dependent variables, the average variance of branch active powers is 0.019, while that of
reactive powers is 5.73 · 10−4. The maximum values are 0.4749 and 0.0132. For higher moments, the
differences are even larger. The importance of considering reactive power variations is, therefore, smaller.

It is also interesting to compare the CDF and PDF of the Monte Carlo simulation, the result of
Cornish-Fisher expansion, and the Normal approximation, i.e., a normal distribution of the same mean
and variance. The comparison will be made for three different cases. Firstly, a good aproximation of
both Cornish-Fisher expansion and normal distribution are shown in Figures 25 for the CDF and 26 for
the PDF. In this case, it can also be seen that the expected variation in the power flow are small, because
the influences of the random variables in the line flow are also small.

Figures 27 and 28 show the PDF and the CDF, respectively, of a line where the possible flow are
likely to change much more than in the previous case. The normal approximation separates from the
Monte Carlo simulation results, while the Cornish-Fisher result fits quite well to the final distribution.
Differences are smaller in the CDF, where the normality assumption also yields a small error.

On the other hand, when the influence of a discrete variable (the uncertainty of a power plant pro-
duction) has a large enough impact on the line power flows, multilinearity appears, as shown in Figures
29 and 29. The normality assumption gives a bad approximation for the PDF, and CDF. In this case,
it is necessary to perform a convolution (or more than one) to obtain a good approximation. It must
be remarked that the convolutions are only performed whenever they are needed: in the previous cases
shown (Figures 25 to 28), no convolution were necessatry and they were not made.

Although the method has been developed also for voltages, the changes in the voltages, with a dis-
tributed slack bus are extremely small, and the results are not presented here.

7 Conclusion.

Probabilistic power flows become more important in systems with high wind power penetration, because of
the high variability of the input/injected power. When considering daily system operation in systems with
high wind penetration, it is necessary to consider the uncertainty of short term wind power prediction.
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Figure 25: Comparison of CDFs of different methods.
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Figure 26: Comparison of PDFs of different methods.
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Figure 27: Comparison of PDFs of different methods.
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Figure 28: Comparison of CDFs of different methods.
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Figure 29: Comparison of CDFs of different methods.
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Figure 30: Comparison of CDFs of different methods.
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Wind power prediction uncertainty has not been yet exhaustively studied, due to the recent devel-
opment of forecasting tools, and the limited experience. The PDF that model this uncertainty must be
bounded and usually asymmetric, since their shape depends on the power level and on the time horizon
of the prediction. In general, they cannot be assumed to be Gaussian, and a Beta distribution is a better
choice. The uncertainties of wind power farms within a zone are correlated. This correlation is much
smaller when distant zones are considered.

Recent approaches to the proabilistic load flow problem focus on obtaining, at a first stage, the
moments of the grid random variables of interest (mainly power flows through lines). Point estimate
method is one of these approaches. This method gives good results when the input variables (uncertainties
of loads and wind power predictions) are independent. It is however difficult to generalize this formulation
for dependent random variables. To neglect this dependence yields sizeable errors, and therefore, their
interest is limited, for the considered problem.

Once the moments of the distributions of output variables have been obtained, it is necessary to
estimate also the probability of surpassing a limit (maximum power flows, for instance), i.e., it is necessary
to estimate the PDF or CDF of the random variable. Recently, series expansion methods, such as Gram-
Charlier A series or Cornish-Fisher series have been proposed to solve this problem. Cornish-Fisher
expansion series seem to behave better with non-Gaussian functions (such as those of interest in this
study). This approximation yields a good fitting for unimodal distributions. Absolute errors are small,
and relative errors have also very low values. To approximate the output PDF by a normal distribution
yields a reasonable approximation of the higher percentiles, even if the fitting of the resulting PDF to
them is poor in the studied cases.

When power plant reliability, or other discrete input random variable are to be considered, some of
the PDF of the output variables may be multimodal. This circumstance poses some additional difficulties
to the percentile calculation problem. The most obvious way of solving it, assuming independence
between the discrete and the continuous variables, is to convolve both variables. This technique is,
however, computationally expensive, and it is useful to perform it only when necessary, because not
every combination of discrete and continuous random variables yields a multimodal distribution, and
therefore it is not necessary to make a convolution. To discriminate between necessary and unnecessary
convolutions, an unimodality test can be made in the frequency domain. If convolutions are only made
when this test is not passed, the number of necessary convolutions reduces dramatically. Obviously, the
normality assumption does not hold for multimodality conditions.
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A Relations between moments, central moments and cumulants

A.1 Moments and central moments.

The central moments can be written as a function of moments as shown here,

µ0 = 1

µ1 = 0

µ2 = m2 − m2
1

µ3 = m3 − 3m1m2 + 2m3
1

µ4 = m4 − 4m1m3 + 6m2
1m2 − 3m4

1

and,inversely,

m2 = µ2 + m2
1

m3 = µ3 + 3m1µ2 + m3
1

m4 = µ4 + 4m1µ3 + 6m2
1µ2 + m4

1

m5 = µ5 + 5µ4m
4
1 + 10µ3m

2
1 + 10µ2m

3
1 + m5

1

A.2 Central moments and cumulants[11].

Moments as functions of cumulants

m1 = κ1

m2 = κ2 + κ2
1

m3 = κ3 + 3κ2κ1 + κ2
1

m4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1

m5 = κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ
2
1 + 15κ2

2κ1 + 10κ2κ
3
1 + κ5

1

m6 = κ6 + 6κ5κ1 + 15κ4κ2 + 15κ4κ
2
1 + 10κ2

3 + 60κ3κ2κ1 + 20κ3κ
3
1 + 15κ3

2 + 45κ2
2κ

2
1 + 15κ2κ

4
1 + κ6

1

Central moments as functions of cumulants

µ2 = κ2

µ3 = κ3

µ4 = κ4 + 3κ2
2

µ5 = κ5 + 10κ3κ2

µ6 = κ6 + 15κ4κ2 + 10κ2
3 + 15κ3

2

Cumulants as functions of moments,

κ1 = m1

κ2 = m2 − m2
1

κ3 = m3 − 2m2m1 + 2m2
1

κ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1

κ5 = m5 − 5m4m1 − 10m3m2 + 20m3m
2
1 + 30m2

2m1 − 60m2m
3
1 + 24m5

1

κ6 = m6 − 6m5m1 − 15m4m2 + 30m4m
2
1 − 10m2

3 + 120m3m2m1 − 120m3m
3
1

+30m3
2 − 270m2

2m
2
1 + 360m2m

4
1 − 120m6

1
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Cumulants as functions of central moments,

κ2 = µ2

κ3 = µ3

κ4 = µ4 − 3µ2
2

κ5 = µ5 − 10µ3µ2

κ6 = µ6 − 15µ4µ2 − 10µ2
3 + 30µ3

2

B Tchebycheff-Hermite polynomials.[11]

A distribution ϕ(x) that is N(0,1) can be written as

ϕ(x) =
1√
2π

e−
1
2 x2

If we define

D =
d

dx
(67)

the succesive derivatives of ϕ(x) with respect to x are

Dϕ(x) = −xϕ(x)

D2ϕ(x) = (x2 − 1)ϕ(x)

Dϕ(x) = (3x − x3)ϕ(x)

The result will be a polynomial in x multiplied by ϕ(x). We then define the Tchebycheff-Hermite
polynomial Hr(x) by the identity

(−D)rϕ(x) = Hr(x)ϕ(x) (68)

Hr(x) is of degree r in x and the coefficient of xr is unity. By convention H0 = 1. The first ten
polinomials are:

H0 = 1

H1 = x

H2 = x2 − 1

H3 = x3 − 3x

H4 = x4 − 6x2 + 3

H5 = x5 − 10x3 + 15x

H6 = x6 − 15x4 + 45x2 − 15

H7 = x7 − 21x5 + 105x3 − 105x

H8 = x8 − 28x6 + 210x4 − 420x2 + 105

H9 = x9 − 36x7 + 378x5 − 1260x3 + 945x

H10 = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945

to obtain further terms the following recurrence equation can be used

Hr(x) = xHr−1(x) − (r − 1)Hr−2(x)
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The polynomials have an important orthogonal property, namely, that

∫ ∞

−∞
Hm(x)Hn(x)ϕ(x)dx = 0, m 6= n

= n! m = n

}
(69)

C Solution by Newton-Raphson of equations (64).

The error functions of (64) are

ε1 = p11 + p12 + k1 + k2 + p21 + p22 − 1 (70)

ε2 = (p11 + k1)ξ11 + (p12 + k2)ξ12

ε3 = (k1 + p11)ξ21 + (k2 + p12)ξ22

ε4 = (p11 + k1)ξ
2
11 + (p12 + k2)ξ

2
12 − 1

ε5 = (k1 + p21)ξ
2
21 + (k2 + p22)ξ

2
22 − 1

ε6 = k1ξ11ξ21 + k2ξ12ξ22 − ρ

ε7 = (p11 + k1)ξ
3
11 + (p12 + k2)ξ

3
12 − λ1,3

ε8 = (k1 + p21)ξ
3
21 + (k2 + p22)ξ

3
22 − λ2,3

ε9 = k1ξ
2
11ξ21 + k2ξ

2
12ξ22 −

µ21

σ2
1σ2

ε10 = k1ξ11ξ
2
21 + k2ξ12ξ

2
22 −

µ12

σ1σ2
2

and the jacobian matrix has the following expression

J =





1 1 1 1 0 0 0 1 1 1
ξ11 ξ12 0 0 (p12 + k1) (p12 + k2) 0 0 ξ11 ξ12

0 0 ξ21 ξ22 0 0 (k1 + p21) (k2 + p22) ξ21 ξ22

ξ2
11 ξ2

12 0 0 2(p11 + k1)ξ11 (p12 + k2)ξ12 0 0 ξ2
11 ξ2

12

0 0 ξ2
21 ξ2

22 0 0 2(k1 + p21)ξ21 2(k2 + p22)ξ22 ξ2
21 ξ2

22

0 0 0 0 k1ξ21 k2ξ22 k1ξ11 k2ξ12 ξ11ξ21 ξ12ξ22

ξ3
11 ξ3

12 0 0 3(p11 + k1)ξ
2
11 3(p12 + k2)ξ

2
12 0 0 ξ3

11 ξ3
12

0 0 ξ3
21 ξ3

22 0 0 3(k1 + p11)ξ
2
21 3(k2 + p22)ξ

2
22 ξ3

21 ξ3
22

0 0 0 0 2k1ξ11ξ21 2k2ξ12ξ22 k1ξ
2
11 k2ξ

2
12 ξ2

11ξ21 ξ2
12ξ22

0 0 0 0 k1ξ
2
21 k2ξ

2
22 2k1ξ11ξ21 2k2ξ12ξ22 ξ11ξ

2
21 ξ12ξ

2
22





The unknowns are written in the following order

[
p11 p12 p21 p22 ξ11 ξ12 ξ21 ξ22 k1 k2

]t

D Some distributions.

D.1 Beta distribution.

The analytical expression of beta probability density function is

f(x; a, b) =
1

B(a, b)
xa−1(1 − x)b−1

Where B(a, b) is the beta function, and a and b are parameters related to the mean, η , and the
variance, σ2, in the following way:
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η = a
a+b

σ2 = ab
(a+b)2(a+b+1)

The beta distribution has been represented in Figure 31.

Figure 31: Beta distribution for different values of parameters a and b.

D.2 Binomial distribution.

Binomial distribution is the discrete probability distribution of the number of successes in a sequence of
n independent yes/no experiments, each of which yields success with probability p.

In general, if the random variable K follows the binomial distribution with parameters n and p,
we write K ∼ B(n, p). The probability of getting exactly k successes is given by the probability mass
function:

f(k;n, p) =

(
n
k

)
pk(1 − p)n−k

The mean of this distribution is η = np, and the variance is σ2 = np(1 − p).

D.3 Exponential distribution.

In probability theory and statistics, the exponential distributions are a class of continuous probability
distributions. An exponential distribution arises naturally when modeling the time between independent
events that happen at a constant average rate.

The probability density function (pdf) of an exponential distribution has the form:

f(x, λ) =

{
λe−λx , x ≥ 0

0 , x < 0

The mean of this distribution is η = 1
λ
, and the variance is σ2 = 1

λ2 .
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