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Abstract. Current specification of address configuration mandates the 
execution of the Duplicate Address Detection (DAD) mechanism to prevent 
address duplication. However, a proper support for real time multimedia 
applications in mobile IPv6 nodes is undermined by the disruption imposed by 
DAD. In order to overcome this limitation, the usage of randomly generated 
IPv6 Interface Identifiers without previously performing DAD is proposed, 
based on the statistic uniqueness of the addresses generated through this 
method. The address duplication risk is quantified through the calculation of the 
probability of an Interface Identifier collision among the nodes sharing a link. 
The calculated probability is deemed to be negligible compared to other causes 
of communication failure, such as network outages.  

1 Introduction1 

In order to take full advantage of multimedia capabilities of current mobile devices, 
the network infrastructure must provide an uninterrupted flow of information to 
appropriately support real time traffic. However, the requirement for performing 
Duplicate Address Detection (DAD) in the address autoconfiguration mechanism 
limits the performance of mobility in IPv6, provided by Mobile IPv6 [1].  Using this 
protocol, a Mobile Node (MN) that joins a subnet must configure an on-link address 
in that subnet, the Care-of-Address (CoA), before being able to communicate. 
According to the Stateless Address Autoconfiguration mechanism presented in [2], 
before using the CoA the MN must perform DAD for that address in order to 
guarantee its uniqueness on the link. It should be noted that DAD is a time consuming 
process. Although this it is not an issue for a desktop computer that is booting, the 
time required for DAD is critical in a mobile environment, since during this time the 
MN can not communicate and besides, all active communications of the MN are 
interrupted. The time required to perform DAD has a default value of one second [2], 
[3], a value subjectively deemed as not acceptable for interactive voice 
communications [4]. The Mobile IPv6 (MIPv6) specification [1] identifies the 
aforementioned problem and states that a MN can decide not to perform DAD, 
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pointing this as a trade-off between safety and the time needed for the DAD 
procedure. 

This document proposes the use of random numbers to create the Interface 
Identifier part of the IPv6 addresses, and assesses the risk of using these addresses 
without previously performing DAD. It should be noted that this solution is not 
restricted to a particular data-link layer technology, although it can be optimized in 
particular cases, such as GPRS, in which collision can be avoided by the GGSN 
(Gateway GPRS Support Node). 

The remainder of the paper is structured as follows: in section 2 the risk of not 
using the DAD mechanism is quantified in several relevant scenarios. In section 3, 
implementation issues are discussed, including random number generation and 
security aspects. In the next section, alternative proposals are considered and finally, 
section 5 is devoted to conclusions. 

2 Avoiding DAD: Risk Assessment 

In this section we will asses the risk of using randomly generated Interface Identifiers 
(IIDs) in IPv6 aggregatable addresses [5] without previously performing DAD. In 
order to do that, we will quantify the probability of a duplicate address event in 
several relevant scenarios and we will compare it with the probability of other critical 
events. 

2.1 Duplicate Address Event Probability Calculation and Bounding 

In the considered hypothesis, the Interface Identifier part of the IPv6 address is 
generated randomly, meaning that the node will use a 64 bit long random number as 
the IID. Actually, only 62 bits of the IID will be generated randomly, since the IID´s 
semantics defined in [6] imposes that the u bit must be set to “local” and the g bit 
must be set to “individual”. 

Considering that n is the number of possible IIDs (i.e. 622?n ) and k is the 
number of interfaces (i.e. mobile nodes) on the same link, we will now calculate the 
probability of collision of two or more randomly generated IIDs:  
We will represent the k IIDs in a link as a sequence of 62 bit long random variables Ii: 

kIII ,...,, 21  sequence of random integer variables with uniform distribution 

     between 1 and n? ?nk ?  

We would like to obtain the probability that two or more Iis collide, i.e. ji
II ?   

The solution for this well known mathematical problem, called the "birthday 
problem", is presented in Appendix A.   

The resulting expression for the probability of the collision of one or more Ii is: 
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In our particular case, 622?n , and k may vary depending on the considered 

scenario. We will now obtain an upper bound to ),( knP in order to simplify 

calculations (especially to avoid !n computation)  
Performing simple computations in equation (1), we easily obtain: 
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Applying this last result to equation 2, we can obtain the following bound B: 
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We will next perform some calculations in order to quantify the order of magnitude 
of the probabilities involved: 

We will bound ),( knP for the following values of k, which we consider to be 
representative of usual situations 

178.7)20,2( 62 ?? eP    

151.2)100,2( 62 ?? eP  

144.5)500,2( 62 ?? eP  

132.2)1000,2( 62 ?? eP  

124.5)5000,2( 62 ?? eP  
In order to fully seize the magnitude of the probabilities stated above, we can 

compare them with the probabilities of some rare events. For instance, according to 
Table 1.1 in [7], the probability of being killed by a lightning (per day) is about 1.1 e-
10.  Then, a mobile phone user should be more worried about being killed by a 
lightning in a given day than to have an interface identifier repeated when he 
performs a handoff. 



Another relevant parameter that can be considered when evaluating the above 
probability, is the probability of a failure in a network device, since this failure would 
have similar effects i.e. the user can not continue the communication. So, the 
probability that a network device were not working properly in a given moment 
(when the user joins the network, for instance) can be calculated as follows: 

MTTRMTBF
MTTR

PNEFails ?
?  

Being MTTR the Meat Time To Repair and MTBF the Mean Time Between Failures. 
Good network equipment can have an MTBF of 300,000 hours and if we suppose that 
some backup device is available, the MTTR stands for the time needed to replace the 

faulty element, e.g. 0.1 hour (6 minutes). In this case, 73.3 ?? ePNEFails . 

We can see that NEFailsP  is several orders of magnitude higher than ),( knP in the 

cases calculated above. 

2.2 Scenarios 

We have quantified the probability of a collision of two or more IIDs. However, this 
probability is not the most relevant parameter when we try to evaluate and compare 
the probability of failure of the system, since a mobile user will join multiple links in 
a given period. So, it is relevant to quantify the probability of at least one collision 
when a user performs multiple handoffs.  

As we stated above, ),( knP is the probability of a collision of two or more IIDs 
when there are k interfaces in the same link. Hence, it can be derived that the 
probability of having at least one collision after joining m links is: 

mknPmknP )),(1(1),,( ???  (4) 

According to the bound B presented in equation 3 and considering that both 
),( knP and B are lower than 1, we can infer the following bound: 
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Therefore, in order to estimate the probability of a collision event during a given 
period, for instance a year, we must first establish a reasonable number of handoffs 
per day. If we consider 140 handoffs per day, which seems to be a considerable 
number, this would mean about 50.000 handoffs per year, i.e. m=50.000. Then the 
probability of having at least one collision over a year during which the mobile node 
has joined 140 links of 500 nodes per day is: 

97.2)000.50,500,2( 62 ?? eP  (6) 

And, if the considered links have 5.000 nodes each, instead of 500, the probability is: 

77.2)000.50,000.5,2( 62 ?? eP  (7) 



Considering that each time there is a collision there are two users affected, and not 
taking into account the collision of 3 or more IIDs for this estimation, there will be 6 
users out of 1.000.000.000 that will have a communication problem during this year, 
if users make 140 handovers per day in networks containing 500 interfaces.  In the 
case that users make 140 handovers per day in networks containing 5.000 interfaces, 
there will be 6 users out of 10.000.000 that will have a communication problem 
during this year. This probability could be contrasted with some network availability 
data provided by, for instance, mobile operators, but this data has proven to be 
extremely difficult to find.  

3 Implementation Issues 

In this section, we will address some implementation issues regarding random IIDs 
generation and related security concerns. 

3.1 Random Numbers Generation 

When considering the usage of random IIDs, the random number generation process 
must be properly addressed since it is essential to guarantee the statistic uniqueness of 
the identifier. Several methods have been proposed [8] to generate pseudo-random 
numbers based on information available in most platforms, such as laptops. However, 
in some cases, such as mobile phones, the resources required to perform appropriate 
random number generation may not be available. In such cases, it should be noted that 
it is not necessary to create the identifier in real time, as long as randomness were 
guaranteed. This means that when the node joins the network the identifier could have 
been created already in advance to a network change. It could even be pre-configured 
in the interface driver with the node using the same identifier without changing the 
probabilities calculations stated above; this is analogous to the day of birth in the 
birthday problem. This would reduce the complexity in the nodes, although a 
mechanism should be provided in order to solve recurrent collisions, caused for 
example, when two habitual users of the same segment collide. 

3.2 Security Concerns 

Randomly generated IIDs have also been considered in order to improve security. In 
particular, its usage has been proposed to ensure anonymity [9] and even to carry 
cryptographic information when Cryptographically Generated Addresses are used 
[10]. These proposals are fully compatible with the solution of this document so they 
can get the benefit of better performance by avoiding DAD. 



4 Related Work 

The requirement of performing DAD every time a node joins a link imposed by 
Stateless Address Autoconfiguration mechanisms [2] has already been stated to be a 
major limitation by the Internet community, resulting in several recommendations and 
solutions, some of which are discussed below.  
The Mobile IP protocol [1] allows not performing DAD when a node joins a link in a 
trade-off between safety and the time needed for the DAD procedure. Besides, the use 
of fast handovers [11] allows performing DAD in advance, before the MN arrives to 
the subnet. In this case, the Access Router (AR) in the subnet is instructed to perform 
DAD on behalf of the MN before it enters the subnet. But then, the MN has to wait 
for the time needed to perform DAD before it can accomplish the handover. This is a 
problem when difficulties in the previous data-link layer connection force the 
handover. So we will again benefit from avoiding the DAD procedure.  
Other solution, specific to 3GPP (3rd Generation Partnership Project), proposed to 
avoid DAD can be found in [12]. In this case DAD is not performed since every 
prefix is assigned to only one primary context, preventing from collisions by limiting 
the numbers of nodes that share the same link. However, this implies reserving a 
complete prefix of 64 bits to just a couple of interfaces, resulting in an enormous 
waste of address space.   

5 Conclusions 

The impact of the time required for DAD during handover on real time multimedia 
applications can not be underestimated. In this document we evaluate the usage of 
random numbers to construct the Interface Identifier part of IPv6 addresses and then 
we asses the risk of using such addresses without previously performing DAD. We 
conclude that the probability of failure due to a collision is low enough to be 
acceptable in most cases. Furthermore, we consider that the probability of a failure in 
a communication due to an IID collision is negligible compared with other 
quantifiable causes of failure, such as network equipment outage. It should be noted 
that in this estimation other relevant causes such as operation errors, which are 
usually considered to be more frequent than the ones presented, have not been 
included because of the unavailability of hard data. Other possible solutions for 
avoiding DAD have been presented along with its drawbacks, and we consider that 
the usage of random IIDs without previously performing DAD is an attractive option 
since it completely solves the presented problem and it does not incurs in excessive 
ulterior costs such as waste of address space. 
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Appendix A: The Birthday Problem 

The classical formulation of the birthday problem is as follows: we want to calculate 
the probability that in a group of k people, al least two of them have the same 
birthday. 

We model the birthday as a integer random variable, with uniform distribution 
between 1 and n (in this particular case n is the number of possible birthdays i.e. 
n=365) 
   Then, the number N of ways that we can choose k values out of n with no duplicates 
would be:   

)1(...)1( ??????? knnnN  
On the other hand, the number of possibilities for choosing k elements out of n, 

without the restriction of not having any duplicates is kn  
Then, the probability of not having a collision when we select k elements out of n is: 
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So, the probability of having at least one collision when we select k elements out of n 
is: 
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