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Abstract� _ 

The paper addresses the problem of estimating missing 
observations in linear, possibly nonstationary, stochastic 
processes when the model is known. The general case of any 
possible distribution of missing observations in the time series 
is considered, and analytical expressions for the optimal 
estimators and their associated mean squared errors are obtained. 
These expressions involve solely the elements of the inverse or 
dual autocorrelation function of the series. 

This optimal estimator -the conditional expectation of the 
missing observations given the available ones- is equal oto the 
estimator that results from filling the missing values in the 
series with arbitrary numbers, treating these numbers as additive 
outliers, and removing the outlier effects from the invented 
numbers using intervention analysis. 
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1. INTRODUCTION 

In this paper we consider the problem of estimating 
missing observations in linear, possibly nonstationary, 

stochastic processes, which we parametrize as 

parsimonious Autoregressive Integrated Moving Average 

(ARIMA) models. The model is assumed to be known, and 

hence we concern ourselves with obtaining analytical 

expressions for the conditional expectation of the 
missing observations given the available ones. In terms 

of the well-known EM algorithm, our aim is to obtain 

further insights into the E -the expectation- step. 

In section 2 we present the model, the basic 
assumptions and sorne background references. Section 3 

contains the general result of the paper for the case of 

any possible distribution of missing observations in the 

series. Analytical expressions for the optimal estimator 

of the missing observations and the associated Mean 
Squared Error (MSE) are obtained, and the relationship 

with additive outlier models is discussed. section 4 

presents sorne conclusions. 

2. THE MODEL AND SOME BACKGROUND RESULTS 

Let the series Zt follow the general ARIMA model 

(2.1) 

where ~(B) and e(B) are finite polynomials in the lag 

operator B, and a t is a Gaussian white-noise process with 

variance (72 a . The autoregressive (AR) polynomial ~(B) 

contains the stationary as well as the nonstationary 

roots; the moving average (MA) polynomial e(B) is assumed 

to be invertible and hence, if n(B) (= 1-n1B -n2B2 - ••• ) 

denotes the convergent polynomial ~ (B) e (B) -1, model 
(2.1) can be expressed as the pure autoregression 



Def ine the inverse or dual roodel of (2.1) as the one 

that results froro interchanging the AR and MA polyno­

roials; that is 

(2.2) 

or, equivalently, 

Since (2.1) is invertible, (2.2) will be stationary; its 

variance (vo) and autocovariance generating function 

(ro(B)) are given by 

(2.3) 

.. 
rD(B) = VD + Eri (Bi+F i ) = o: 1t (B)1t (F) I (2.4) 

i m l 

where F = B-1 is the forward operator. Then, the dual 

autocovariance at lag i will be given by 

(2.5) 

Following Cleveland (1972), the function 

(2.6) 

will be denoted the Inverse or Dual Autocorrelation 

Generating Function (DAGF). (Trivially, froro the ARlMA 

expression of the roodel, the DAGF is immediately availa­

ble. ) 
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Assume the series Zt has a single missing value for 

t = To The minimum MSE estimator of zT (the conditional 
expectation of zT given the available observations) is a 
linear combination of the observed values, where the 

weights depend on the covariance structure of the 
processo Several authors have shown how to compute the 
estimator recursively using the Kalman filter (Jones, 
1980; Harvey and Pierse, 1984; Kohn and Ansley, 1983) o 
Wincek and Reinsel (1986), and Ljung (1982, 1989) have 
concentrated on the explicit form of the likelihood 
function and the maximum likelihood estimates of the 

missing valueso The analytical expression for the 

conditional expectation of a missing value in a 

stationary stochastic process has been available for some 
time (Grenander and Rosenblatt, 1957); it can be expres­
sed as 

2T = - L pf (ZT-i+ZT+i) (207) 
i-l 

where PiD is the lag-i dual autocorrelation of Zto Moreo­
ver, the MSE of the estimator is found to be 

... 
MSE(2T) = a~/v;l = a:/E 1t~ I 

J-O 

where VD is given by (203) o 
Brubacher and Wilson (1976) obtained (2.7) by least 

squares for a seasonal nonstationary ARMA process and 
showed the relation between interpolation and the inverse 

autocorrelation functiono Kato (1984) showed that the 
inverse autocorrelation function at lag K is equal to the 

negative of the partial correlation between Zt and Zt+k 
after elimination of the influence of zh' (h"t, t+k) o 
Battaglia and Bhansali (1987) used the interpolation 
error variance to build an index of linear determinismo 
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Pourahmadi (1989) has studied the estimation and 

interpolation of several missing values of a stationary 

time series. Finally, Bruce and Martin (1989) and Peña 

(1987, 1990) have shown the relationship between 

interpolation and additive outlier estimation. 

Focussing on this last extension, if the series has 

an additive outlier at period T, so that the observation 

for that period is (zT+w) where w is the (unknown) 

outlier effect, then the optimal estimator of w is given 

by (see Chang, Tiao and Chen, 1988) 

(2.8) 

where Z denotes the observed series such that ZT = zT+w, 

and Zt = Zt for t f T. Thus, back to the missing observa­

tion case, if the "hole" in the series is filled with an 

arbitrary number ZT and this "invented" observation is 

treated as an outlier, the missing observation estimator 

can be obtained through 

(2.9) 

and it is easily seen that (2.8) and (2.9) yield 

express ion (2.7). Furthermore, since ZT-2T = Q-w, i t 

follows that M5E(Q) is also equal to Ga
4 /vD• 

Therefore, when the model is known, optimal 

estimation of an additive outlier is equivalent to the 

following procedure: First, assume the outlier is a 

missing observation and obtain its optimal estimate given 

the rest of the observations. Then, compute the outlier 

effect as the difference between the outlier and the 

interpolated value. Alternatively, estimation of a 

missing observation can be seen as the resul t of the 

following procedure: First, fill the "hole" in the series 

with an arbitrary number. Then treat this number as an 

additive outlier, and remove the outlier effect with 

intervention analysis. 
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3. TBE GENERAL CASE 

e 
Assume that, in all generality, the finite series Zt 

has k missing values at periods TI' T2, ••• , Tk , were Ti < 

Tj if i < j. We can always fill the k holes in the series 

with arbitrary numbers, ZT.' and construct an "observed"e .
serJ.es Zt by� 

~ 

t = T1 , ••• , Tx 
otherwise. 

e 
where wt is an unknown parameter. In matrix notation, we 

can write 

Z = z+Hw� (3.1) 
e 

where Z and Z are the series Zt and Zt expressed as 

vectors, H is a matrix with k columns such that HT.,j = 
1, for j = 1, .•. , k, and Hij = 0, otherwise, and w\s a 

k-dimensional vector with elements Wj(= ZT. - zT.)' Let 
~ be the covariance matrix of the series JZt ; t~en the 

generalized least squares estimator of w is given by 

(3.2) 

Treating the starting values as fixed constants, (Ansley, 

1979), the Cholesky factorization of ~ leads to 

where n is a lower triangular matrix with the -nj's on 

the various lower diagonals. Then we can write (3.2) as 

~ = (X/X) -1 X/Y,� (3.3) 

where X = nH, Y = nZ. 

Expression (3.3) can alternatively be obtained as 
jfollows: Let dt ,� j = 1, ... , k, be a set of dummy varia­

jbles such that dt = 1 for t = Tj and zero otherwise. 

Then, from (2.2), the following intervention model (Box 

and Tiao, 1975) is obtained 
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(3.4)� 
( 

which can be rewritten as 

(3.5) 

e 

e 

where Yt = n(B)Zt, Xjt = n(B)dt 
j . Expression (3.5) is a 

regression equation with Xjt deterministic and a t white­
noise; i t is immediately seen that the minimum MSE 
estimator of w is then given by (3.3). 

Expressions (3.2) and (3.3) apply to a finite 

series . Now, let us consider the case of a ser ies of 
infinite length. The results obtained in this case will 
be approximately exact when the sample size is large and 

the missing values are not near the end of the series. 

Using (2.3), (2.5) and (2.6), straightforward computation 
yields 

( 
(3.6) 

~ X;j = (vD/a:) =E 1t~ 
izo 

(3.7) 

~ X jt X j +h • t = -1th + 

..
E 1t i 1t i +h 
~zJ. 

=~/a:, (3.8) 

where r h 
D denotes the lag-h autocovariance of the dual 

process defined in (2.5). Using (3.7) and (3.8), XIX is 
a (kxk) symmetric matrix with the (i,j)-th element given 
by rD 

T._T.. The elements are thus autocovariances of the 
dual p~ocJss for lags reflecting the relative distances 

between the missing observations. Therefore, 

(3.9) 

7 



e� 

where RD is the (kxk) symmetric matrix 

e D D D1 PT2 -T1 PT3-T1 PTk-T1 

D D1 PT3-T2 PTK-T2 

1 
(3.10 )RD = e 

1 

( 
with elements the dual autocorrelations of the process. 

If Zk denotes the vector of invented observations 

ZT , ... , ZT)' , from (3 . 3) , ( 3 . 6) and (3 . 9) , the 
1 . k

est1mator of w becomes 
( 

(3.11) 

and the vector of missing observations estimators 2k = 
(2T , ... , 2T )' can then be obtained through 

1 ke 
Zk = Zk "- w. (3.12) 

Equations (3.11) and (3.12) are the generalization 
of equations (2.8) and (2.9), derived for the single 

missing observation, to the case of any possible sequence 

of missing observations. The estimator 2k can be seen as 
the result of the following procedure: First, fill the 

holes in the series with arbitrary numbers, which then 

are treated as additive outliers. Removing from the 

arbitrary numbers the outlier effects, the missing 

observation estimator is obtained. It is straightforward 

to show that the estimator 2k does not depend on the 

vector Zk of arbitrary numbers. 

As for the MSE of the estimator, from (3.11) and 

noticing that ZT. - 2T . = ~j - Wj' it follows that 
J J 
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c: 
Therefore, both the estimator and its MSE can be 

expressed in terms of the dual autocorelations of the 

series. 

It is irnmediately seen that, for the scalar case, 

the matrix Ro of (3.10) becomes simply 1 and equation 

(2.8) is obtained. More relevantly, for the case of k 

consecutive missing observations, Ro becomes the 

symmetric Toeplitz matrixe 
D1 pf p~ Pk-l 

D1 pf Pk-2 

( RD = 

pf 
1 

( that is, the (kxk) dual autocorrelation matrix. The MSE 

of the estimator is then the inverse of the (kxk) 

autocovariance matrix of the dual process, also a 

syrnmetric Toeplitz matrix with all the elements of the i­

th diagonal equal to rio. 
Finally, from equation (3.11) another interesting 

express ion for ~k is obtained. Let Wj (1) denote the 

estimator of Wj obtained by assuming that, in the vector 

Zk, only the element ZT. is invented, and using the 

method of section 2 forJ the scalar case. Define the 

vector w(l) = (w1(1) , ... , wk(l) '; from (2.8), express ion 

(3.11) can be rewritten 

R-1 W(l).WA = D 

Therefore, for the case of a vector of missing observa­

tions, the optimal estimator can be seen as a weighted 

average of the estimators obtained by treating each 

missing observation as if it were the only missing one 

(using (2.8) on the arbitrarily filled series). The 
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e 
weights are the elements 

autocorrelation matrix. 

of the inverse dual 

e 4. CONCLUSION 

( 

We have considered the general case of any 

distribution of missing observations in an infinite 

realization a possibly nonstationary linear stochastic 

process. Compact analytical expressions for the optimal 

estimator of the missing observations are derived, which 

explicitly show the dependence of the conditional 

expectation on the stochastic structure of the series, 

and involve only the elements of i ts inverse or dual 

autocorrelation function. Furthermore, analytical 

expressions for the Mean Squared Error matrix are 

immediately obtained, which are simply functions of the 

dual autocovariance matrix. 

The expression for the conditional expectation of 

the missing observations given the available ones is the 

same that results from filling the missing values with 

arbitrary numbers, treating t:hese numbers as additive 

outliers, and removing the outlier effects through 

intervention analysis from the invented observations. 
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