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1 Introduction

Beta pricing models, such as the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner

(1965) or the Arbitrage Pricing Theory (APT) of Ross (1976), have been extensively used in portfolio

management, risk management, and capital budgeting applications. In these models, a risky asset’s

expected return in excess of the risk-free interest rate is linearly related to the covariance of the asset’s

return with one or more factors capturing market-wide sources of risk. Re-scaled by the variance of

each risk factor, covariances are referred to as betas, and are interpreted as the asset’s exposure to risks

that cannot be eliminated through diversification. The slopes of the linear relation, which must be equal

for all assets, are interpreted as the rewards per unit of covariance risk or market prices of risk (MPR)

associated with each factor.

Implementation of these models has traditionally relied on the assumption of constant MPR and

stationarity, which contradicts the mounting empirical evidence that betas and risk premiums vary over

the business cycle (see, for instance, Keim and Stambaugh (1986), Fama and French. (1989), Ferson

(1989), or Ferson and Harvey (1991)). This has led researchers to propose conditional beta-pricing

models in which the linear relation holds period by period, with changing factor sensitivities and MPR.

Examples of conditional beta pricing models include those proposed by Harvey (1989), Jagannathan and

Wang (1996) and Lettau and Ludvigson (2001). The conditional asset pricing relation is also obtained

in arbitrage-free models for option and bond returns, such as Black and Scholes (1973), Cox, Ingersoll

and Ross (1985) and their extensions, with discrete returns replaced by instantaneous returns.

In this paper, we propose a new nonparametric procedure to estimate and test conditional beta pric-

ing models, which allows for flexibility in the dynamics of covariances and MPR. The method can be seen

as a nonparametric version of the popular two-pass approach developed by Black, Jensen and Scholes

(1972), Fama and MacBeth (1973), Shanken (1985) and Shanken (1992) in the context of unconditional

models.1 In the first stage, conditional covariances are estimated nonparametrically for each asset and

period, using previous information. In the second stage, time-varying MPR are estimated from the

cross-section of returns and estimated covariances (the regressors), using the entire sample and allowing

for heteroscedastic and cross-sectionally correlated errors. In particular, a Seemingly Unrelated Regres-

sion Equations (SURE) model, introduced by Zellner (1962), is specified in the second pass, with each

equation in the system corresponding to one asset. Allowance is made for time-varying slope coefficients

(MPR), and they are estimated nonparametrically subject to the constraint of equality of slopes across

assets. The method provides a generalization of previous estimation methods of conditional asset pricing

models in several aspects. First, conditional covariances are considered under no specified parametric

structure. Second, the MPR may be time-varying. Third, locally stationary variables are assumed, as

defined in Dalhaus (1997), which permit time-varying mean and, therefore, the usual strong hypothesis
1See Shanken and Zhou (2007) for a recent study of the small-sample properties of the two-pass approach and a comparison

with alternative procedures.

2



of stationarity is not needed.

The method proposed for this generalized two-stage regression model is also related to some previous

econometric literature in the context of nonparametric time-varying regression models, that extends the

original work by Robinson (1989). Orbe, Ferreira and Rodriguez-Póo (2005) analyze a single equation

regression model under the assumptions of time-varying coefficients with seasonal pattern and locally

stationary variables, although neither the two-step procedure nor a multi-equation model are considered.

In Orbe, Ferreira and Rodriguez-Póo (2006) a local constrained least squares estimation method is

studied for a single equation regression under the usual assumption of ergodicity. Cai (2007) proposes to

estimate a model with time-varying coefficients using local polynomial regression under stationarity of

the state variables. Kapetanios (2007) also uses the properties of locally stationary variables to estimate

deterministically time-varying variances for the error term in the regression model. As mentioned above,

in this paper, a SURE model is first estimated with time-varying coefficients subject to constraints across

coefficients corresponding to different equations for each time period. Further, the highest difficulty

is related to the fact that, in practice, the explanatory variables (the conditional covariances) are not

observed and must be estimated in advance. Hence, we deal with generated regressors that have been

widely studied by Zellner (1970) or Pagan (1984), among others, for the classical parametric regression

model. In order to avoid the inconsistency problems for the coefficient’s estimator derived from the

potential correlation between the estimated regressor and the error term, conditional covariances are

estimated at each date using only past information.

Most previous tests of conditional beta pricing models impose strong parametric restrictions on the

dynamics of covariances and/or MPR. For instance, Bollerslev, Engle and Wooldridge (1988) model

conditional covariances as an ARCH process. Harvey (1989) assumes that conditional asset expected

returns are a fixed linear function of a vector of lagged instrumental variables capturing conditioning

information. Similarly, Jagannathan and Wang (1996) assume that the conditional market premium is

linear in one instrument. The most common approach in the literature is, however, to assume that betas

are a fixed linear function of the instruments (e.g., Ferson and Schadt (1996), Ferson and Harvey (1999),

Lettau and Ludvigson (2001)). Nonetheless, Ghysels (1998) finds that the pricing errors of conditional

models may be larger than those of the unconditional model when time variation in betas is incorrectly

specified. Brandt and Chapman (2006) report similar consequences when market risk premiums are

incorrectly assumed to be linear functions of the state variables. Our method circumvents this problem,

since it imposes much weaker assumptions on both factor sensitivities and MPR. In particular, conditional

covariances are assumed to vary smoothly, but possibly nonlinearly, in the instruments, while MPR are

treated as free parameters that vary smoothly through time. Consistently with Ghysels (1998), our

empirical application shows that the linearity assumption can be highly inadequate in some settings.

Our work is closely related to that of Stanton (1997), Wang (2003), and Jones (2006). These authors

also estimate flexible conditional beta pricing models of bond, equity and option returns, respectively.

In particular, Stanton (1997) first estimates conditional covariances and conditional expected returns
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nonparametrically, and then obtains MPR by solving directly the system of equations imposed by the

conditional asset pricing model for two assets at each point in time. One problem with this approach is

that it can generate highly unstable estimates of the MPR. Furthermore, the method does not enable

formal inference to be conducted on MPR. Wang (2003) proposes a test statistic for the null hypothesis

that conditional expected pricing errors from the conditional CAPM are zero. The test is based on the

idea that a simple regression of pricing errors on a vector of instruments should yield zero coefficients.

Estimation of pricing errors in the conditional CAPM is possible because the risk factor is the return

on the market portfolio, so the conditional market price of risk can be estimated nonparametrically

from the time series of excess returns on the market portfolio. The present work departs from that

of Wang (2003) in important ways. First, the method proposed does not require that risk factors be

portfolio returns, so it can be applied to models where factors are identified with any aggregate variable.

Also, although we assume that conditional covariances are functions of the instruments, this assumption

is irrelevant for the estimation of MPR. All that is required is that conditional covariances must be

consistently estimated. This is a desirable property, since the method of Wang (2003) crucially depends

on the choice of instruments. For instance, if a relevant instrument is omitted from the regression of

pricing errors on instruments, then Wang (2003) could fail to reject the model even if pricing errors

are systematically related to the missing instrument. Moreover, our method allows for multiple risk

factors and is, therefore, more general. Finally, Jones (2006) uses Legendre polynomials to approximate

conditional expected returns and betas, which are estimated in a Bayesian framework. He then solves for

the parameters of the polynomial for the price of risk that minimize mean squared pricing errors for the

whole panel of returns. An advantage of our method is that inference can be conducted on the basis of

the closed-form asymptotic distribution of the estimators instead of the numerically obtained posterior

distribution of the model parameters.

An empirical application to a dynamic model of the term structure of interest rates is presented. In

particular, we consider a two-factor model and estimate the MPR of risk associated with each factor.

This context is a particularly interesting application for two reasons. On the one hand, there is no

consensus in the literature regarding the dynamics driving bond returns and market prices of risk. For

instance, Duffee (2002) studies the affine class of term structure models of Duffee and Kan. (1996) and

shows evidence that the specification of market prices of risk assumed by completely affine models is

empirically implausible. Flexible estimation of market prices of risk may therefore shed further light on

the reasons for this failure. On the second hand, it provides an alternative way to test for the number

of priced risk factors. For this case, the results provide evidence that there is substantial time variation

in MPR and further, that only the first risk factor (which we identify with changes in the short term

interest rate) appears to be priced by investors. The latter is consistent with the results reported by

Ferreira and Gil-Bazo (2004), which cannot reject the null hypothesis that U.S. bond expected returns

are driven by a single priced risk factor.

To summarize, a nonparametric estimator of time-varying market prices of risk in the context of
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conditional beta pricing model is proposed. The estimation procedure takes into account the defining

characteristics of these models: the common market prices of risk imposed by absence of arbitrage or

equilibrium; the structure of the error’s covariance that follows from the multi-equation model and the fact

that the regressors—the covariances between returns and changes in the risk factors—are not observed.

We also contribute to the asset pricing literature by generalizing the traditional estimation procedure

proposed in Fama and MacBeth (1973) and the GLS version studied in Shanken (1992). In fact, the

previous estimators are particular cases of our proposal. From a technical point of view, the proposed

estimator is a type of three-stage estimator because, first of all, the explanatory variables are estimated,

secondly the covariance matrix of the error term is estimated and finally the prices of risk are estimated.

It should be noted that the usual hypotheses of stationarity are relaxed and locally stationary variables

are permitted, which increases the flexibility of the model and gives a more realistic perspective in many

empirical situations due to fact that variability of first moments is allowed.

The rest of the paper is organized as follows. Section 2 presents conditional beta pricing models;

Section 3 describes the estimation method and presents the main asymptotic results; Section 4 deals with

the implementation of the method; Section 5 presents the empirical application; and, finally, Section 6

concludes. The appendix contains the main proofs, tables and figures.

2 The Model

This section presents the general class of conditional beta pricing models followed by the specific model

which provides the basis for the main results and the empirical application.

2.1 Conditional beta pricing models

In unconditional beta pricing models, asset returns are assumed to be driven by a set of common risk

factors

Rit = αi + βi1F1t + . . . + βipFpt + εit, i = 1, . . . , N t = 1, . . . , T, (1)

where Rit denotes the return on asset i in excess of the risk-free interest rate in period t and F`t denotes the

realization of the `th risk factor in period t, for ` = 1, . . . , p. Risk factors are assumed to be orthogonal to

each other. The error term εit is serially independent with zero mean and nonsingular covariance matrix,

conditional on factor realizations. The sample size of the time series is T , and N is the sample size of

the cross section.

The standard asset pricing relation is then

E(Rit) = γ1βi1 + . . . + γpβip (2)

where E(Rit) is the expected return on the ith asset and βi1, ..., βip are the coefficients from equation

(1). Under the orthogonality condition of the factors, the betas represent the sensitivities of the asset’s
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return to changes in the risk factors and are equal to the covariances between the factor and the asset

return re-scaled by the variance of the risk factor. Hence, the coefficient γ` is interpreted as the reward

per unit of beta risk associated with factor `.

The first stage of the two-pass estimation procedure consists of estimating betas in equation (1) for

each asset from a time-series regression. In the second stage, γ’s are estimated as the slope coefficients of

a cross-sectional regression of returns on estimated betas. See Shanken (1992) for an analysis of different

aspects of the two-pass procedure and a derivation of the asymptotic distribution of the second-pass

estimators, and Shanken and Zhou (2007) for a study of the small-sample properties of the methods and

a comparison with alternative approaches.

Conditional beta pricing models, such as Harvey (1989), Jagannathan and Wang (1996) or Lettau

and Ludvigson (2001), assume that (2) holds period by period so unconditional moments are replaced by

conditional moments and the rewards per unit of beta risk are allowed to change over time. Noting that

(2) can be rewritten as

E(Rit) = γ1
Cov (Rit, F1t)

V ar(F1t)
+ . . . + γp

Cov (Rit, Fpt)
V ar(Fpt)

, (3)

then the conditional beta pricing model is

E(Rit|It) = γ1t
Cov (Rit, F1t|It)

V ar(F1t|It)
+ . . . + γpt

Cov (Rit, Fpt|It)
V ar(Fpt|It)

, (4)

where It represents investors’ information set at the beginning of period t.

In empirical applications, the conditioning information set is replaced by an m−dimensional vector of

observable variables Xt = (X1t . . . Xmt)T . Following Harvey (1989), we are also interested in estimating

the reward per unit of covariance risk or market price of risk associated with the `th factor. Denoting by

σ2
` (Xt) the conditional variance of the `th factor, and by ci`(Xt) the conditional covariance between the

asset return and the risk factor, the market price of risk may be defined defined as λ`t ≡ γ`t/σ2
` (Xt) and

the conditional beta pricing model can be rewritten as

E(Rit|Xt) = λ1tci1(Xt) + . . . + λptcip(Xt) i = 1, 2, ..., N t = 1, 2, ..., T, (5)

which can be estimated from the following set of regression equations

Rit = λ1tci1t(Xt) + . . . + λptcipt(Xt) + εit i = 1, 2, ..., N, t = 1, 2, ..., T, (6)

where the market prices of risk are restricted to be equal across assets and εit denotes the error term.

2.2 A dynamic term-structure model

We next present a dynamic model of the term structure of interest rates that motivates the use of

conditional beta pricing models and is the basis of our empirical application. This context is particularly
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interesting for our purposes for two main reasons. First, there is no consensus in the literature regarding

the dynamics driving bond returns and market prices of risk (Duffee (2002) and Cheridito, Filipović and

Kimmel (2007)). Flexible estimation of the market prices of risk may therefore shed further light on the

reasons for this failure. Second, Ferreira and Gil-Bazo (2004) cannot reject the null hypothesis that U.S.

bond expected returns are to be driven by a single priced risk factor. Since the method we propose yields

estimates of the market price of risk associated with each factor, it also provides an alternative way to

test for the number of priced risk factors.

Consider p state variables {X`t}p
`=1 capturing the state of the system. Each state variable is assumed

to follow a general diffusion process

dX`t = µ`t(t, Xt)dt + σ`t(Xt)dW`t (7)

where the mean function µ`t(t,Xt) is possibly time-varying and depending on the value of the p−dimensional

vector Xt = (X1t . . . Xpt)T , at time t. For the sake of simplicity and without loss of generality, the diffu-

sion function σ`t(Xt) is assumed to only depend on the state variables Xt. The term dW`t denotes the

standard derivative of a Wiener processes assumed to be orthogonal to dWkt, for ` 6= k.

Within this context and, considering that N default-free bonds are available in the market, the system

of equations for the instantaneous bond returns can be written as

dBit

Bit
= mit(t,Xt)dt + dZit i = 1, . . . , N, (8)

where the drift and the diffusion can be obtained using the multivariate version of Ito’s lemma. In

particular, the diffusion is given by

dZit =
p∑

`=1

si`tdW`t with si`tBit = σ`t
∂Bit

∂X`t

where the arguments have been dropped out.

Assuming a market free of arbitrage opportunities, it can be shown that a vector γt = (γ1t . . . γpt)T

must exist so that

mit = rt + γ1t
∂Bit/∂X1t

Bit
+ . . . + γpt

∂Bit/∂Xpt

Bit
, i = 1, . . . , N (9)

where rt is the instantaneous risk-free interest rate. Thus, (8) becomes

dBit

Bit
= rtdt +

p∑

`=1

γ`t
∂Bit/∂X`t

Bit
dt +

p∑

`=1

si`tdW`t, (10)

and, defining the conditional covariances, ci`t = Cov
(

dBit
Bit

, dX`t|Xt

)
,

dBit

Bit
= rtdt +

p∑

`=1

γ`t
ci`t

σ2
`t

+
p∑

`=1

si`tdW`t. (11)
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If a time series of returns is discretely observed for N different bonds, for a sufficiently (T + 1) size

dense sample of returns, a discretized version of (11) is:

Rit = λ1tci1t + λ2tci2t + . . . + λptcipt + εit i = 1, 2, ..., N t = 1, 2, ..., T, (12)

where Rit =
{(

Bi(t+1) −Bit

)
/Bit

} − rt∆t; ∆t is the time step between observations (e.g. if rt is the

annualized interest rate and returns are measured over daily intervals, then ∆t = 1/250), ci`t is the

conditional covariance between Rit and ∆X`t, λ`t is defined as γ`t/σ2
`t, and the error terms εit follow a

normal distribution. Note that defining the risk factors, F`, as X`t+1 − X`t, the interpretations of ci`t

and λ`t are the same as in (6).

It is convenient to remark that, straightforward from expression (11), it follows that the errors εit are

heteroscedastic, serially independent, independent of the explanatory variables (ci`t) and cross-sectionally

related; that is, E(εitεjt|Xt) 6= 0 for i 6= j and E(εitεjs) = 0, for all i, j and t 6= s.

To estimate λ’s in (12), the time series of returns for a single asset and the time-varying covariances

between the asset’s returns and the risk factors could be used. However, the error term in the set of

equations are possibly cross-sectionally related and the absence of arbitrage imposes common market

prices of risk. Therefore, it is more efficient to estimate all equations jointly as a Seemingly Unrelated

Regression Equations (SURE) model, subject to the restriction that all equations have the same vector

of coefficients; that is, for each t = 1, . . . , T , λi`t = λj`t = λ`t for all i, j = 1, . . . , N . Thus the model to

be estimated is

R1t = λ1t c11t + λ2tc12t + . . . + λptc1pt + ε1t

R2t = λ1t c21t + λ2tc22t + . . . + λptc2pt + ε2t (13)
...

RNt = λ1t cN1t + λ2tcN2t + . . . + λptcNpt + εNt

where {λ`t}p
`=1 are the market prices of risk to be estimated. The error term of the system, εt =

[ε1t ε2t . . . εNt]T has zero mean and covariance matrix given by

E(εtε
T
t |Xt) = Ωt =




σ11t σ12t . . . σ1Nt

σ21t σ22t . . . σ2Nt
...

...
. . .

...
σN1t σN2t . . . σNNt,




where σijt = E(εitεjt|Xt) denotes the covariance, conditional on the value of the risk factors, between

the error terms corresponding to different equations i and j at time t. Note that this context allows

for heteroscedasticity (σiit = E(ε2
it|Xt)) in each equation and for contemporaneous correlations (σijt =

E(εitεjt|Xt)). As mentioned above, all other correlations are zero.
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3 Estimation procedure and main results

This section describes the proposed estimator for the coefficients λ`t in (13). For a better description of

the procedure, consider some extra notation: Cs = (C1s C2s . . . CNs)T is a N × p order matrix where

each term CT
is denotes the row vector (ci1s ci2s . . . cips), for i = 1, . . . , N . Rs is a N order column vector

(R1s R2s . . . RNs)T , λt = (λ1t . . . λpt)T is the p order vector of unknown prices of risk. Finally the realized

state-variable p− order column vector is described as Xt = (X1t . . . Xpt)T . Note that in our example the

state variables and the risk factors have the same dimension (p). According to this notation model (13)

can be compactly written as

Rt = Ctλt + εt t = 1, . . . , T. (14)

Within this framework, the proposal consists of estimating the time-varying vector of market prices

of risk at each time t, λt, taking into account the structure of the error covariance matrix, the equality

constraints on the coefficients across assets and the assumed smoothness of the coefficients. In order to

achieve this goal, we propose to estimate the market prices of risk by minimizing the weighted sum of

squared residuals using all available observations:

min
λt

T∑

s=1

Kh,ts(Rs − Csλt)T Ω−1
s (Rs − Csλt), (15)

where Kh,ts = (Th)−1K((t − s)/(Th)), K(·) denotes the kernel weight used to introduce smoothness in

the path of coefficients and h > 0 is the bandwidth that regulates the degree of smoothness. Solving the

normal equations, the resulting estimator has the following closed form

λ̂t =

(
T∑

s=1

Kh,tsC
T
s Ω−1

s Cs

)−1 T∑

s=1

Kh,tsC
T
s Ω−1

s Rs, (16)

and it can be interpreted as a type of Smoothed Generalized Least Squares estimator. Note that consider-

ing the usual standardization R∗
s = V −1

s Rs and C∗
s = V −1

s Cs, being Vs the matrix such that VsV
T
s = Ωs,

the optimization problem (15) can be written as

min
λt

T∑

s=1

Kh,ts(R∗
s − C∗

s λt)T (R∗
s − C∗

s λt), (17)

and, therefore, the market prices of risk estimator (16) can be expressed in a more compact form

λ̂t =

(
T∑

s=1

Kh,tsC
∗T
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗T
s R∗

s. (18)

Remark 1 The role of the smoothing parameter h for time-varying coefficients has differences from

that of the usual nonparametric regression. In our context, when h is large enough, no time variation is
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allowed and the resulting estimator leads to the same estimates as in a classical SURE model estimation

with constant coefficients, subject to the equality constraints. That is,

λ̂ =

(
T∑

s=1

C∗T
s C∗

s

)−1 T∑

s=1

C∗T
s R∗

s =

(
T∑

s=1

CT
s Ω−1

s Cs

)−1 T∑

s=1

CT
s Ω−1

s Rs. (19)

On the contrary, when h is small enough, no smoothness is imposed, so the estimation of each λ̂t only

takes into account the N observations corresponding to the same time period (s = t), and it will be

estimated independently of the rest of observations (s 6= t). That is,

λ̂t = (C∗T
t C∗

t )−1C∗T
t R∗

t = (CT
t Ω−1

t Ct)−1CT
t Ω−1

t Rt (20)

which is equivalent to estimate independently the cross regressions for each time period.

Remark 2 There is a close relation between the estimator in (18) and the estimator proposed in Shanken

(1985), and asymptotically studied in Shanken (1992). Considering constant coefficients (h → ∞) as in

(19) and assuming that the covariances between returns (Rit) and the risk factors (X`(t+1) − X`t) are

time invariant, (Cs = C ∀s), the resulting estimator is

λ̂ =

(
T∑

s=1

C∗T C∗
)−1 T∑

s=1

C∗T R∗
s = (CT Ω−1C)−1 CT Ω−1R. (21)

If we substitute C and Ω by their estimators, respectively, λ̂ coincides with the GLS estimator proposed

by Shanken (1985).

To study the properties of consistency and asymptotic normality of the general estimator (18), the

MASE (Mean Average Squared Error)

MASE(λ̂t) =
p∑

`=1

MASE(λ̂`t) =
p∑

`=1

(
Bias2(λ̂`t) + V ar(λ̂`t)

)

≡ S2(λ̂t) + V (λ̂t)

is studied and the following assumptions are considered.

Assumption (A1) The market prices of risk are smooth functions of the time index; that is, λ`t =

λ`(t/T ) where each λ` is a smooth function in C2[0, 1].

Assumption (A2) The weight function K(u) is a symmetric second order kernel with compact support

[−1, 1], Lipschitz continuous, and its Fourier transform is absolutely integrable, such that
∫

u2K2(u)du

and
∫

K4(u)du are bounded.

Assumption (A3) The conditional covariance can only vary with time through the state vector at time

t, Xt. That is, ci`t = ci`(Xt), where it is assumed that ci` is at least twice differentiable for all partial

derivatives.
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Assumption (A4) Both Cit and Xit are statistically independent of εis, for all s > t. Moreover, we

assume the process (14) with finite distributions such that the sequence {Xit, Cit, εit} is strong α-mixing

with coefficients α(k) of order 6/5; that is α(k) = O(k−δ), with δ > 6/5. All moments up to order 12 + θ

exist and they are uniformly bounded, for some positive θ.

Assumption (A5) At each time t, the unconditional expectation E(C∗T
t C∗

t ) = Gt is symmetric and

strictly positive definite, and it can be decomposed as a smooth function of t/T , at least twice differen-

tiable and uniformly bounded, plus a term of order O(T−1).

Assumption (A6) The error term εt has zero mean conditional on Xt, conditional covariance matrix

Ωt = E(εtε
T
t |Xt) symmetric and positive definite.

Assumption (A7) Let σijt be a generic term in Ω−1
t . The p-order matrix




T∑

s=1

N∑

i,j=1

Kh,ts σijtCi,sC
T
j,s


 , (22)

is positive definite and uniformly bounded from above and below.

Assumption (A8) The smoothing parameter h goes to zero and Th goes to infinity, as the sample size

T goes to infinity.

Assumption (A1) imposes smoothness on the market prices of risk. (A2) holds for technical reasons

in kernel estimation. (A3) imposes smoothness on the explanatory variables. (A4) and (A5) ensure that

the generating distribution process for the data is locally stationary, which allows for time-varying means,

variances and also serial correlations. These types of processes are very useful and realistic since they

can help to model nonstationary variables with a nonexplosive behavior (see Dalhaus (1997), Dalhaus

(2000)). Smoothness over error’s covariances is also assumed. (A6) excludes equations with exploiting

variances and or with lineary dependent error terms and (A7) ensures that the estimator is identified.

(A8) is standard in nonparametric estimation.

Theorem 1 Under the set of assumptions (A1) to (A8), the MASE for the estimator defined in (18),

has bias and variance,

S2(λ̂t) =
h4d2

K

4
|| λ′′t + 2G−1

t G′
tλ
′
t) ||22 +o(h4) (23)

and

V (λ̂t) =
cK

Th
tr(G−1

t ) + o((Th)−1) (24)

where G′
t denotes the matrix with the derivatives of Gt = E(C∗T

t C∗
t ). The vectors λ′t and λ′′t contain the

first and second derivatives of λt. The constants related with the kernel dK and cK are defined respectively

as dK =
∫

u2K(u)du and cK =
∫

K2(u)du.

11



Remark 3 It is important to observe that under assumptions (A1) to (A8), the asymptotic order and

the leading terms are the same considering either stationary or locally stationary variables.

Corollary 1 Consider model (14) and a consistent estimator Ω̂s = V̂sV̂
T
s of Ωs = VsV

T
s . Then, under

the same assumptions in Theorem 1, and if either

(i) Ω̂s − Ωs = o(MASE(λ̂t)), or

(ii) The entries in Cs are bounded

the estimator

λ̂F
t =

(
T∑

s=1

Kh,tsC
T
s Ω̂−1

s Cs

)−1 T∑

s=1

Kh,tsC
T
s Ω̂−1

s Rs

has the same asymptotic properties than the estimator (17).

All previous asymptotic results have been obtained under the assumption that the explanatory vari-

ables are observable and, therefore, they can be directly used in the estimation. However, this is not the

case in the context of beta pricing models, in which explanatory variables are not directly observable and

must be replaced by proxies. Moreover, the procedure to obtain them should ensure that the properties

as the real unobserved variables are preserved.

Taking into account that each element ci`t of Ct measures the covariance between returns (Rit) and

the risk factor (X`(t+1) −X`t) we propose to estimate ci`t as a rolling smoothed sample covariance

ĉi`t = ĉi`(Xt) =

(
t−1∑

s=t−r

KB(Xs −Xt)

)−1 t−1∑
s=t−r

KB(Xs −Xt)Pi`s, (25)

where we recall that Xs = (X1s . . . Xps)T are the state variables. We define Pi`s = Ris∆X`s−µRi(Xs)µ∆X`
(Xs)

being µRi(Xs) and µ∆X`
(Xs) the estimated means of Ri and ∆X` conditional on Xs. KB is a p-variate ker-

nel KB(u) = |B|−1/2K(B−1/2u), with smoothing matrix B. Since E(Ris∆X`s|Xs)−E(Ris|Xs)E (∆X`s|Xs) =

Cov(Ris,∆X`s|Xs) = ci`(Xs), it can be written that Ris∆X`s − µRi(Xs)µ∆X`
(Xs) = ci`(Xs) + us where

E(us|Xs) = 0. That is, (25) can be read as a one-sided conditional nonparametric estimator in a time

series model. It therefore becomes clear that to keep the results, it is crucial to employ a truncated

estimator that only uses past information.

Thus, the resulting estimator for the market prices of risk (λt) is

λ̂SGLS
t =

(
T∑

s=1

Kh,tsĈ
∗T
s Ĉ∗

s

)−1 T∑

s=1

Kh,tsĈ
∗T
s R∗

s, (26)

12



similar to (18), where C is replaced by Ĉ and Ĉ∗
s = V −1

s Ĉs. Some additional assumptions are required

in order to reach the desirable asymptotic results:

Assumption (C1) The p-variate kernel K is compactly supported such that
∫

K(u)du = 1 and∫
uuT K(u)du = µKIp, being µK a nonnegative scalar where

∫
is the shorthand for

∫ ∫
. . .

∫
Rp and du for

du1 . . . dup.

Assumption (C2) Consider a sequence of positively definite diagonal bandwidth matrices B =

diag(b2
i1 b2

i2 . . . b2
ip) for i = 1, . . . , N , such that |B|1/2 and r|B|1/2 go to zero, T |B|1/2 and r go to

infinity and r/T goes to zero as the sample size, T , goes to infinity. Note that the bandwidth matrices

are considered to be equal for all i, to simplify notation and without loss of generality.

Assumption (C3) The distribution of Xt has a Lipschitz of order one time-varying density, ft(x) =

f(τ, x), where τ = t/T .

Next proposition states the properties for estimator (25).

Proposition 1 Consider the set of assumptions (A3) to (A6), and (C1) to (C3) then, the estimator

defined by (25) is a consistent estimator of ci`(Xt), with asymptotic bias and variance:

Bias(ĉi`(Xt|Xt = xt) = O(trace(B))

V ar(ĉi`(Xt|Xt = xt) = O

(
1

r|B|1/2

)
.

We are now in a position to derive the asymptotic results for the estimator of the market prices of

risk when the previous proxies are employed.

Theorem 2 Under the set of assumptions (A1) to (A8) and (C1) to (C3), using the covariance estimator

(Ĉt) defined in (25), the estimator for the market prices of risk (λ̂SGLS
t ) defined in (26) is consistent,

with the same asymptotic results for the two components of the MASE as in Theorem 1.

Corollary 2 Consider model (14) with the consistent estimator of Ct defined in (25) and a consistent

estimator Ω̂ = V̂sV̂
T
s for Ωs = VsV

T
s . Then, under the assumptions in Theorem 2, and if either

(i) Ω̂s − Ωs = o(MASE(λ̂SGLS
t )), or

(ii) the entries in C are bounded

the SFGLS (Smoothed Feasible Generalized Least Squares) estimator

λ̂SFGLS
t =

(
T∑

s=1

Kh,tsĈ
T
s Ω̂−1

s Ĉs

)−1 T∑

s=1

Kh,tsĈ
T
s Ω̂−1

s Rs (27)

has the same asymptotic properties as in the previous theorems.

13



The following proposition provides a consistent estimator for the error covariance matrix that must

be estimated in advance in order to compute the estimated market prices of risk defined in (27).

Proposition 2 Consider the estimator for a generic element of the covariance matrix,

σ̂ijt =

(
T∑

s=1

KG(Xs −Xt)

)−1 T∑

s=1

KG(Xs −Xt)(Rit − λ̂tĈit)T (Rjt − λ̂tĈjt) (28)

with KG(u) = |G|−1/2K(G−1/2u), being G the p-order smoothing matrix and K a p-variate second order

kernel. Under assumptions (A1)-(A8), (C3) and the kernel KG satisfying (C1) and (C2) (although no

assumption for r is needed here), (28) provides a consistent estimator for a generic term of Ωt, for each

t.

The next asymptotic distribution (pointwise) for the estimator of λt, allows us to test for invariance

of the prices of the risk factors through time or to test whether or not the risk premium can be considered

significantly non-zero.

Theorem 3 Assume (A1)-(A8) and (C1)-(C3), consider h = o(T−1/5), such that the bias tends to zero

faster than the variance, and that either (i) or (ii) in Corollary 2 holds. Then, the estimator of λt at k

different locations t1, . . . , tk converges in distribution to the multivariate normal as,
(
(Th)1/2(λ̂SGLS

tj − λtj )
)k

j=1

p−→ N(0, cKG−1
tj

) (29)

Finally, using the consistent estimator for Gtj defined in Lemma 1, we can obtain confidence intervals

for the k selected λ’s.

4 Implementation

The proposed estimator for the seemingly unrelated regression equations model with unknown explana-

tory variables requires the selection of several smoothing parameters: the matrix of bandwidths B related

with the estimation of the proxies; the smoothing parameters related with the time-varying market prices

of risk and the smoothing parameter to estimate the covariance matrix.

In general situations, the bandwidths are selected using data driven methods like cross-validation,

penalized sum of squared residuals or plug-in methods. For a detailed discussion of each see Härdle

(1990), Wand and Jones (1995) or Fan and Gijbels (1996) among others. For multivariate cases, the

penalty methods as Rice or Generalized Cross-Validation are appropriate, easy to interpret and faster to

compute than the others.

All above data driven methods are based on the fact that minimizing the sum of squared residuals is

not adequate for selecting a smoothing parameter. It is well known that a sum of squared residuals equal

to zero is easily obtained for bandwidths very close to zero. Nevertheless, in this context, minimizing

14



the sum of squared residuals does not have the same meaning as usual. First, with regards to the

smoothness over time imposed on the coefficients (h), it is true that as the value of h increases, the larger

is the imposed degree of smoothness, so coefficients become constant eventually. But a bandwidth that

tends to zero does not correspond to a zero value for the sum of squared residuals due to the restriction

of equality imposed on the coefficients across the N equations (λi`t = λj`t). In this panel setting, a

bandwidth close to zero implies that for each time t, coefficients are estimated with a sample of N cross

sectional observations. Second, regarding the smoothing parameters involved in the estimation of the

proxies, the proposed estimator, by definition, does not include the observation corresponding to each

time t when estimating at that point.

To solve the selection problem in practice, we proceed as follows. Since the objective is the estimation

of λ’s, and in order to increase the dispersion of the proxies (leading to a greater explanatory power)

the selection of h and B is addressed jointly. After, the parameter selection for the covariance matrix is

addressed.

For the first step—the joint selection of the smoothness parameters for lambdas and proxies—we

propose to minimize a penalized sum of squared residuals

(NT )−1
T∑

t=1

(Rt − Ĉt(B)λ̂t(h))T (Rt − Ĉt(B)λ̂t(h)) G(h,B) (30)

where the notation makes the dependence of the smoothing parameters of the estimated Ĉt’s and λ̂t’s

explicit, and G(h,B) denotes the penalizing function. Since the estimator of the covariances defined in

(25) does not consider the observation at time t for the estimation, there is no need to penalize the

selection of B. Thus, we will use G(h,B) = G(h) that only accounts for the h parameter.

If we consider Generalized Cross Validation (GCV) method, then the penalty is

G(h) ≈ (
1− (NT )−1traceP (h)

)−2 (31)

where P (h) is the projection matrix

K(0)
Th

N∑

i=1

T∑

t=1

[
CT

is

(
X ′

iKh,tXi

)−1
XT

i

]
Zt, (32)

and Cis = (ci1t ci2t . . . cipt)T has already been defined, the T × p order matrix Xi = (Ci1 Ci2 . . . CiT )T is

the data matrix corresponding to the ith equation, Kh,t = diag{Kh,ts}T
s=1 is a T order diagonal matrix

with kernel weights, and Zt is a T order column vector with tth element equal to one and rest of elements

equal to zero.

Once the first parameters h and B have been selected, the second step is to select the smoothing

parameter matrix G for the error’s covariance matrix. For fixed h and B, we propose to select G

minimizing the weighted sum of squared residuals
T∑

t=1

(Rt − Ĉtλ̂t)T Ω̂−1
t (Rt − Ĉtλ̂t) (33)
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where the estimator of any generic term of Ω̂, σ̂ijt, is given by (28).

Taking into account the estimated Ω̂ with the selected G, once the error covariance matrix is plugged

in the final estimator, the new market prices of risk are reestimated by (27). For this reason, it is

possible that the smoothing parameters selected in the first step are not optimal. To avoid this, it is

convenient to perform some iterations in order to refine the method. Hence, we suggest fixing h and B

but reestimate the Ω matrix using the residuals coming from the new estimated λ’s. As in parametric

context, this procedure should converge to a final covariance matrix and, consequently, to final λ’s.

However, changing h and B in this iterative procedure does not provide a convergent method. We do

not ensure an adequate identification of the systematic part of the model.

5 Empirical application

In this section, the method is applied to estimate the term structure model presented in Subsection 2.2.

The data set consists of 9,485 daily observations of the term structure of U.S. Treasury interest rates

covering the period from January 1969 to December 2006. More specifically, Treasury Constant Maturity

Rates are used as proxies for default-free interest rates of different maturities. The data are available

from the Federal Reserve Bank of St. Louis’ FRED online database. These rates are interpolated by

the Treasury from the yield curve, which is estimated on a daily basis using a cubic spline model from

closing market bid yields on actively traded Treasury securities in the over-the-counter market. Yields

for different maturities are displayed on Figure 1 and descriptive statistics are shown in Table 1.

To construct the series of excess bond returns, we first recover bond prices from yields, and then

compute one-period returns from buying one-year, three year, five-year and ten-year zero-coupon bonds

and selling them one day later. We then subtract the (continuously compounded) three-month interest

rate, which we take as a proxy for the short term interest rate. Figure 2 displays the four series of

daily excess returns. These graphs are suggestive of the presence of conditional heteroscedasticity, which

justifies the use of a time-varying covariance matrix. Table 2 contains the descriptive statistics for excess

bond returns.

In order to estimate conditional covariances, a set of state variables needs to be selected, that are

observable at the beginning of each period. In our model, all available information will ultimately be

reflected in the term structure of interest rates. Observation of the yield curve is, therefore, sufficient

to know the state of the system. We further assume that the yield curve can be summarized by two

variables: the level and the slope of the yield curve, as proxied by the continuously compounded three-

month rate, and the spread between the 10-year rate and the 3-month rate, respectively, both continuously

compounded. The two series are displayed for our sample period in Figure 3. Risk factors are defined

accordingly as changes in the level and changes in the slope of the yield curve. In order to guarantee

factor orthogonality, we regress by OLS changes in the spread on changes in the short rate and take the
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residuals from the regression as the second risk factor.

In the first pass, we estimate the covariances between each bond’s returns and the risk factors con-

ditional on the state variables following the procedure defined in Section 3, equation (25). The results

are shown in Figures 4 and 5. For the sake of brevity, only conditional covariances with changes in the

short rate are shown. In particular, Figure 4 plots estimated conditional covariances against the short

rate holding the term spread constant and equal to its sample median value and Figure 5 plots estimated

conditional covariances against the spread holding the short rate constant and equal to its sample median

value.

The graphs in Figures 4 and 5 suggest that conditional covariances are nonlinear functions of the state

variables. This intermediate result is important per se since it contradicts the dynamic assumptions of

some popular interest rate models. For instance, the one-factor model of Vasicek (1977) implies constant

covariances, while Cox et al. (1985) implies that covariances are linear in the single risk factor.

Once conditional covariances have been estimated, we may estimate the market prices of risk using

(27). Figure 6 displays the evolution of market prices of covariance risk associated with each risk factor

in our sample period. A number of conclusions can be drawn from Figure 6. First, changes in the level

of the yield curve appear to play a bigger role in determining differences in risk premia across bonds. To

see this, note from Figures 4 and 5 that covariance risk is about ten times larger for the first factor than

for the second factor. Figure 6 further shows that the absolute value of the market price of risk is not

smaller on average for the first factor throughout the sample period and is higher when specific intervals

within the sample period are considered. This is confirmed by Table 3, which shows market prices of

risk on the first day of each year and the corresponding asymptotic t-statistics. The market price of risk

associated with the first factor is statistically significant (at least at the 5 percent significance level) for

16 percent of the dates.

Second, although the market price of risk associated with changes in the short rate is generally

negative–which implies a positive risk premium since conditional covariances are negative–it changes

signs and becomes positive, particularly in the period 2004–2006, a period of low (and very stable)

interest rates. Table 3 confirms that the market price of risk at the beginning of 2005 was positive and

statistically significant. This can be taken as further evidence against the completely affine class of term

structure models which do not allow for the market price of covariance risk to be positive (Duffee (2002)).

The estimates of λ1t take the most negative values in 1970, 1991, and 2000. Interestingly, all three peaks

in the market price of interest rate risk correspond to a level of the short term interest rate of 6 percent,

which is roughly the sample average. Finally, the market price of interest rate risk appears to have been

stable and closer to zero in the so-called Volcker years (1979–1987), characterized by high (and volatile)

interest rates. Both the high positive value of lambda in the period 2004–2006 and the low absolute value

in the period 1979–1987 are consistent with a relatively stable risk premium (expected return in excess

of the risk free rate) associated with the risk of changes in the short rate. This would imply a higher

absolute value of the market price of risk in those periods in which interest rate risk is lower and a lower
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absolute value of market price of risk when interest rate risk is higher.

Third, the market price of risk associated with changes in the spread appears to play no role in the

determination of bond expected returns. Table 3 confirms this observation: the market price of risk

associated with the second factor is never statistically significantly different from zero. This finding is

consistent with Ferreira and Gil-Bazo (2004) who report evidence that a single priced risk factor (not

necessarily associated with changes in the short term interest rate risk) is sufficient to explain daily bond

premia.

Finally, to assess the economic significance of compensation for risk associated with each risk factor, in

Figures 7 and 8, we plot the time series of estimated risk premia for changes in the short rate and changes

in the spread, computed as the product of each market price of risk and the corresponding covariance.

Results confirm that the risk premium for bearing interest rate risk is not only more statistically significant

than the risk premium associated with changes in the spread, but also that it accounts for a larger fraction

of total risk premium.

6 Summary and conclusions

In this paper, we estimate consistently the time-varying parameters of a very general conditional beta

pricing model. The proposed nonparametric estimation procedure for a SURE model makes it possible

to estimate market-prices of risk from observed asset returns without imposing any parametric structure

on the asset return dynamics or the dependence of the market price of risk function on time or the state

of the system. The method can be seen as a nonparametric analogue of the two-pass approach developed

by Black et al. (1972), Fama and MacBeth (1973), Shanken (1985) and Shanken (1992) to estimate and

test unconditional beta pricing models.

Similarly to the nonparametric method proposed by Wang (2003), the estimation method proposed

in this paper is not subject to Ghysels’ critique (Ghysels (1998)) who states that misspecification of

time-varying conditional moments and market prices of risk may induce larger pricing errors than those

obtained by unconditional beta pricing models. The method can be applied to a much more general

family of models than the one considered in Wang (2003). At the same time, the procedure retains

the simplicity and intuitive approach of the two-pass estimator, commonly used to estimate and test

unconditional models.

The application of the method to the U.S. Treasury bond data, yields a number of interesting insights.

First, conditional covariances appear to be highly non-linear in the yield curve, which casts doubt on

the empirical plausibility of previous attempts to model conditional covariances as linear functions of the

state variables. Second, only one risk factor, related to changes in the short term interest rate, appears

to be priced by the markets, consistently with the evidence in Ferreira and Gil-Bazo (2004). Further,

the results provide evidence of changes of sign in the market price of risk associated with changes in the

short rate.
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Appendix

In order to prove Theorem 1 the following lemma are first needed.

Lemma 1 Under Assumptions (A2) to (A5), and (A8), it holds that

T∑

s=1

Kh,tsC
∗T
s C∗

s
a.s.−→ Gt

(Th)
T∑

s=1

K2
h,tsC

∗T
s C∗

s
p−→ cKGt

Proof of Lemma 1

For the ease of notation consider any generic scalar term of TKh,tsC
∗T
s C∗

s as Zs = TKh,tsc
∗
sc
∗
s. Zs

is a α−mixing sequence of size 6/5 with the proper bounded moments, and E(Zs) = 1
hK

(
t−s
Th

)
gs, that

tends to gt. Therefore, applying the SLLN in White (1984), Corollary 3.48 for dependent variables under

mixing conditions the first result follows. For the second use similar steps. ¤

Proof of Theorem 1

First we write the Mean Average Squared Error

MASE(λ̂t) = trE[(λ̂t − λt)(λ̂t − λt)T ]

= || Bias(λ̂t) ||22 + trV ar(λ̂t) = S2(λ̂t) + V (λ̂t).

Then, note that the estimator of λt

λ̂t − λt =

(
T∑

s=1

Kh,tsC
∗T
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗T
s R∗

s − λt

=

(
T∑

s=1

Kh,tsC
∗T
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗T
s C∗

s (λs − λt)

+

(
T∑

s=1

Kh,tsC
∗T
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗T
s εs
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has a random denominator. We overcome this problem working with a redefined bias and variance term,

using the weight W ∗
t = G−1

t

∑T
s=1 Kh,tsC

∗T
s C∗

s . Hence, the redefined bias is Bias∗(λ̂t) = Bias(W ∗
t λ̂t).

For technical reasons, we use different bandwidths for W ∗
t and for λ̂t, say h∗ and h respectively, such

that condition next holds:

E ‖ W ∗
t − I ‖2

E ‖ λ̂t − λt ‖2
= o(1) (34)

as T goes to infinity. This condition establishes that W ∗
t goes to the identity at a faster rate than the

mean square error goes to zero, and this implies that the rate of convergence for the mean square error

must be suboptimal; for this case it means slower than T−4/5.

Considering the term defined by Bias∗

Bias∗(λ̂t) = G−1
t

T∑

s=1

Kh,tsE(C∗T
s C∗

s )(λs − λt) + G−1
t

T∑

s=1

Kh,tsE(C∗T
s ε∗s)

= G−1
t

T∑

s=1

Kh,tsE(C∗T
s C∗

s )(λs − λt)

since E(C∗T
s ε∗s) = E(C∗T

s E(ε∗s|C∗T
s )) = 0. Using the Taylor expansion with t− s = Thu,

Bias∗(λ̂t) = G−1
t

T∑

s=1

Kh,tsGs(λs − λt)

= G−1
t

∫
K(u)[Gt − huG′

t + o(h2)][−λ′thu +
1
2
λ′′t (hu)2 + o(h2)]

=
1
2
dkh

2(λ′′t + 2G−1
t G′

tλ
′
t) + o(h2)

where G′
t denotes the matrix with the derivatives of Gt and λ′t and λ′′t denote the vectors for the first and

second derivatives of λ respectively. Thus

S2(λ̂t) =
1
4
d2

kh
4 || λ′′t + 2G−1

t G′
tλ
′
t ||22 +o(h4).

The variance term

V ar(λ̂t) = V ar(λ̂t − λt) = V ar




(
T∑

s=1

Kh,tsC
∗T
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗T
s R∗

s




= V ar




(
T∑

s=1

Kh,tsC
∗T
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗T
s C∗

s (λs − λt)

+

(
T∑

s=1

Kh,tsC
∗T
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗T
s εs
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and using the redefined variance term, V ar∗(λ̂t) = V ar(W ∗
t λ̂t), we have that

V ar∗(λ̂t) = V ar

[
G−1

t

T∑

s=1

Kh,tsC
∗T
s C∗

s (λs − λt)

]
+ V ar

[
G−1

t

T∑

s=1

Kh,tsC
∗T
s εs

]
(35)

and since the cross term cancels due to E(εs|C∗
s ) = 0, the sum of variances can be split into two terms:

V (λ̂t) = trV ar∗(λ̂t) = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗T
s C∗

s (λs − λt)

]

+ trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗T
s εs

]
= V1 + V2. (36)

For the first term and taking into account that Gs = E(C∗T
s C∗

s ) we have that

V1 = trV ar

(
G−1

t

T∑

s=1

Kh,tsC
∗T
s C∗

s (λs − λt)

)
= trG−1

t V ar

(
T∑

s=1

Kh,tsC
∗T
s C∗

s (λs − λt)

)
G−1

t

= trG−1
t E




T∑

s=1

Kh,ts

(
C∗T

s C∗
s −Gs

)
(λs − λt)

(
T∑

s=1

Kh,ts

(
C∗T

s C∗
s −Gs

)
(λs − λt)

)T

G−1

t

= trG−1
t E

(
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′
(
C∗T

s C∗
s −Gs

)
(λs − λt)(λs′ − λt)T

(
C∗T

s′ C∗
s′ −Gs′

)
)

G−1
t

= tr
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′(λs − λt)(λs′ − λt)T E
[(

C∗T
s′ C∗

s′ −Gs′
)
G−1

t G−1
t

(
C∗T

s C∗
s −Gs

)]

= tr
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′(λs − λt)(λs′ − λt)T Qs,s′ (37)

where Qs,s′ = E
[(

C∗T
s′ C∗

s′ −Gs′
)
G−1

t G−1
t

(
C∗T

s C∗
s −Gs

)]
is a bounded p order square matrix. Expression

(37) can be divided in two, those corresponding to same terms and the cross terms. When s = s′ we have

that

tr
T∑

s=1

K2
h,ts(λs − λt)(λs − λt)T Qs,s

where Qss is bounded and has same order than

T∑

s=1

K2
h,ts(λs − λt)(λs − λt)T = (Th)−1

∫
K2(u)(−huλ′t + o(h))(−huλ′t + o(h))T du =

= (Th−1)h2λ′t(λ
′
t)

T

(∫
u2K2(u)du

)
+ o(h2) = O

(
h

T

)
.

For the cross terms, s 6= s′
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tr

T∑

s,s′=1

s 6=s′

Kh,tsKh,ts′(λs − λt)(λs′ − λt)T Qs,s′

has same order than

T∑

s,s′=1

s 6=s′

Kh,tsKh,ts′(λs − λt)(λs′ − λt)T = O

(
h

T
+

1
T 2

)
.

Thus V1 = O
(

h
T + 1

T 2

)
.

For the second term in (36) and taking into account that E(ε∗s|C∗
s ) = 0:

V2 = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗T
s ε∗s

]
= trG−1

t V ar

[
T∑

s=1

Kh,tsC
∗T
s ε∗s

]
G−1

t

= trG−1
t E




T∑

s=1

Kh,tsC
∗T
s ε∗s

(
T∑

s=1

Kh,tsC
∗T
s ε∗s

)T

G−1

t

= trG−1
t E

[
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′C
∗T
s ε∗sε

∗
s′C

∗
s′

]
G−1

t .

Now, since E(εisεjs′) = 0 for all s 6= s′, E(ε∗isε
∗
js′) = 0 and

V2 = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗T
s ε∗s

]
= trG−1

t E

[
T∑

s=1

K2
h,tsC

∗T
s ε∗sε

∗
sC

∗
s

]
G−1

t

= trG−1
t E

[
T∑

s=1

K2
h,tsC

∗T
s E (ε∗sε

∗
s|C∗

s )C∗
s

]
G−1

t .

Then, as E (ε∗sε∗s|C∗
s ) = I and using the result (34) of Lemma 1 we have that

V2 = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗T
s ε∗s

]
=

ck

Th
trG−1

t GtG
−1
t + o((Th)−1) =

ck

Th
trG−1

t + o((Th)−1).

Finally, since the order of V1 is negligible with respect to V2 and (34) holds, we have

V (λ̂) =
ck

Th
trG−1

t + o((Th)−1),
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which provides that the order of the leading term in the variance coincides with the order for the variance

term in standard results. ¤

Proof of Corollary 1

Either condition (i) or (ii) provides, together with the rest of assumptions, the sufficient conditions

of regularity to check that the convergence of Ω̂s to Ωs implies the equivalence between the asymptotic

properties of λ̂F
t and λ̂t ¤

Proof of Proposition 1

In order to deal with the random denominator, a modified bias is defined,

Bias?(ĉi`(Xt)|Xt = xt) = Bias

[
1

rf(τ, xT
t )

t−1∑
s=t−r

KB(Xs − xt)ĉi`(xt)

]

with τ = t/T . Then

Bias?(ĉi`(Xt)|Xt = xt) =
1

rf(τ, xT
t )

t−1∑
s=t−r

(
E [KB (Xs − xt)Pi`s]− f(τ, xT

t )ci`(xt)
)

and since Pi`s = ci`(Xs) + us being E(us|Xs) = 0:

Bias?(ĉi`(Xt)|Xt = xt) =
1

rf(τ, xT
t )

t−1∑
s=t−r

(
E [KB(Xs − xt)ci`(Xs)]− f(τ, xT

t )ci`(xt)
)

=
1

rf(τ, xT
t )

t−1∑
s=t−r

[∫
KB (ω − xt) ci`(ω)f

(
s/T, ωT

)
dω − f(t/T, xT

t )ci`(xt)
]

.

Now, define fs(x) = f(s/T, x), Dc(xt) =
(

∂ci`(xt)
∂x1t

. . .
∂ci`(xt)

∂xpt

)T

, Dfs(x
T
t ) =

(
∂fs(xT

t )
∂x1t

. . .
∂fs(xT

t )
∂xpt

)

and the (p × p) order matrices Hc(xt) and Hfs(x
T
t ) having as generic terms, (j, j′),

∂2ci`(xt)
∂xjt∂xj′t

and

∂2∂fs(xT
t )

∂xjt∂xj′t
respectively. Using a standard multivariate kernel of order two and the Lipschitz condition

for the density f ; we have that

Bias?(ĉi`(Xt)|Xt = xt) =
1

rf(τ, xT
t )

t−1∑
s=t−r

[∫
K(z)ci`(xt + B1/2z)fs

(
xT

t + B1/2zT
)

dz − ft(xT
t )ci`(xt)

]

=
1

rf(τ, xT
t )

t−1∑
s=t−r

[∫
K(z)

(
ci`(xt) + (B1/2z)TDc(xt) +

1
2
(B1/2z)THc(xt)(B1/2z) + o(trace(B))

)
×

(
fs(xT

t ) + (B1/2zT )TDfs(x
T
t ) +

1
2
(B1/2zT )THfs(x

T
t )(B1/2zT ) + o(trace(B))

)
dz − ft(xT

t )ci`(xt)
]
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=
1

rf(τ, xT
t )

t−1∑
s=t−r

1
2
tr

(
BHc(xt)

∫
K(z)zzT dz

)
fs(xT

t )

+
1

rf(τ, xT
t )

t−1∑
s=t−r

ci`(xt)
(
fs(xT

t )− ft(xT
t )

)
+ O(trace(B))

=
1

rf(τ, xT
t )

µK

2
tr (BHc(xt))

t−1∑
s=t−r

fs(xT
t ) +

1
rf(τ, xT

t )

t−1∑
s=t−r

ci`(xt)
(
fs(xT

t )− ft(xT
t )

)
+ O(trace(B))

=
µK

2
tr (BHc(xt)) +

1
rf(τ, xT

t )

t−1∑
s=t−r

ci`(xt)O
( r

T

)
+ O(trace(B))

= O(trace(B)) + O
( r

T

)

Next, we obtain the redefined variance for a generic term ĉi`(Xt):

V ar?(ĉi`(Xt)|Xt = xt) =
1

r2f2(τ, xT
t )

V ar

[
t−1∑

s=t−r

KB(Xs − xt)pi`s

]

=
1

r2f2(τ, xT
t )

[
t−1∑

s=t−r

V ar (KB(Xs − xt)pi`s|xt)

+
t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs − xt)pi`s,KB(Xs′ − xt)pi`s′ |xt)




=
1

r2f2(τ, xT
t )

[
t−1∑

s=t−r

V ar (KB(Xs − xt)(ci`(xs) + ui`s)|xt)

+
t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs − xt)(ci`(xs) + ui`s),KB(Xs′ − xt)(ci`(xs′) + ui`s′)|xt)




=
1

r2f2(τ, xT
t )

[
t−1∑

s=t−r

V ar (KB(Xs − xt) ui`s|xt) +
t−1∑

s=t−r

V ar (KB(Xs − xt) ci`(xs)|xt)

+
t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs − xt)ci`(Xs),KB(Xs′ − xt)ci`(Xs′)|xt)

+
t−1∑

s,s′=t−r

s6=s′

Cov(KB(Xs − xt) ui`s,KB(Xs′ − xt) ui`s′ |xt)




=
1

r2f2(τ, xT
t )

[
t−1∑

s=t−r

V ar(KB(Xs − xt) ui`s|xt) +
t−1∑

s=t−r

V ar (KB(Xs − xt) ci`(xs)|xt)
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+
t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs − xt)ci`(Xs),KB(Xs′ − xt)ci`(Xs′)|xt)


 = T1 + T2 + T3

since for s 6= s′ the conditional expectation E(ui`sui`s′) cancels and, therefore, only the diagonal terms

remain. For T1

T1 =
1

r2f2(τ, xT
t )

[
t−1∑

s=t−r

E(K2
B(Xs − xt)E(u2

i`s|Xs)|xt)

]

=
σ2

ui`

r2f2(τ, xT
t )

[
t−1∑

s=t−r

E(K2
B(Xs − xt)|xt)

]

=
σ2
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r2f2(τ, xT
t )

[
t−1∑

s=t−r

∫
K2

B(z − xt)f
(
s/T, zT

)
dz

]

=
σ2

ui`

r2f2(τ, xT
t )|B|1/2

t−1∑
s=t−r

∫
K2(u)

(
f(τ, xT

t ) + O(traceB1/2) + O
( r

T

))
du

=
σ2

ui`

rf(τ, xT
t )|B|1/2

∫
K2(u)du + h.o.t. = O

(
1

r|B|1/2

)
+ h.o.t.

For T2

T2 =
1

r2f2(τ, xT
t )

t−1∑
s=t−r

V ar (KB(Xs − xt) ci`(xs)|xt)

=
1

r2f2(τ, xT
t )

t−1∑
s=t−r

[∫
K2

B(w − xt)c2
i`(w)fs(wT )dw −

(∫
KB(w − xt)ci`(w)fs(wT )dw

)2
]

=
1

r2f2(τ, xT
t )

t−1∑
s=t−r

[
|B|−1/2

∫
K2(z)c2

i`(xt + B1/2z)fs(xT
t + B1/2zT )dz

−
(∫

K(z)ci`(xt + B1/2z)fs(xT
t + B1/2zT )dz

)2
]

=
1

r2f2(τ, xT
t )|B|1/2

t−1∑
s=t−r

[(
c2
i`(xt)fs(xT

t )
∫

K2(u)du + O(traceB1/2)
)

−|B|1/2
(
ci`(xt)fs(xT

t ) + O(traceB1/2)
)2

]

=
c2
i`(xt)

r2f2(τ, xT
t )|B|1/2

∫
K2(u)du

t−1∑
s=t−r

(
f(τ, xT

t ) + O(traceB1/2) + O
( r

T

))
+ h.o.t

=
c2
i`(xt)

rf(τ, xT
t )|B|1/2

∫
K2(u)du + h.o.t. = O

(
1

r|B|1/2

)
+ h.o.t.

And finally for the third term, T3,
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T3 =
1

r2f2(τ, xT
t )

t−1∑

s,s′=t−r

s 6=s′

Cov [KB(Xs − xt)ci`(Xs),KB(Xs′ − xt)ci`(Xs′)|xt]

Using (A4)
r∑

k=1

Cov [KB(Xs − xt)ci`(Xs),KB(Xs+k − xt)ci`(Xs+k)|xt]

is uniformly bounded and, hence, the order of T3 is O(r−1), negligible with respect to T1 and T2.

Therefore, the final expression for each (i, `) variance term is

V ar?(ĉi`(Xt)|Xt = xt) =
c2
i`(xt) + σ2

ui`

rf(τ, xT
t )|B|1/2

∫
K2(u)du + h.o.t.

and the proof is complete. ¤

Proof of Theorem 2

It is sufficient to check that the proof of Theorem 1 follows considering the estimated covariances

instead of the real ones. First, note that (A4) holds for the estimated covariances (Ĉ) and that (A5)

holds up to order o(1); that is, E(Ĉ∗T
t Ĉ∗

t ) = E(C∗T
t C∗

t ) + o(1) = Gt + o(1).

Now, the steps of the proof of Theorem 1 follows straightforward using Ĉ instead of C. Only the

second term for the variance (36) need an extra step.

The second term for the variance can be written as,

V ar

(
G−1

t

T∑

s=1

Kh,tsĈ
∗T
s ε∗s

)
=

= G−1
t E


E


∑

s

K2
h,tsĈ

∗T
s ε∗sε

∗T
s Ĉ∗

s +
∑

s 6=s′
Kh,tsKh,ts′Ĉ

∗T
s ε∗sε

∗T
s′ Ĉ∗

s′ |Ĉ∗
s





G−1

t

= G−1
t E

[∑
s

K2
h,tsĈ

∗T
s ε∗sε

∗T
s Ĉ∗

s +
∑

s<s′
Kh,tsKh,ts′Ĉ

∗T
s ε∗sE(ε∗Ts′ |Ĉ∗

s , Ĉ∗
s′ , εs)Ĉ∗

s′

+
∑

s>s′
Kh,tsKh,ts′C

∗T
s E(ε∗s|Ĉ∗

s , Ĉ∗
s′ , εs′)ε∗Ts′ Ĉ∗T

s′

]
G−1

t

= G−1
t E

[∑
s

K2
h,tsĈ

∗T
s ε∗sε

∗T
s′ Ĉ∗

s

]
G−1

t

since εs is independent of the past information. Using the fact that E(Ĉ∗T
t Ĉ∗

t ) = E(C∗T
t C∗

t ) = Gt + o(1),

it finally holds

V ar

(
G−1

t

T∑

s=1

Kh,tsĈ
∗T
s ε∗s

)
=

ck

Th
G−1

t + o((Th)−1)
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and this step completes the proof. ¤

Proof of Corollary 2

Apply the same arguments than in Corollary 1. ¤

Lemma 2 Under Assumptions (A3) to (A5) and (C1) to (C3); it holds that

1
r

t−1∑
s=t−r

KG(Xs − xt)
a.s.−→ f(τ, xt) (38)

where τ = t/T .

Proof of Lemma 2

Following similar steps than in Lemma 1, define Zs = KG(Xs − xt). The sequence Zs has mean

f(s/T, xs) and therefore E((1/r)
∑t−1

s=t−r Zs = f(τ, xt) + o(1). A direct application of White (1984), (see

Corollary 3.48) drives to the result. ¤
Proof of Proposition 2

It holds following the proof of Proposition 1. ¤
Proof of Theorem 3

Consider the sequence of variables Zt defined as

Zt =
T∑

s=1

Kh,tsĈ
∗T
s ε∗s. (39)

Using White and Domowitz (1984), it is sufficient to verify that, since their Assumption A holds, the

result in their Theorem 2.4 applies. Since the bias is negligible with respect to the variance term, the

result follows straightforward by applying Crammer.

¤
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Härdle, W., 1990, Applied Nonparametric Regression, Cambridge University Press, Cambridge.

Harvey, C., 1989, Time-varying conditional covariances in tests of asset pricing models. Journal of

Financial Economics 24, 289–317.

Jagannathan, R. and Z. Wang, 1996, The conditional capm and the cross-section of expected returns.

The Journal of Finance 51, 3–54.

Jones, C., 2006, A nonlinear factor analysis of SandP 500 index option returns. The Journal of Finance

41, 2325–2363.

Kapetanios, G., 2007, Estimating deterministically time-varying variances in regression models. Eco-

nomics Letters 97, 97–104.

Keim, D. and R. Stambaugh, 1986, Predicting returns in the stock and bond markets. Journal of

Financial Economics 17, 357–390.

Lettau, M. and S. Ludvigson, 2001, Resurrecting the c)capm: A cross-sectional test when risk premia

are time-varying. Journal of Political Economy 109, 1238–1287.

Lintner, J., 1965, The valuation of risk assets and the selection of risky investments in stock portfolios

and capital budgets. Review of Economics and Statistics 47, 13–27.
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Table 1
Descriptive Statistics of Interest Rates, in %

Maturity

Sample 3 month 1 year 3 years 5 years 10 years
Full
Mean 5.98 6.61 7.07 7.31 7.56
S.D. 2.85 3.00 2.77 2.63 2.47
Min 0.80 0.88 1.34 2.08 3.13
Max 17.14 17.31 16.59 16.27 15.84
1969-1978
Mean 5.95 6.64 6.97 7.12 7.22
S.D. 1.39 1.35 0.96 0.85 0.78
Min 2.99 3.48 4.27 4.74 5.38
Max 9.74 10.52 9.59 9.35 9.16
1979-1988
Mean 9.01 9.95 10.36 10.51 10.69
S.D. 2.86 2.86 2.49 2.36 2.15
Min 5.03 5.52 6.13 6.40 6.95
Max 17.14 17.31 16.59 16.27 15.84
1989-1998
Mean 5.20 5.71 6.31 6.62 6.95
S.D. 1.57 1.57 1.35 1.22 1.13
Min 2.61 2.96 4.01 3.95 4.16
Max 9.10 9.85 9.88 9.75 9.53
1999-2006
Mean 3.22 3.55 4.06 4.41 4.84
S.D. 1.73 1.70 1.38 1.09 0.75
Min 0.80 0.88 1.34 2.08 3.13
Max 6.24 6.44 6.88 6.83 6.79
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Table 2
Descriptive Statistics of Daily Excess Bond Returns, in %

Maturity
Sample 1 year 3 years 5 years 10 years
Full
Mean 0.0025 0.0049 0.0065 0.0095
S.D. 0.0879 0.2354 0.3697 0.6660
Min -0.9379 -2.4147 -3.0837 -5.6154
Max 0.9380 2.2084 3.5954 7.0847
1969-1978
Mean 0.0011 0.0004 -0.0009 -0.0061
S.D. 0.0697 0.1764 0.2563 0.3826
Min -0.4618 -0.9371 -1.1938 -1.9173
Max 0.3948 1.3099 1.8515 2.7961
1979-1988
Mean 0.0041 0.0060 0.0071 0.0110
S.D. 0.1423 0.3487 0.5419 0.9991
Min -0.9379 -2.4147 -3.0837 -5.6154
Max 0.9380 2.2084 3.5954 7.0847
1989-1998
Mean 0.0036 0.0096 0.0146 0.0251
S.D. 0.0535 0.1785 0.2961 0.5434
Min -0.3318 -1.1176 -1.8961 -3.5674
Max 0.3748 0.8830 1.3882 2.6997
1999-2006
Mean 0.0011 0.0032 0.0048 0.0077
S.D. 0.0424 0.1811 0.3016 0.5550
Min -0.2127 -0.8618 -1.3445 -2.3493
Max 0.4849 1.4595 1.8433 2.0508
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Table 3
Estimated market prices of risk of changes in the level (λ̂1t) and the slope (λ̂2t) of the yield curve

Time period (t) λ̂1t t-stat λ̂2t t-stat

08/01/1970 -754.36 -1.90 211.47 0.75
04/01/1971 -470.03 -2.85 174.30 1.14
03/01/1972 -117.02 -0.87 19.00 0.14
02/01/1973 198.36 1.24 -110.40 -0.68
02/01/1974 -34.14 -0.33 50.43 0.32
02/01/1975 -251.23 -2.22 207.74 1.32
02/01/1976 -183.97 -1.55 27.98 0.20
03/01/1977 -39.47 -0.33 -38.25 -0.28
03/01/1978 87.83 0.99 40.55 0.32
02/01/1979 37.86 0.62 46.93 0.36
02/01/1980 -23.07 -0.60 39.65 0.68
02/01/1981 19.64 0.84 24.26 0.60
04/01/1982 -9.42 -0.47 -7.14 -0.18
03/01/1983 -37.56 -1.51 -58.50 -1.12
03/01/1984 -13.64 -0.30 42.87 0.52
02/01/1985 -45.20 -0.82 -68.97 -0.84
02/01/1986 -90.28 -1.35 -77.74 -0.92
02/01/1987 -166.65 -1.51 124.16 1.41
04/01/1988 29.02 0.24 16.82 0.18
03/01/1989 47.15 0.28 -62.19 -0.47
02/01/1990 -229.20 -1.18 122.11 0.79
02/01/1991 -454.80 -2.42 144.14 1.11
02/01/1992 -336.75 -2.16 -2.07 -0.02
04/01/1993 49.42 0.29 -173.71 -1.46
03/01/1994 160.35 0.63 34.04 0.24
03/01/1995 -8.00 -0.04 -29.47 -0.22
02/01/1996 -205.59 -0.96 41.90 0.32
02/01/1997 -185.22 -0.61 36.99 0.26
02/01/1998 54.24 0.13 -176.65 -1.08
04/01/1999 -37.29 -0.14 43.78 0.34
03/01/2000 156.17 0.30 -11.17 -0.06
02/01/2001 -748.92 -3.91 70.79 0.63
02/01/2002 -354.20 -2.50 18.84 0.29
02/01/2003 -80.02 -0.43 -70.62 -1.00
02/01/2004 223.12 0.51 -27.66 -0.31
03/01/2005 523.60 2.44 -82.99 -1.01
03/01/2006 236.84 1.51 -37.81 -0.34
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Fig. 1. Time series of default-free interest rates of different maturities in the period 1969-2006.
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Fig. 2. Daily excess returns on 1-year (upper left), 3-year (upper right), 5-year (bottom left) and 10-year (bottom
right) default-free bonds.
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Fig. 3. Time series of the short term interest rate (solid line) and the spread between the 10-year and 3-month
rate (dotted line) in the period 1969-2006.
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Fig. 4. Estimated conditional covariances between daily bond returns and changes in the short rate as a function
of the short rate. The term spread is held constant and equal to its sample median value. Graphs correspond to
1-year (upper left), 3-year (upper right), 5-year (bottom left) and 10-year (bottom right) default-free bonds.
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Fig. 5. Estimated conditional covariances between daily bond returns and changes in the short rate as a function
of the term spread level. The short rate is held constant and equal to its sample median value. Graphs correspond
to 1-year (upper left), 3-year (upper right), 5-year (bottom left) and 10-year (bottom right) default-free bonds.
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Fig. 6. Time series of estimated market prices of risk associated with changes in the short term interest rate (solid
line) and changes in the term spread (dashed line).
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Fig. 7. Time series of estimated daily risk premia associated with changes in the short rate for 1-year (upper left),
3-year (upper right), 5-year (bottom left) and 10-year (bottom right) default-free bonds.
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Fig. 8. Time series of estimated daily risk premia associated with changes in the term spread for 1-year (upper
left), 3-year (upper right), 5-year (bottom left) and 10-year (bottom right) default-free bonds.
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