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Abstract

In this paper, we present a Bayesian non-linear model to analyze matching pairs of
microarray expression data. This model generalizes, in terms of neural networks, standard
linear matching models. As a practical application, we analyze data of patients with
Acute Lymphoblastic Leukemia and we find out the best neural net model that relates
the expression levels of two types of cytogenetically different samples from them.

Keywords : MCMC computation, microarray data analysis, multidimensional scaling, neural
network, spatial Bayesian methods.

1 Introduction

In Shape and Procrustes Analysis a typical problem is how to match two or more configura-
tions of labelled points or landmarks (see Dryden and Mardia (1998)) by applying a geometrical
transformation. In Bioinformatics, Green and Mardia (2006) studied the problem of matching
two configurations under a linear Bayesian hierarchical model, and Marin and Nieto (2008)
derived a generalization of this problem in terms of multiple configurations. In Chemoinfor-
matics, Dryden et al. (2007) considered the problem of matching unlabelled point sets under
a linear application when two configurations of points were compared, one being treated as a
perturbation of the other one.

In this paper, we consider a non-linear model consisting of a linear term plus a neural net-
work, between two configurations of points with applications in microarray data analysis. This
is a very general approach that enables to consider complex relationships among different levels
of expression data. We consider a Bayesian methodology in order to estimate the corresponding
parameters of the model.

In Section 2 and Subsection 2.1 we present the problem of matching two configurations
by using a non-linear model, under normality, and we derive the posterior distributions of the
parameters therein.

In Section 3 we apply previous results in the case of comparing expression levels of a selected
group of genes involved in patients with Acute Lymphoblastic Leukemia, based on data derived
by Chiaretti et al. (2004).

Finally, in Section 4, we discuss future lines of researching and further developments.
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2 Non-linear relations between configurations of points

Let consider two configurations of n matched points in Rd, x = xi (i = 1, . . . , n) and y = yi

(i = 1, . . . , n) where one of the configurations is considered fixed, e.g. x, and the other is a
random perturbed version of the previous one. If the relation between configurations cannot
be expressed in terms of translations or rotations, we can consider a more general non-linear
model consisting of a linear model plus a one-layer feed forward neural network,

yij = βj0 + λT
j xi +

M∑

k=1

βjkΨ(γk0 + xT
i γk) + εij

i = 1, . . . , n j = 1, . . . , d

where, for all i = 1, . . . n, j = 1, . . . , d and k = 1, . . . , M , the parameters of the model are
βj0 ∈ R, λj ∈ Rd, βjk ∈ R, γk0 ∈ R and γk ∈ Rd. Errors εij are independently distributed with
a given density fi and Ψ(·) is the activation function that may be a logistic function (see for a
revision Lee (2004)).

In this model each coordinate of point yi is related with each point xi (i = 1, . . . , n) by
means a linear part plus a non linear one in terms of one-hidden layer neural network. Note
that the number of hidden nodes, M , may be considered as an unknown parameter.

Alternatively, the model may be expressed in a matrix form as

yi = β00 + ΛxT
i + BΨ(γ0 + xT

i γ) + εi i = 1, . . . , n

where

β00
d×1

=




β10
...

βd0


 , Ψ(γ0 + xT

i γ)
M×1

=




Ψ(γ10 + xT
i γ1)

...
Ψ(γM0 + xT

i γM)


 ,

B
d×M

=




β11 · · · β1M
...

. . .
...

βd1 · · · βdM


 , Λ

d×d
=




λ11 · · · λ1d
...

. . .
...

λd1 · · · λdd




2.1 Bayesian inference

In this Section, we shall assume that the number of hidden nodes is known.
If normal errors are supposed, the likelihood is

L(β00, Λ, B, γ0, γ, σ2|y) ∝ 1

(σ2)nd/2
exp

{
− 1

2σ2

n∑
i=1

d∑
j=1

(yij − βj0 − λT
j xi−

−
M∑

k=1

βjkΨ(γk0 + xT
i γk))

2

}
.
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In R2 the model is simplified as

L(β00, Λ, B, γ0, γ, σ2|y) ∝ (
1

σ2
)n exp

{
− 1

2σ2

[
n∑

i=1

(yi1 − β10 − λT
1 xi−

−
M∑

k=1

β1kΨ(γk0 + xT
i γk))

2 +
n∑

i=1

(yi2 − β20 − λT
2 xi −

M∑

k=1

β2kΨ(γk0 + xT
i γk))

2

]}
.

In order to carry out Bayesian inference, we must first introduce the prior distributions for
the parameters of the model assuming a relatively diffuse prior distribution structure.

Let assume that the prior distribution of σ2 is inverted-gamma IG(α, β), then the posterior
distribution of σ2 is

p(σ2 | y, · · · ) ∝ (σ2)−(α+1) exp

{
− β

σ2

}
·( 1

σ2
)n exp

{
− 1

2σ2

[
n∑

i=1

(yi1 − β10 − λT
1 xi−

−
M∑

k=1

β1kΨ(γk0 + xT
i γk))

2 +
n∑

i=1

(yi2 − β20 − λT
2 xi −

M∑

k=1

β2kΨ(γk0 + xT
i γk))

2

]}
∝

(σ2)−(α+1+n) exp

{
− 1

σ2
(β + A)

}
,

where

A =
1

2

[
n∑

i=1

(yi1 − β10 − λT
1 xi −

M∑

k=1

β1kΨ(γk0 + xT
i γk))

2

+
n∑

i=1

(yi2 − β20 − λT
2 xi −

M∑

k=1

β2kΨ(γk0 + xT
i γk))

2

]
.

Hence, the posterior distribution is also inverted gamma, σ2 | y, · · · ∼ IG(α + n, β + A).
Let assume that prior distributions of βj0 ∼ N(µβj0

, σ2
βj0

), with j = 1, 2. Then, the posterior
distribution is

βj0 | y, · · · ∼ N(
Dj0

2Cj0

, C−1
j0 )

where

Cj0 = 1
σ2

βj0

+ n
σ2 ; Dj0 =

2µβj0

σ2
βj0

+
2

n∑
i=1

Rij0

σ2 ;

Rij0 = yij − λT
j xi −

M∑

k=1

βjkΨ(γk0 + xT
i γk).

Let assume that the prior distribution of λrs, for r = 1, 2 and s = 1, 2 is λrs ∼ N(µλrs , σ
2
λrs

);
then, the posterior distribution is

λrs | y, · · · ∼ N(
Drs

Crs

, C−1
rs )
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where

Crs =

n∑
i=1

x2
is

σ2 + 1
σ2

λrs

; Drs =

n∑
i=1

Mirsxis

σ2 +
µλrs

σ2
λrs

;

Mirs = yir − βr0 − λrsxis −
M∑

k=1

βrkΨ(γk0 + xT
i γk).

Let assume, for j = 1, 2 and s = 1, . . . , M , that the prior distribution of βjs, is βjs ∼
N(µβjs

, σ2
βjs

); then, the posterior distribution is

βjs | y, · · · ∼ N(
Dj

Cj

, C−1
j )

where

Cj =

n∑
i=1

Ψ2(γs0 + xT
i γs)

σ2
+

1

σ2
βjs

;

Dj =

n∑
i=1

RijΨ(γs0 + xT
i γs)

σ2
+

µβjs

σ2
βjs

;

Rij = yij − βj0 − λT
j xi −

M∑

k=1
k 6=s

βjkΨ(γk0 + xT
i γk).

Let assume that the prior distribution of γrs, for r = 1, . . . , M and s = 0, 1, 2 is γrs ∼
N(µγrs , σ

2
γrs

); then, the posterior distribution is

p(γrs | y, · · · ) ∝ exp




− 1

2σ2




n∑
i=1

(yi1 − β10 − λT
1 xi −

M∑

k=1
k 6=r

β1kΨ(γk0 + xT
i γk)−

−β1rΨ(γr0 + xT
i γr))

2 +
n∑

i=1

(yi2 − β20 − λT
2 xi −

−
M∑

k=1
k 6=r

β2rΨ(γk0 + xT
i γk)− β2rΨ(γr0 + xT

i γr))
2







· exp

{
− 1

2σ2
γrs

(γ2
rs − 2µγrsγrs)

}

∝ exp

{
− 1

2σ2
γrs

(γ2
rs − 2µγrsγrs)

}
· exp

{
− 1

2σ2

[
n∑

i=1

(Ri1 − β1rΨ(γr0 + xT
i γr))

2+

exp

{
− 1

2σ2

[
n∑

i=1

(Ri1 − β1rΨ(γr0 + xT
i γr))

2 +
n∑

i=1

(Ri2 − β2rΨ(γr0 + xT
i γr))

2

]}
,
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where, for all i = 1, . . . , n and j = 1, 2,

Rij = yij − βj0 − λT
j xi −

M∑

k=1
k 6=r

βjkΨ(γk0 + xT
i γk).

Given these conditional distributions, we can apply an MCMC algorithm to simulate a sam-
ple from the joint posterior distribution. All conditional distributions are normal and inverted
gamma, except that of parameter γ. Hence, we can introduce a Metropolis-Hasting step, inside
a Gibbs sampling algorithm, with a normal as proposal distribution. As an alternative to stan-
dard Gibbs sampling, Wong and Liang (1997) proposed a simulated tempering with dynamic
weighting (STWD) algorithm to deal with training of neural networks.

The size of the neural net, namely, the number of hidden nodes M can be considered as a
parameter. In this case, it may be applied a reversible jump methodology to explore among
spaces of different dimension (see e.g. Muller and Rios-Insua (1998) and Andrieu et al. (2001)).
Nevertheless, in complex models like neural nets, problems of identifiability may appear and
other methods may be considered (see Titterington (2004) for a revision). As a measure of
complexity and fit of models, we have used a modified version of a DIC coefficient as pointed
out by Richardson (2002), and Celeux et al. (2006) who labeled this version as DIC3. This
criterion is well adapted to the case of neural networks with different possible architecture.
The expression of this coefficient is

DIC3 = −4Eθ|y[log f(y | θ)] + 2 log f̂(y),

where f̂(y) =
n∏

i=1

f̂(yi), and f̂(yi) = Eθ|y[f(yi | θ)].

3 Application in microarray data expressions of Lym-

phoblastic Leukemia

We have chosen a microarray experiment, depicted in the database ALL from the BioConductor
bundle (see Gentleman et al. (2004b)), originally rendered by Chiaretti et al. (2004). We have
taken a subset of 79 samples representing patients with B-cell acute lymphoblastic leukemia,
and we have considered, first, the samples with BCR/ABL fusion gene (37 patients) and then,
the cytogenetically normal samples (42 patients).

We sought a group of genes with different expression levels in above samples. For that,
we have used the genefilter package of the BioConductor bundle (Gentleman et al. (2004) and
Gentleman et al. (2004b)) and we have selected 2391 probesets from the original 12625 ones for
our analysis, deleting those with no expression or low variability across all samples. Then, by
using the multtest package, we have considered the criterion provided by the false discovery rate
(FDR), that is, the expected proportion of false positives among the genes that are significant.
We have used the procedure of Benjamin and Hochberg (1995) to control the FDR at a level
of 0.05. After this procedure, we have obtained 102 significantly different expressed genes.

As a previous step we have projected the selected genes in a two-dimensional map in order
to determine which function relates them. For that, we have computed the Euclidean distances
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between pairs of genes in each group and we have built a map by using an INDSCAL Analysis
(see for references therein e.g. Borg and Groenen (2005) and Marin and Nieto (2008)). In order
to program the INDSCAL Analysis we have used software SAS v. 9.1 running in a Pentium IV,
3.2 Ghz. processor.

In figures 1 and 2 we show the positions of genes in the two groups of patients, after
applying the INDSCAL Analysis. In these figures, numbers identify two specific genes in order
to visualize their situation in the space. We will consider the cytogenetically normal group as
the fixed configuration of points.

Figure 1: Group cytogenetically normal Figure 2: Group with the BCR/ABL fu-
sion

In order to program model 2.1 we have used as software WinBugs (see Lunn et al. (2000))
running in a Pentium IV, 3.2 Ghz. processor. We have used, as prior distributions of β00, Λ, B, γ0

and γ, normal distributions with zero means and high variances. For parameter σ2 we have
used a prior inverted gamma distribution with high variance also. All programs are disposable
by request to the corresponding author.

In table 1 we show DIC3 values for different number of hidden nodes M , after a total of
100000 iterations with 50000 iterations for burn-in. Lowest value is obtained for M = 1.

M 1 2 3 4
DIC3 -1494.565 -1493.17 -1492.177 -1488.328
M 5 6 7 8

DIC3 -1486.23 -1486.049 -1484.409 -1484.714
M 9 10

DIC3 -1483.864 -1481.183

Table 1: DIC3 values vs number of hidden nodes M

We derive the posterior distributions of the parameters of the M = 1 model. We test the
results by dividing the sample of 102 genes, in a random training set with 80% of observations
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and a test set with the resting ones. We considered a total of 600000 iterations, with 300000
iterations for burn-in, and three different chains with random initialization points. Post hoc
analysis of chains showed that there were not a significant departure from convergence. Results
of predictions and actual values of the validation set are in table 2, showing that predictions
are accurate.

Actual values (-0.8526 , 0.1925) (0.2886 , 0.5641)
Estimated values (-0.8524 , 0.1918) (0.2885 , 0.5623)
Actual values (1.5697 , 0.0429) (1.0721 , 0.0091)
Estimated values (1.5700 , 0.0417) (1.0720 , 0.0077)
Actual values (0.0537 , 0.1107) (2.2148 , -1.0531)
Estimated values (0.0538 , 0.1089) (2.2150 , -1.0540)
Actual values (0.5167 , -0.6055) (1.9068 , -0.3414)
Estimated values (0.5168 , -0.6073) (1.9070 , -0.3424)
Actual values (-0.2918 , 0.0534) (2.4316 , -0.4448)
Estimated values (-0.2913 , 0.0519) (2.4320 , -0.4459)
Actual values (-1.4535 , -0.0849) (0.8263 , -0.4591)
Estimated values (-1.4530 , -0.0858) (0.8264 , -0.4605)
Actual values (1.7875 , -1.3557) (-1.7069 , 0.9099)
Estimated values (1.7880 , -1.3570) (-1.7070 , 0.9091)
Actual values (-0.4324 , -0.1370) (-1.4613 , 0.4721)
Estimated values (-0.4321 , -0.1383) (-1.4610 , 0.4714)
Actual values (-1.2277 , 0.3238) (-0.5963 , 1.2311)
Estimated values (-1.2280 , 0.3230) (-0.5964 , 1.2300)
Actual values (1.6281 , -1.3630) (-1.5291 , -0.1417)
Estimated values (1.6280 , -1.3640) (-1.5290 , -0.1424)

Table 2: Predictions and actual values of validation set

4 Discussion and future developments

The proposed model can be useful to relate different expression levels in two microarrays,
corresponding to different conditions in a group of genes. Moreover, this model can be useful
to find relations among expressions, by selecting some critical genes, or to assess diagnostic
forecasting by comparing positions of genes in different times of a given illness.

One possible generalization may be to consider multiple comparisons among more than two
microarrays. As a technical issue, in order to deal with non-linear matching problems, it may
be interesting to introduce the class of Gaussian Processes that generalize neural nets models.
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