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CHAPTER 1

Introduction

The main text of this thesis is divided into three chapters. The three

papers are contributions to the literature on equilibrium refinements in non-

cooperative game theory. Each chapter can be read independently of the

rest.

Chapter 2 characterizes the class of finite extensive forms for which the

sets of Subgame Perfect and Sequential equilibrium strategy profiles coin-

cide for any possible payoff function. In addition, it identifies the class of

finite extensive forms for which the outcomes induced by these two solu-

tion concepts coincide, and study the implications of our results for perfect

Bayesian equilibrium.

Chapter 3 shows that in games with population uncertainty some perfect

equilibria are in dominated strategies. It is proved that every Poisson game

has at least one perfect equilibrium in undominated strategies.

Chapter 4 shows that the set of probability distributions over networks

induced by Nash equilibria of the network formation game proposed by

Myerson (1991) is finite for a generic assignment of payoffs to networks.

The same result can be extended to several variations of the game found in

the literature.
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CHAPTER 2

Conditions for Equivalence Between Sequentiality and

Subgame Perfection1

2.1. Introduction

Analysis of backward induction in finite extensive form games provides

useful insights for a wide range of economic problems. The basic idea

of backward induction is that each player uses a best reply tothe other

players’ strategies, not only at the initial node of the tree, but also at any

other information set.

To capture this type of rationality Selten (1965) defined thesubgame

perfect equilibrium concept. While subgame perfection has some impor-

tant applications, it does not always eliminate irrationalbehavior at every

information set. In order to solve this problem, Selten (1975) introduced

the more restrictive notion of “trembling-hand” perfection.

Sequential equilibrium, due to Kreps and Wilson (1982), requires that

every player maximizes her expected payoff at every information set, ac-

cording to some consistent beliefs. They showed that “trembling-hand”

perfection implies sequentiality, which in turn implies subgame perfection.

They also proved that for generic payoffs, almost all sequential equilib-

rium strategies are “trembling-hand” perfect, a result that was strengthen

by Blume and Zame (1994) who proved that for a fixed extensive form and

generic payoffs it is the case that the two concepts coincide.

1This chapter is based on Gonzalez Pimienta and Litan (2005).
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6 2. SEQUENTIALITY AND SUBGAME PERFECTION

Although it is a weaker concept than Selten’s perfection, Kohlberg and

Mertens (1986) note that “sequential equilibrium seems to be the direct

generalization [of backward induction] to games of imperfect information”.

It fulfills all the properties that characterize subgame perfection (backward

induction) in games of perfect information. This is no longer true with

different concepts like perfect or proper equilibrium.2

In this paper we find the maximal set of finite extensive forms (extensive

games without any payoff assignment) for which sequential and subgame

perfect equilibrium yield the same set of equilibrium strategies, for every

possible payoff function (Proposition 2.1). It can be characterized as the set

of extensive forms, such that for any behavior strategy profile every infor-

mation set is reached with positive probability conditional on the smallest

subgame that contains it. Whenever the extensive form does not have this

structure, payoffs can be assigned such that the set of subgame perfect equi-

libria does not coincide with the set of sequential equilibria.

However, it may still happen that the set of equilibrium outcomes of

both concepts coincides for any possible assignment of the payoff function.

Thus, we also identify the maximal set of finite extensive forms for which

subgame perfect and sequential equilibrium always yield the same equilib-

rium outcomes (Proposition 2.2).

In many applications of extensive games with incomplete information,

the so called “perfect Bayesian equilibrium” is used. It places no restrictions

at all on beliefs off the equilibrium path of every subgame. Hence, it implies

subgame perfection and it is implied by sequential equilibrium. We obtain

as corollaries that our equivalence conditions remain trueif we substitute

sequential for perfect Bayesian.

2See Kohlberg and Mertens (1986) for details.
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Notice that, unlike related results on equivalence betweenrefinements

of Nash equilibrium, where the object of analysis is the payoff space (e.g.

Kreps and Wilson (1982), Blume and Zame (1994)), we find conditions on

the game form. Our results characterize the information structures where

applying sequential rationality does not make a relevant difference with

respect to subgame perfection. We consider them as tools foreconomic

modelling. They allow us to know if, for the extensive game under study,

subgame perfect and sequential equilibrium are always equivalent, either in

equilibrium strategies or in equilibrium outcomes.

The paper is organized as follows: in Section 2.2 we briefly introduce

the main notation and terminology of extensive form games. This closely

follows van Damme (1991). Section 2.3 contains definitions.Results are

formally stated and proved in Section 2.4. In Section 2.5 we give some

examples where our results can be applied.

2.2. Notation and Terminology

The analysis is restricted to finite extensive form games with perfect

recall. Since our characterization is based on the structural properties of

extensive games, we cannot dispose of a complete formal description of

extensive form games. However, and in consideration with those readers

who are already familiar with extensive games, we relegate such a long

discussion to the appendix and only offer in Figure 2.1 a brief list with very

terse explanations of the symbols that we require.

We need the following definitions before moving to the next section.

If x ∈ X, let Pb
x denote the probability distribution onZ if the game is

started atx and the players play according to the strategy profileb. Given a

system of beliefsµ, a strategy profileb and an information setu, we define

the probability distributionPb,µ
u onZ asPb,µ

u = ∑x∈uµ(x)Pb
x.
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Notation Terminology Comments

Ξ Extensive form Extensive game without

payoff assignment

T Set of nodes inΞ Typical elementsx,y∈ T

≤ Precedence relation onT ≤ partially ordersT

Ui Playeri’s information sets Typical elementsu,v,w∈Ui

Cu Choices available atu Typical elementsc,d,e∈Cu

Z Set of final nodes {z∈ T : ∄x∈ T s.t. z< x}
X Set of decision nodes X = T \Z

r i Playeri’s payoff function r i : Z→ R, r = (r1, . . . , rn)

Γ n-player extensive game Γ = (Ξ, r)

bi Playeri’s behavioral strategy bi ∈ Bi, b = (b1, . . . ,bn)

Pb Probability measure onZ Induced byb

Ri(b) Playeri’s expected utility atb ∑z∈Z Pb(z)r i(z)

Z(A) Final nodes coming afterA A⊆ T

Pb(A) Probability ofA⊆ T Pb(Z(A))

Ξy Subform starting aty Subgame without payoff

assignment

Γy Subgame starting aty Γy = (Ξy, r̂)

µ System of beliefs µ(·)≥ 0, ∑x∈uµ(x) = 1,∀u

FIGURE 2.1. Notation and terminology of finite extensive

games with perfect recall

These probability distributions allow us to compute expected utilities at

parts of the extensive game other than the initial node, already considered in

Ri(b). DefineRix(b) = ∑z∈Z Pb
x(z)r i(z) as playeri’s expected payoff at node

x. In a similar fashion,Riu(b) = ∑z∈Z Pb(z|u)r i(z) = ∑x∈uPb(x|u)Rix(b)

is playeri’s expected payoff at every information setu such thatPb(u) >
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0. Furthermore, under the system of beliefsµ, Rµ
iu(b) = ∑z∈Z Pb,µ

u (z)r i(z)

denotes playeri’s expected payoff at the information setu.

2.3. Definitions

We use the substitution notationb\b′i to denote the strategy profile in

which all players play according tob, except playeri who playsb′i . The

strategybi is said to be a best reply againstb if it is the case thatbi ∈
argmaxb′i∈Bi

Ri(b\b′i). If Pb(u) > 0, we say that the strategybi is a best

reply againstb at the information setu∈Ui if it maximizesRiu(b\b′i) over

the domain where it is well defined.

The strategybi is a best reply against(b,µ) at the information setu∈Ui

if bi ∈ argmaxb′i∈Bi
Rµ

iu(b\b′i). If bi prescribes a best reply against(b,µ) at

every information setu∈Ui, we say thatbi is a sequential best reply against

(b,µ). The strategy profileb is a sequential best reply against(b,µ) if it

prescribes a sequential best reply against(b,µ) for every player.

With this terminology at hand we define several equilibrium concepts.

DEFINITION 2.1 (Nash Equilibrium). A strategy profileb∈ B is a Nash

equilibrium ofΓ if every player is playing a best reply againstb.

We denote by NE(Γ) the set of Nash equilibria ofΓ. Subgame perfec-

tion refines the Nash equilibrium concept by requiring a Nashequilibrium

in every subgame. Formally,

DEFINITION 2.2 (Subgame Perfect Equilibrium). A strategy profileb

is a subgame perfect equilibrium ofΓ if, for every subgameΓy of Γ, the

restrictionby constitutes a Nash equilibrium ofΓy.
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We denote by SPE(Γ) the set of subgame perfect equilibria ofΓ. We

write SPEO(Γ) = {Pb : b∈SPE(Γ)} for the set of subgame perfect equilib-

rium outcomes, and SPEP(Γ) = {R(b) : b∈SPE(Γ)} for the set of subgame

perfect equilibrium payoffs, whereR(b) = (R1(b), . . . ,Rn(b)).

Sequential rationality is a refinement of subgame perfection. Every

player must maximize at every information set according to her beliefs

about how the game has evolved so far. Ifb is a completely mixed strat-

egy profile, beliefs are perfectly defined by Bayes’ rule. Otherwise, be-

liefs should meet a consistency requirement. A sequential equilibrium is an

assessment that satisfies such a consistency requirement together with an

optimality requirement. This is formalized by the next two definitions.

DEFINITION 2.3 (Consistent Assessment). An assessment(b,µ) is con-

sistent if there exists a sequence{(bt ,µt)}t , wherebt is a completely mixed

strategy profile andµt(x) = Pbt (x|u) for x∈ u, such that lim
t→∞

(bt ,µt) = (b,µ).

DEFINITION 2.4 (Sequential Equilibrium). A sequential equilibrium of

Γ is a consistent assessment(b,µ) such thatb is a sequential best reply

against(b,µ).

If Γ is an extensive game, we denote by SQE(Γ) the set of strategies

b such that(b,µ) is a sequential equilibrium ofΓ, for someµ. Moreover,

SQEO(Γ) = {Pb : b ∈ SQE(Γ)} denotes the set of sequential equilibrium

outcomes and SQEP(Γ) = {R(b) : b∈ SQE(Γ)} the set of sequential equi-

librium payoffs. Recall that SQE(Γ)⊆ SPE(Γ) for any gameΓ.

We now introduce some new definitions that are needed for the results.

DEFINITION 2.5 (Minimal Subform of an Information Set). Given an

information setu, the minimal subform that containsu, to be denotedΞ(u),

is the subformΞy that containsu and does not properly include any other

subform that containsu.
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We say thatΓy = (Ξy, r̂) is the minimal subgame that containsu if Ξy is

the minimal subform that containsu.

In a given extensive form there are information sets that arealways

reached with positive probability. When this does not happenwe say that

the information set is avoidable, formally:

DEFINITION 2.6 (Avoidable information set). An information setu is

avoidable in the extensive formΞ if Pb(u) = 0, for someb∈ B. Likewise,

we say that the information setu is avoidable in the subformΞy if Pb
y(u) = 0,

for someb∈ B.

For reasons that will become clear in the next section, we areinterested

in identifying extensive games where no information set is avoidable in its

minimal subform. To get an idea about the set of extensive forms that we

have in mind consider Figures 2.2 and 2.3. In the former, no information

set is avoidable in the extensive form. While in the latter, noinformation

set is avoidable in its minimal subform.

1−ρ0 < ρ < 1
N

2

1

3

FIGURE 2.2. Extensive form where no information set is avoidable.

Conversely, consider Figure 2.4. Player 2’s information setis avoidable

in the extensive form (also in its minimal subform since the entire game is

the only proper subgame) because player 1 can decide not to let her move.



12 2. SEQUENTIALITY AND SUBGAME PERFECTION

1

2

1 1 1 1

2 2

FIGURE 2.3. Extensive form where no information set is

avoidable in its minimal subform.

2.4. Results

The three “best reply” concepts introduced in Section 2.3 relate to each

other, as it is shown in the first two statements of the next lemma. The

third assertion of the same lemma shows that maximizing behavior at an

information set is independent of the subgame of reference.

LEMMA 2.1. Fix a gameΓ = (Ξ, r). The following assertions hold:

(1) Given a strategy profile b, if u∈Ui is such thatPb(u) > 0 and bi

is a best reply against b, then bi is a best reply against b at the

information set u.

(2) Given a consistent assessment(b,µ), if u∈Ui is such thatPb(u) >

0 and bi is a best reply against b at the information set u, then bi

is a best reply against(b,µ) at the information set u.

(3) If Γy is the minimal subgame that contains u and(by,µy) is the

restriction of some assessment(b,µ) to Γy, then bi is a best reply

against(b,µ) at the information set u in the gameΓ if and only if

by,i is a best reply against(by,µy) at the information set u in the

gameΓy.
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PROOF. Part 1 is known.3 Proofs for 2 and 3 are trivial. �

In the next proposition we identify the set of extensive forms where

sequential equilibrium has no additional bite over subgameperfection. The

latter concept allows for the play of non-credible threats at information sets

that might never be reached conditional on its minimal subgame. However,

if we restrict attention to extensive form games where no information set is

avoidable in its minimal subform, we can use the previous lemma to show

that sequential and subgame perfect equilibrium coincide.

It turns out that not only is this particular restriction sufficient but also

necessary for the equivalence, in the following sense: we can always find a

payoff assignment so that the sets of subgame perfect and sequential equi-

librium differ when the restriction fails to hold. The construction of such

payoff assignment is based on, first, taking one informationset that is avoid-

able in its minimal subform out of one subgame perfect equilibrium path

and, second, making one of the available actions at this avoidable informa-

tion set a strictly dominated action. Take for instance the game contained in

Figure 2.4. If player 1 movesOutshe gives player 2 the possibility of taking

the strictly dominated moveH, which forms a subgame perfect equilibrium

which is not sequential.

PROPOSITION2.1. LetΞ be an extensive form such that no information

set u is avoidable inΞ(u). Then for any possible payoff vector r, the game

Γ = (Ξ, r) is such thatSPE(Γ) = SQE(Γ). Conversely, ifΞ is an extensive

form with an information set u that is avoidable inΞ(u), then we can find a

payoff vector r such that for the gameΓ = (Ξ, r), SPE(Γ) 6= SQE(Γ).

3For instance, see van Damme (1991), Theorem 6.2.1.
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1 Out 1,1

H

0,0

G

1,1

H

0,0

G

1,1

2

FIGURE 2.4. Example of the use of the algorithm contained

in the proof of Proposition 2.1 to generate a game where

SPE(Γ) 6= SQE(Γ).

PROOF. Let us prove the first part of the proposition. We only have to

show that SPE(Γ)⊆ SQE(Γ). Considerb∈ SPE(Γ) and construct a consis-

tent assessment(b,µ).4 We have to prove that the set

(1) Ũ(b,µ) =
n⋃

i=1

{
u∈Ui : bi /∈ argmax

b̃i∈Bi

Rµ
iu(b\b̃i)

}

is empty. Assume to the contrary thatŨ(b,µ) 6= /0, and consideru∈ Ũ(b,µ).

Let Γy be the minimal subgame that containsu and let j be the player mov-

ing at u. By lemma 2.1.3,by, j is not a best reply against(by,µy) at u in

the gameΓy. Part 2 implies either thatPb
y(u) = 0 or thatby, j is not a best

reply againstby at u. If the latter was true, part 1 would anyway imply that

Pb
y(u) = 0. However,u is not avoidable inΞy. This provides the contradic-

tion.

4A general method to define consistent assessments(b,µ) for any givenb∈ B, in an

extensive form, is the following: take a sequence of completely mixed strategy profile

{bt}t → b and for eacht, constructµt(x) = Pbt (x|u) ∈ [0,1], ∀x ∈ u, for all information

setsu. Call k = |X \P0|. The set[0,1]k is compact and sinceµt ∈ [0,1]k,∀t, there exists

a subsequence of{t}, call it {t j}, such that{µt j}t j converges in[0,1]k. Define beliefs as

µ= lim
j→∞

µt j .
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Let us now prove the second part of the proposition. Supposeu∈Ui is

an information set that is avoidable inΞ(u) and letc ∈Cu be an arbitrary

choice available atu. Assign the following payoffs:

(2)


r i(z) = 0 ∀i if z∈ Z(c)

r i(z) = 1 ∀i elsewhere.

Clearly any strategybi = bi\c cannot be part of a sequential equilibrium

since playing a different choice atu gives playeri strictly higher expected

payoff at that information set.

We now have to show that there exists a subgame perfect equilibrium

b such thatbi = bi\c. By assumption there existsb′ such thatPb′
y (u) = 0

in the minimal subgameΓy that containsu. The equalityPb
y(u) = 0 also

holds for b = b′\c. The strategy profileby is a Nash equilibrium ofΓy

since nobody can obtain a payoff larger than one. By the same argument,b

induces a Nash equilibrium in every subgame, hence it is a subgame perfect

equilibrium. This completes the proof. �

We use the extensive form of Selten’s horse game (Figures 2.5and 2.6)

to show that the algorithm (used in the proof of the second part of Proposi-

tion 2.1) does not depend either on the particular avoidableinformation set,

or on the particular choice that is taken to construct the payoffs. Information

setu in the algorithm corresponds to player 2’s (player 3’s) information set

in Figure 2.5 (Figure 2.6), and choicec∈Cu in the algorithm corresponds

to choiceB (choiceR) in Figure 2.5 (Figure 2.6).

Notice that the payoff assignment in the previous proof yields a differ-

ence in equilibrium strategies but not in equilibrium payoffs. The reason is

that we cannot always achieve difference in equilibrium outcomes (there-

fore, neither in equilibrium payoffs). Figure 2.7 containsan extensive form

where the second information set of player 1 is avoidable in its minimal
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1 1,1,1
B

2

3
R

1,1,1

L

1,1,1

R

0,0,0

L

0,0,0

FIGURE 2.5. Selten’s horse. An example of the use of the

algorithm contained in the proof of proposition 2.1 to gener-

ate a game where SPE(Γ) 6= SQE(Γ).

1 1,1,1
B

2

3
R

0,0,0

L

1,1,1

R

0,0,0

L

1,1,1

FIGURE 2.6. Selten’s horse. A different use of the algo-

rithm contained in Proposition 2.1.

subform, and nevertheless, the sets of sequential and subgame perfect equi-

librium outcomes always coincide, regardless of what the payoffs assigned

to final nodes are. Proposition 2.2 provides a sufficient and necessary con-

dition for the sets of equilibrium outcomes (also, of equilibrium payoffs) to

be equal for any conceivable payoff function.

Before that, we need to be able to identify which players can avoid

a given information set. Letu be an information set and letΞy = Ξ(u).

Construct the set of strategiesB(u) =
{

b∈ B : Pb
y(u) > 0

}
.
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DEFINITION 2.7. We say that the information setu can be avoided in

Ξ(u) by player i if there exists a strategy profileb ∈ B(u), and a choice

c∈Cv, with v∈Ui, such thatPb\c
y (u) = 0.

Remember that for an information setu that is avoidable inΞ(u) = Ξy

there must be a strategy profileb such thatPb
y = 0 (Definition 2.6). If a

player, say playeri, is able to unilaterally modify a strategy profileb′ for

which Pb′
y > 0, by changing only one of her choices, and hereby construct

one b for which Pb
y = 0, then we say that the information setu can be

avoided inΞ(u) by player i. Therefore, associated with any information

set, there is a (possibly empty) list of players who can avoidit in its mini-

mal subform. Figure 2.7 is an example of an extensive form where for every

information set such a list is either empty or contains only the owner of the

information set. When this happens, sequential equilibriumhas no addi-

tional bite over subgame perfection regarding equilibriumoutcomes. The

reason is that subgame perfection allows a player to choose actions sub-

optimally, but given the particular structure of the game form, it can only

happen at information sets already avoided by her own previous behavior,

and choices at such information sets do not affect the outcome of the game.

1

2

1

FIGURE 2.7. The second information set of player 1 can

only be avoided by player 1. Proposition 2.2 implies that

SPEP(Γ) = SQEP(Γ).
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This condition is also necessary for equivalence in equilibrium out-

comes in the following sense: if playeri can avoid the information setu in

its minimal subform, and ifj is the owner of the information setu, there ex-

ists a payoff assignment so that playerj can “non-credibly” threaten player

i (something ruled out by sequential equilibrium but not by subgame per-

fection) bringing about the difference in equilibrium outcomes.

The following lemma is useful for the proof of Proposition 2.2.

LEMMA 2.2. Let Ξ be an extensive form such that, whenever an infor-

mation set u is avoidable inΞ(u), it can only be avoided inΞ(u) by its

owner. Let(b,µ) and(b′,µ′) be two consistent assessments. If b and b′ are

such thatPb
y = Pb′

y for every subformΞy, then µ= µ′.

PROOF. Let (b,µ) and(b′,µ′) be two consistent assessments such that

Pb
y = Pb′

y for every subformΞy. Note thatb′ can be obtained fromb by

changing behavior at information sets that are reached withzero probability

within their minimal subform. Hence, without loss of generality, let b and

b′ differ only at one such information set, sayu ∈ Ui, and letΞy = Ξ(u).

The shift fromb to b′ may cause a change in beliefs only at information sets

that come afteru and are in the same minimal subformΞy. Let v∈U j be

one of those information sets.

If j = i, perfect recall and consistency imply that there is no change in

beliefs at the information setv. If j 6= i there are two possible cases, either

Pb
y(v) > 0 orPb

y(v) = 0. In the first case the beliefs atv are uniquely defined,

therefore,µ(x) = µ′(x),∀x∈ v and moreover,µ(x) = µ′(x) = 0,∀x∈ v such

that u < x. In the second case, since the information setv can only be

avoided by playerj in Ξ(u) there exists a choicec∈Cw of player j such that

Pb\c
y (v) > 0, otherwise playeri would also be able to avoid the information

setu in Ξ(u). Let b′′ = b\c andb′′′ = b′\c, then by the discussion of the

first case,µ′′(x) = µ′′′(x),∀x∈ v, furthermore, perfect recall and consistency
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imply µ′′(x) = µ(x) andµ′′′(x) = µ′(x),∀x∈ v, which in turn impliesµ(x) =

µ′(x),∀x∈ v. �

We are now ready to state and prove our second equivalence result.

PROPOSITION2.2. Let Ξ be an extensive form such that, whenever an

information set u is avoidable inΞ(u), it can only be avoided inΞ(u) by its

owner. Then for any possible payoff vector r, the gameΓ = (Ξ, r) is such

that SPEO(Γ) = SQEO(Γ). Conversely, ifΞ is an extensive form with an

information set u that can be avoided inΞ(u) by a different player than its

owner, then we can find a payoff vector r such that for the gameΓ = (Ξ, r),

SPEP(Γ) 6= SQEP(Γ).

PROOF. Let us prove the first part of the proposition. We need to prove

that∀b∈ SPE(Γ), Pb ∈ SQEO(Γ). Take an arbitraryb∈ SPE(Γ) and con-

struct some consistent beliefsµ.

If the setŨ(b,µ) =
n⋃

i=1

{
u∈Ui : bi /∈ argmax̃bi∈Bi

Rµ
iu(b\b̃i)

}
is empty,

thenb∈ SQE(Γ) andPb ∈ SQEO(Γ). Otherwise, we need to find a sequen-

tial equilibrium(b∗,µ∗) such thatPb∗ = Pb.

Step 1: Take an information setu∈ Ũ(b,µ). Let i be the player that

moves at this information set, and letΓy = (Ξ(u), r̂). As in the

proof of proposition 2.1, notice that by Lemma 2.1,u should be

such thatPb
y(u) = 0, hence it is avoidable in its minimal subform.

By assumption,u can only be avoided by playeri.

Step 2: Let b′ be the strategy profileb modified so that playeri plays

a best reply against(b,µ) at the information setu. Construct a con-

sistent assessment(b′,µ′). Notice thatPb′ = Pb and, in particular,

Pb′
y = Pb

y. By Lemma 2.2,µ and µ′ assign the same probability

distribution on every information set.
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Step 3: We now prove thatb′ ∈ SPE(Γ). For this we needb′y ∈
NE(Γy). Given the strategy profileb′y in the subgameΓy, player

i cannot profitably deviate because this would mean that she was

also able to profitably deviate whenby was played in the subgame

Γy, which contradictsby ∈ NE(Γy).

Suppose now that there exists a playerj 6= i who has a prof-

itable deviationb′′y, j from b′y, j in the subgameΓy. The hypothesis

on the extensive formΞ implies P
b\b′′y, j
y = P

b′\b′′y, j
y , which further

implies thatb′′y, j should have also been a profitable deviation from

by. However, this is impossible sinceby ∈ NE(Γy).

Step 4: By step 2,|Ũ(b′,µ′)| = |Ũ(b,µ)|−1. If |Ũ(b′,µ′)| 6= 0, ap-

ply the same type of transformation tob′. Suppose that the cardi-

nality of Ũ(b,µ) is q, then in theqth transformation we will ob-

tain a consistent assessment(b(q),µ(q)) such thatb(q) ∈ SPE(Γ),

Pb = Pb(q)
, andŨ(b(q),µ(q)) = /0. Observe that,b(q) ∈ SPE(Γ) and

Ũ(b(q),µ(q)) = /0 imply b(q) ∈SQE(Γ). Therefore(b(q),µ(q)) is the

sequential equilibrium(b∗,µ∗) we were looking for.

Let us now prove the second part of the proposition. For notational

convenience, it is proved for games without proper subgames, however, the

argument extends immediately to the general case.

Given a nodex∈ T, the set Path(x) = {c∈⋃uCu : c < x} of choices is

called path tox.

Suppose thatu is an information set that can be avoided inΞ by a player,

say playerj, different from the player moving at it, say playeri. Note that

there must exist anx ∈ u and a choicec ∈ Cv, wherev ∈ U j , such that if

b = b\Path(x), thenPb\c(u) = 0 is true.
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Let f ∈Cu be an arbitrary choice available to playeri at u. Assign the

following payoffs:

(3)


r j(z) = 0 if z∈ Z(c)

r i(z) = r j(z) = 0 if z∈ Z( f )

r i(z) = r j(z) = 1 if z∈ Z(u)\Z( f ).

Let d∈Path(x) with d 6∈Cv, assign payoffs to the terminal nodes, whenever

allowed by 3, in the following fashion:

(4) rk(z) > rk(z′) wherez∈ Z(d) andz′ ∈ Z(Cw\{d}).

Playerk above is the player who has choiced available at the information

setw. Give zero to every player everywhere else.

In words, playerj moves with positive probability in the game. She has

two choices, either moving towards the information setu and letting player

i decide, or moving away from the information setu. If she moves away she

gets zero for sure. If she lets playeri decide, playeri can either make both

get zero by choosingf , or make both get one by choosing something else.

Due to 4, no player will disturb this description of the playing of the game.

This game has a Nash equilibrium in which playeri movesf and player

j obtains a payoff equal to zero by movingc. However, in every sequential

equilibrium of this game, playeri does not choosef and, as a consequence,

player j takes the action contained in Path(x)∩Cv. Therefore, in every

sequential equilibrium, playersi and j obtain a payoff strictly larger than

zero.5 This completes the proof. �

For a very simple application of the previous algorithm, consider the

extensive game of Figure 2.4 and substitute the payoff vector following

moveOut of player 1, with the payoff vector(0,0). Again, the first player

5Equilibrium payoffs are not necessarily equal to one due to eventual moves of Nature.
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moving Out and the second player taking the strictly dominated moveH,

is a subgame perfect equilibrium that yields an equilibriumpayoff vector

equal to(0,0). However, in any sequential equilibrium, player 2 movesG

and player 1 does not moveOut, which makes(1,1) the only sequential

equilibrium payoff vector.

REMARK 2.1. Notice that, in the set of extensive forms under study in

the last proposition, beliefs are always uniquely defined for any given strat-

egy profile (considerb′ = b in Lemma 2.2). One may incorrectly think that

it is the uniqueness of the beliefs that is behind the equivalence. Consider a

modification of the game form in Figure 2.7 so that the second information

set of player 1 is controlled by a new player 3. This modified extensive form

has a unique system of consistent beliefs for any given strategy profile but,

as seen in Proposition 2.2, the set of equilibrium outcomes is not the same

for both concepts for every possible payoff vector.

2.4.1. Perfect Bayesian equilibrium.These results can be helpful in

applied work. But many applied economists use Perfect Bayesian Equilib-

rium in extensive games with incomplete information. This motivates us

to analyze the relationship between this concept and our previous findings.

The formal definition that we use is:

DEFINITION 2.8. An assessment(b,µ) is a perfect Bayesian equilib-

rium of the extensive gameΓ if it satisfies the following conditions:

(1) For every information setu if Pb
y(u) > 0, thenµ(x) = Pb

y(x|u),

whereΞy = Ξ(u), for all x∈ u;

(2) b is a sequential best reply against(b,µ).6

6This is the weakest and the most used version. See Fudenberg and Tirole (1991) for

related definitions.
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Let PBE(Γ) be the set of strategies that together with some system of be-

liefs make up a perfect Bayesian equilibrium. Let PBEP(Γ) and PBEO(Γ)

be the sets of, respectively, perfect Bayesian equilibrium payoffs and perfect

Bayesian equilibrium outcomes.

A quick inspection of the definition reveals that perfect Bayesian equi-

librium implies subgame perfection and that it is implied bysequential

equilibrium. This observation by itself proves that the sufficiency parts

of Propositions 2.1 and 2.2 hold if we replace SQE(Γ) with PBE(Γ) and

SQEO(Γ) with PBEO(Γ).

As for the necessity part of both propositions, the algorithms proposed

are also valid to construct subgame perfect equilibra (subgame perfect equi-

librium payoffs) that are not perfect Bayesian (perfect Bayesian equilibrium

payoffs). Note that the irrational move prohibited to a player having consis-

tent beliefs is also forbidden to a player that has any conceivable beliefs.

In other words, the conditions for equivalence between subgame per-

fection and perfect Bayesian equilibrium parallel those between subgame

perfection and sequentiality. Formally:

COROLLARY 2.1. If Ξ is an extensive form such that no information set

u can be avoided inΞ(u), then for any possible payoff vector r, the game

Γ = (Ξ, r) is such thatSPE(Γ) = PBE(Γ). If Ξ is an extensive form with

an information set u that can be avoided inΞ(u), then we can find a payoff

vector r such that for the gameΓ = (Ξ, r), SPE(Γ) 6= PBE(Γ).

The analogous result regarding equilibrium outcomes and equilibrium

payoffs is:

COROLLARY 2.2. Let Ξ be an extensive form such that, whenever an

information set u can be avoided inΞ(u), it can only be avoided inΞ(u) by

its owner, then for any possible payoff vector r, the gameΓ = (Ξ, r) is such
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that SPEO(Γ) = PBEO(Γ). If Ξ is an extensive form with an information

set u that can be avoided inΞ(u) by a different player than its owner, then

we can find a payoff vector r such that for the gameΓ = (Ξ, r), SPEP(Γ) 6=
PBEP(Γ).

2.5. Examples

These results can be applied to many games considered in the economic

literature. It allows us to identify in a straightforward way the finite ex-

tensive form games of imperfect information for which subgame perfect

equilibria are still conforming with backward induction expressed in a se-

quential equilibrium.

Besley and Coate (1997) proposed an economic model of representa-

tive democracy. The political process is a three-stage game. In stage 1,

each citizen decides whether or not to become a candidate forpublic of-

fice. At the second stage, voting takes place over the list of candidates. At

stage 3 the candidate with the most votes chooses the policy.Besley and

Coate solved this model using subgame perfection and found multiple sub-

game perfect equilibria with very different outcomes in terms of number

of candidates. This may suggest that some refinement might give sharper

predictions. However, given the structure of the game that they consid-

ered, it follows immediately from the results of the previous section that all

subgame perfect equilibria in their model are also sequential. Thus, no ad-

ditional insights would be obtained by requiring this particular refinement.

The information structure of Besley and Coate’s model is a particu-

lar case of the more general framework offered by Fudenberg and Levine

(1983). They characterized the information structure of finite-horizon mul-

tistage games as “almost” perfect, since in each period players simultane-

ously choose actions, Nature never moves and there is no uncertainty at the

end of each stage. As they noticed, sequential equilibrium does not refine
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subgame perfection in this class of games. This can also be obtained as an

implication of Proposition 2.1 in the present paper.

In their version of the Diamond and Dybvig (1983) model, Adão and

Temzelides (1998) discussed both the issue of potential banking instability

as well as that of the decentralization of the optimal deposit contract. They

addressed the first question in a model with a “social planner” bank. The

bank offers the efficient contract as a deposit contract in the initial period. In

the first stage agents sequentially choose whether to deposit in the bank or

to remain in autarky. In the second stage, those agents who were selected by

Nature to be patient, simultaneously choose whether to misrepresent their

preferences and withdraw, or report truthfully and wait. The reduced normal

form of the game has two symmetric Nash equilibria in pure strategies.

The first one has all agents choosing depositing in the bank and reporting

faithfully, the second one has all agents choosing autarky.The fact that both

equilibria are sequential is presented in their Proposition 2. Because of the

game form they used, our Proposition 2.1 also implies their result.

In the implementation theory framework, Moore and Repullo (1988)

present the strength of subgame perfect implementation. Ifa choice func-

tion is implementable in subgame perfect equilibria by a given mechanism,

the strategy space is finite, and no information set is avoidable in its minimal

subform in the extensive form of the mechanism, then our workestablishes

the implementability in sequential equilibrium. (See, forinstance, the ex-

ample they study in Section 5, pp. 1213-1215.)

More examples can be found in Game Theory textbooks, like those of

Fudenberg and Tirole (1996), Myerson (1991) and Osborne andRubinstein

(1994). Notice that whenever subgame perfect and sequential equilibrium

differ for an extensive game, there are information sets that are avoidable
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in its minimal subform. As examples consider Figures 8.4 and8.5 in Fu-

denberg and Tirole (1996), Figures from 4.8 to 4.11 in Myerson (1991) and

Figures 225.1 and 230.1 in Osborne and Rubinstein (1994).

2.6. Appendix: Notation and Terminology

2.6.1. Extensive form.An n-player extensive form is a sextupleΞ =

(T,≤,P,U,C, p), whereT is the finite set of nodes and≤ is a partial order

onT, representing precedence. We use the notationx < y to say that nodey

comes after nodex. The immediate predecessor ofx is A(x) = max{y : y <

x}, and the set of immediate successors ofx is S(x) = {y : x∈ A(y)}. The

pair(T,≤) is a tree with a unique rootα: for anyx∈ T, x 6= α, there exists a

unique sequenceα = x0,x1, . . . ,xn = x with xi ∈ S(xi−1), 1≤ i ≤ n. The set

of endpoints isZ = {x : S(x) = /0} andX = T \Z is the set of decision points.

We writeZ(x) = {y∈ Z : x < y} to denote the set of terminal successors of

x, and ifE is an arbitrary set of nodes we writeZ(E) = {z∈ Z(x) : x∈ E}.

2.6.2. Player partition. The player partition,P, is a partition ofX into

setsP0,P1, . . . ,Pn, wherePi is the set of decision points of playeri andP0

stands for the set of nodes where chance moves. The probability assignment

p specifies for everyx∈ P0 a completely mixed probability distributionpx

onS(x).

2.6.3. Information partition. The information partitionU is an n-

tuple (U1, . . . ,Un), whereUi is a partition ofPi into information sets of

playeri, such that (i) ifu∈Ui, x,y∈ u andx≤ z for z∈ X, then we cannot

havez< y, and (ii) if u∈Ui, x,y∈ u, then|S(x)|= |S(y)|. Therefore, ifu is

an information set andx∈ X, it makes sense to writeu < x. Also, if u∈Ui,

we often refer to playeri as the owner of the information setu.

2.6.4. Choice partition. If u∈Ui, the setCu is the set of choices avail-

able for i at u. A choicec ∈Cu is a collection of|u| nodes with one, and



2.6. APPENDIX: NOTATION AND TERMINOLOGY 27

only one, element ofS(x) for eachx∈ u. If player i choosesc∈Cu at the

information setu ∈ Ui when she is actually atx ∈ u, then the next node

reached by the game is the element ofS(x) contained inc. The entire col-

lectionC = {Cu : u ∈ ⋃n
i=1Ui} is called the choice partition. We assume

throughout that|Cu|> 1 for every information setu.

2.6.5. Extensive form game.We define a finiten-person extensive

form game as a pairΓ = (Ξ, r), whereΞ is ann-player extensive form and

r, the payoff function, is ann-tuple (r1, ..., rn), wherer i is a real valued

function with domainZ. We assume throughout that the extensive formΞ

satisfies perfect recall, i.e. for alli ∈ {1, ...,n}, u,v∈Ui, c∈Cu andx,y∈ v,

we havec< x if and only ifc< y. Therefore, we can say that choicec comes

before the information setv (to be denotedc < v) and that the information

setu comes before the information setv (to be denotedu < v).

2.6.6. Behavior strategies, beliefs and assessments.A behavior strat-

egybi of playeri is a sequence of functions(bu
i )u∈Ui such thatbu

i : Cu→R+

and∑c∈Cu
bu

i (c) = 1,∀u. The setBi represents the set of behavior strate-

gies available to playeri. A behavior strategy profile is an element of

B = ∏n
i=1Bi. As common in extensive form games, we restrict attention

to behavior strategies.7 Throughout, we simply refer to them as strategies.

If bi ∈ Bi andc∈Cu with u∈Ui, thenbi\c denotes the strategybi changed

so thatc is taken with probability one atu. If b∈ B andb′i ∈ Bi thenb\b′i is

the strategy profile(b1, . . . ,bi−1,b′i,bi+1, ...,bn). If c is a choice of playeri

thenb\c = b\b′i , whereb′i = bi\c.

A system of beliefsµ is a functionµ : X\P0→ [0,1] with ∑x∈uµ(x) = 1,

∀u. An assessment(b,µ) is a strategy profile together with a system of

beliefs.

7We can do this without loss of generality due to perfect recall and Kuhn’s Theorem,

see Kuhn (1953).
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2.6.7. Subforms and subgames.Let T̂ ⊂ T be a subset of nodes such

that (i) ∃y∈ T̂ with y < x, ∀x∈ T̂, x 6= y, (ii) if x ∈ T̂ thenS(x) ⊂ T̂, and

(iii) if x∈ T̂ andx∈ u thenu⊂ T̂. Then we say thatΞy = (T̂,≤̂, P̂,Û ,Ĉ, p̂)

is a subform ofΞ starting aty, where(≤̂, P̂,Û ,Ĉ, p̂) are defined fromΞ in

T̂ by restriction. A subgame is a pairΓy = (Ξy, r̂), where ˆr is the restriction

of r to the endpoints ofΞy. We denote byby the restriction ofb∈ B to the

subformΞy (to the subgameΓy). The restriction of a system of beliefsµ to

the subformΞy (to the subgameΓy) is denoted byµy.



CHAPTER 3

Undominated (and) Perfect Equilibria in Poisson Games1

3.1. Introduction

Models of population uncertainty have been introduced by Myerson

(1998, 2000) and Milchtaich (2004), in order to describe situations in which

players do not know the number of opponents. Among these games, a spe-

cial attention has been reserved to Poisson games, where thenumber of

players is a Poisson random variable with a given mean and where the play-

ers’ types are independent identically distributed randomvariables. The

properties of the Poisson distribution make Poisson games an extremely

convenient subclass of games. They are characterized by theproperties

of independent actions(for every possible strategy profile the number of

players who take different actions are independent random variables) and

environmental equivalence(a player assesses the same probability for the

type profile of the others as an external observer does for thetype profile of

the whole game, where a type profile is a vector that lists how many players

there are of each type).

Myerson (1998) extends the definition of Nash equilibrium and ac-

knowledges its existence. The existing literature on equilibrium refinements

in noncooperative game theory warns that we should be cautious about the

strategic stability of the Nash equilibrium concept. If this concern is well

founded, we can ask which Nash equilibria are self-enforcing in this setting.

The following example serves us to both introducing Poissongames to

the reader and illustrating the nature of the question. A player is sitting at

1This chapter is based on De Sinopoli and Gonzalez Pimienta (2007)

29
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home and faces two possible alternatives, either she goes out to some social

event, or she stays home. She does not know how many players are facing

this same disjunctive, but she knows that this number is a Poisson random

variable with parametern. If she goes out and meets somebody she receives

a payoff equal to 1. If she meets nobody or decides to stay home, she gets

a payoff equal to 0. Every player faces this same two options and has the

same preferences.

The strategy “everybody stays home” is a Nash equilibrium ofthe de-

scribed game. However, we cannot consider it a good equilibrium since

players use a dominated strategy. It is not difficult to come up with similar

examples with patently implausible Nash equilibria.2

Recall that in conventional normal form games (from now on just nor-

mal form games), a modest refinement like perfection only selects undom-

inated strategies. This is the case in the previous example.However, in

Poisson games this is not true in general. We can go further, straightfor-

ward extensions of proper and strictly perfect equilibriumdo not satisfy

undominance either and, in addition, not every game has a strictly perfect

equilibrium.

On the other hand, as it happens in normal form games, not every un-

dominated equilibrium is perfect. The same arguments that in normal form

games suggest that we should dispose of some of the undominated equilib-

ria that are not perfect are valid here. The difference beingthat, as argued

above, some perfect equilibria may be dominated.

We define undominated perfect equilibria for Poisson games as strategy

combinations that are limits of sequences of undominated equilibria of per-

turbed Poisson games. We prove that every Poisson game has atleast one

2For instance, Myerson (2002), analyzing voting contexts, considers only Nash equi-

libria in which weakly dominated actions have been eliminated for all the types.
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undominated perfect equilibrium and that the set of undominated perfect

equilibria is exactly the set of perfect equilibria which are also undomi-

nated.

Our analysis is focused on Poisson games. However, we must point out

that none of the implications that we derive relies on the specific shape of

the Poisson distribution. Only some payoffs and thresholdsused in some

examples would have to be recomputed if we want to translate them into a

framework with a different underlying probability distribution.

This paper is organized as follows: In the next section we formally de-

fine Poisson games, strategies and Nash equilibria. We closely follow the

description of Poisson games made by Myerson (1998). The third section

is devoted to examine the properties of undominated strategies in Poisson

games, where we show that there exist important asymmetrieswith respect

to normal form games. The fourth section studies the perfectequilibrium

concept and some of its possible variations. We define the concept of un-

dominated perfect equilibrium for Poisson games in Section3.5, where

some of its properties are also proven.

3.2. Preliminaries

Recall that a Poisson random variable is a discrete probability distribu-

tion that takes only one parameter. The probability that a Poisson random

variable of parametern takes the valuek, beingk a nonnegative integer, is

f (k;n) = e−nnk

k!
.

A Poisson gameΓ is a five-tuple(n,T, r,C,u). The number of players in

the game is a Poisson random variable with parametern> 0. The setT rep-

resents the set of possible types of players, we assume it to be a nonempty

finite set.
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As usual, ifA is a finite set,∆(A) represents the set of probability dis-

tributions overA. Given the event that a player is in the game, she is of

typet ∈ T with probabilityr(t). This information is contained in the vector

r ∈ ∆(T). Thedecomposition propertyof the Poisson distribution implies

that for each typet in T, the number of players of the game whose type ist

is a Poisson random variable with parameternr(t). These random variables

together are mutually independent and form a vector, calledthetype profile,

which lists the number of players in the game who have each type.

For any finite setS, we denote asZ(S) the set of elementsw∈ RS such

thatw(s) is a nonnegative integer for alls∈ S. Using this notation, the set

Z(T) denotes the set of possible values for the type profile in the game.

The setC is the set of available choices or pure actions that a player

may take. We assume that it is common to all players regardless of their

type and that it is a finite set containing at least two different alternatives.

The set∆(C) is the set of mixed actions. Henceforth, we refer to mixed

actions simply as actions.

The utility to each player depends on her type, on the action that she

chooses and on the number of players, not counting herself, who choose

each possible action. A vector that lists these numbers of players for each

possible element ofC is called anaction profileand belongs to the setZ(C).

We assume that preferences of a player of typet can be summarized with a

bounded functionut : C×Z(C)→ R, i.e. ut(b,x) is the payoff that a player

of type t receives if she takes the pure actionb and the number of players

who choose actionc is x(c), for all c∈C. Furthermore, letu = (ut)t∈T .

In games with population uncertainty, as Myerson (1998, p. 377) ar-

gues, “. . . players’ perceptions about each others’ strategic behavior cannot

be formulated as a strategy profile that assigns a randomizedstrategy to

each specific individual of the game, because a player is not aware of the
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specific identities of all the other players”. Notice that two players of the

same type do not have any other known characteristic by whichothers can

assess different conducts. The conclusion of the previous reasoning is that

a strategyσ is an element of(∆(C))T , i.e. a mapping from the set of types

to the set of possible actions.3

This symmetry assumption is a fundamental part of the description of

the game. Notice that it is not made for convenience, on the contrary, sym-

metry is a critical assumption of a model of population uncertainty for it to

be meaningful and well constructed.

If players play according to the strategyσ, σt(c) is the probability that

a player of typet chooses the pure actionc. The decomposition property of

the Poisson distribution implies that the number of playersof typet ∈T who

choose the pure actionc is a Poisson distribution with parameternr(t)σt(c).

Theaggregation propertyof the Poisson distribution implies that any sum

of independent Poisson random variables is also a Poisson random variable.

It follows that the total number of players who take the pure action c is a

Poisson distribution with parameternτ(c), whereτ(c) = ∑t∈T r(t)σt(c).

A player of typet who plays the pure actionb∈C while all other players

are expected to play according toσ has expected utility equal to

Ut(b,σ) = ∑
x∈Z(C)

P(x|σ)ut(b,x)

where,

P(x|σ) = ∏
c∈C

e−nτ(c) (nτ(c))x(c)

x(c)!

3One may wonder how the game might be affected if the subdivision of types was

finer, thus, allowing a larger variety of different behaviors. Myerson (1998) proves that,

for Poisson games, utility-irrelevant subdivitions of types cannot substantially change the

set of Nash equilibria (Theorem 4, page 386).
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and her expected utility from playing actionθ ∈ ∆(C) is

Ut(θ,σ) = ∑
b∈C

θ(b)Ut(b,σ).

The set of best responses for a player of typet against a strategyσ is

the set of actions that maximizes her expected utility giventhat the rest of

the players, including those whose type ist, behave as prescribed byσ.

The set PBRt(σ) = {c∈C : c∈ argmaxb∈CUt(b,σ)} is the set of pure best

responses againstσ for a player of typet. The set of mixed best responses

againstσ for a player of typet is the set of actions BRt(σ) = ∆(PBRt(σ)).

DEFINITION 3.1. The strategyσ∗ is a Nash equilibrium ifσ∗t ∈BRt(σ∗)

for all t.

Standard fixed-point arguments show that every Poisson Gamehas at

least one Nash equilibrium, see Myerson (1998).

3.3. Dominated Strategies

The admissibility principle, which in normal form games stipulates that

no player must choose a dominated strategy, translates intothe current

framework imposing that no player should choose a dominatedaction.

DEFINITION 3.2. The actionθ ∈ ∆(C) is dominated for a player of type

t if there exists an alternative actionθ′ such thatUt(θ,σ) ≤ Ut(θ′,σ), for

every possible strategyσ andUt(θ,σ′) < Ut(θ′,σ′) for at least oneσ′.

Although contained in a voting framework, Myerson (2002) offers a

weaker definition of dominated action. Under such definitionthe (pure)

action c is dominated for a player of typet if there exists an alternative

(pure) actionb such thatut(c,x) ≤ ut(b,x) for every x ∈ Z(C) and with

strict inequality for at least onex′. However, we prefer the former since it is

equivalent to the definition of dominated strategy for normal form games.
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In games with population uncertainty dominated strategiesare defined

in the following way:

DEFINITION 3.3. A strategyσ is dominated if there is some typet for

which σt is a dominated action.

We can use this formal apparatus to revisit the example discussed in the

introduction. Leta stand for “going out” andb for “staying home”:

EXAMPLE 3.1. LetΓ be a Poisson game withn > 0, only one possible

type, set of available choicesC = {a,b}, and utility function:

u(a,x) =


1 if x(a) > 0

0 otherwise

u(b,x) = 0 ∀x∈ Z(C).

Since this Poisson game has only one possible type, we can identify the

set of strategies with the set of actions. There are two equilibria,a andb. We

have already argued that the equilibrium strategyb is unsatisfactory. Notice

thatb is a dominated action, even when we consider the weaker definition

given by Myerson (2002), which makesb a dominated strategy.

The example highlights that the Nash equilibrium concept isinadequate

for Poisson games since it allows for equilibrium points where players use

dominated actions (strategies).

In normal form games it is well known that a dominated strategy is

never a best response against a completely mixed strategy ofthe opponents.

This property implies, for instance, that a perfect equilibrium only selects

undominated strategies. Ideally, we would like to establish an analogy be-

tween the properties of (un)dominated strategies in normalform games and

(un)dominated actions in Poisson games. In the remainder ofthis section
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we examine which are the differences and similarities between the two set-

tings with regard to (un)dominated strategies.

The following straightforward result is true in both cases,although it has

to be stated in terms of strategies for normal form games. (Henceforth we

skip this last clarification when comparing actions of Poisson games with

strategies of normal form games.)

LEMMA 3.1. If a pure action is dominated then every mixed action that

gives positive probability to that pure action is also dominated.

This implies that a strategy that prescribes that some type plays an action

which gives positive probability to a dominated pure actionis dominated.

On the other hand, as so happens in normal form games, a dominated mixed

action does not necessarily give positive weight to a dominated pure action.

We illustrate this in the following example.

EXAMPLE 3.2. Consider a Poisson game with an expected number of

players such thatn > ln2, only one possible type, three available choices in

the setC = {a,b,c}, and utility function:

u(a,x) =


10 if x(a)≥ x(b)

0 otherwise
u(b,x) =


10 if x(a) < x(b)

0 otherwise

u(c,x) = 6 ∀x∈ Z(C).

The pure actiona is not dominated. It is the unique best response against

the strategya. The pure actionb is not dominated either. In particular,

notice that it is not dominated bya, given the assumption thatn > ln2,

whose unique purpose is to make sufficiently small the probability that the

number of players who turn up in the game is equal to zero. As for the pure

actionc, it does better thana against the strategyb and better thanb against

the strategya.
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The mixed actionθ = 1/2a+1/2b is dominated by the pure actionθ′ =

c. To see this note that given a strategy, we can assign probability p to the

eventx(a) ≥ x(b) and probability 1− p to the eventx(a) < x(b). We can

compute the expected utility of playing actionθ = 1/2a+1/2b as 1/2(1−
p)10+1/2p10= 5.

Therefore, we have proved:

LEMMA 3.2. An action that does not give positive probability to a dom-

inated pure action may be dominated.

It is also true that a pure strategy may only be dominated by a mixed

strategy. Modify the utility function of the previous example so that

u(x,c) = 4 for all x in Z(C), and raise the lower bound ofn to ln(5/2).

In this modified game, the pure actionc is dominated by neithera norb, but

it is dominated by the actionθ = 1/2a+1/2b.

In normal form games, the process of discerning which strategies are

dominated is simplified by the fact that it suffices to consider only pure

strategies of the opponents. As the next example illustrates, this is not

enough in Poisson games.

EXAMPLE 3.3. LetΓ be a Poisson game with expected number of play-

ers equal ton, only one possible type, set of choices equal toC = {a,b,c},
and utility function:

u(a,x) =


1 if x(a) = x(b) > 0

0 otherwise
u(b,x) =


1 if x(a) = x(b) > 0

0 otherwise

u(c,x) = 0 ∀x∈ Z(C).

The pure actionc does strictly worse than the pure actionsa andb if and

only if the strategyσ gives strictly positive probability to botha andb.
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Nevertheless, to compute expected payoffs and, therefore,to identify

dominated actions for one player of some type, it suffices to consider that

every other player plays the same action, regardless of her type. This is

so because from the strategyσ ∈ (∆(C))T we can define a global action

τ∈∆(C) given byτ(c) = ∑t∈T r(t)σt(c), which implies the same probability

distribution over the set of action profilesZ(C).

An important fact about undominated strategies in normal form games

is that a strategy is undominated if and only if it is a best response against

some element contained in the interior of the simplex of the set of pure

strategy combinations of the opponents. As mentioned abovethis implies

that a perfect equilibrium only selects undominated strategies. Our previ-

ous circumspection suggests that things may work differently in the present

framework. As it turns out, no result similar to this is true for Poisson

games.

If A is a finite set, let∆0(A) stand for the set of probability distributions

overA that give positive probability to every element ofA.

LEMMA 3.3. An undominated action may be a best response against no

element of∆0(CT).

PROOF. Consider a Poisson game with expected number of players

n = 1,4 only one possible type so that∆0(CT) = (∆0(C))T , set of available

choices equal toC = {a,b,c} and utility function:

4The set of examples in the paper is designed to be as clear and simple as possible.

This is the reason why we many times fix the expected number of players to ben = 1 or

n = 2. This contrasts with the fact that Poisson games fit more naturally to a situation

where the expected number of players is large. At the expenseof computational simplicity,

similar examples can be constructed that put no restrictions on the Poisson parametern.
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u(a,x) =


5e if x(a) = 1 andx(c) = 0

5e if x(c) > 0

0 otherwise

u(b,x) =


5e if x(b) = 1 andx(c) = 0

5e if x(c) > 0

0 otherwise

u(c,x) = 4 ∀x∈ Z(C).

If a player expects every other potential player to behave according to

the strategyσ = b, the actionc gives her a larger payoff than the actiona. In

turn, if she expects every other potential player to behave according to the

strategyσ = a, the actionc gives her a larger payoff than the actionb. To

see that no mixed action betweena andb dominatesc, consider thatσ = a,

then the following inequalities hold:

U(b,σ) = 0 < U(c,σ) = 4 < U(a,σ) = 5.

From here it follows that under the strategyσ = a, the actionc does strictly

better than the actionθ = λa+(1−λ)b for λ ∈ [0,4/5). If σ = b,

U(a,σ) = 0 < U(c,σ) = 4 < U(b,σ) = 5,

in which case the actionc does better than the actionθ = λa+(1−λ)b for

λ ∈ (1/5,1]. Therefore, no mixed action betweena andb does always at

least as good as the actionc for every possible strategyσ.

It remains to prove that the actionc is never a best response to any

strategyσ. Consider first the case whereσ randomizes only betweena and

b. Note that to minimize the maximum payoff obtained by playing eithera
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or b we needσ = 1/2a+1/2b. However, in such a case

4 = U(c,σ) < U(a,σ) = U(b,σ) =
5
2

√
e.

Finally, the actionc is never a best response against any completely

mixed strategy because any weight that the strategyσ puts in the choicec

increases the expected payoff from both the actionsa andb. �

The next lemma completes the previous one. In Poisson games adom-

inated action can be a best response even if every other player uses a com-

pletely mixed action.

LEMMA 3.4. A dominated action may be a best response against a com-

pletely mixed strategy.

PROOF. Consider the following example:

EXAMPLE 3.4. LetΓ be a Poisson game with expected number of play-

ers equal ton = 2, only one possible type, set of choicesC = {a,b}, and

utility function

u(a,x) = e−2 ∀x

u(b,x) =


1 if x(a) = x(b) = 1

0 otherwise.

Notice thate−2 is the probability thatx(a) = x(b) = 1 under the strategy

σ = 1/2a+1/2b. Also notice that the actionb is dominated by the action

a, the former only does as good as the latter against the strategy σ = 1/2a+

1/2b, and does strictly worse for any other strategyσ′ 6= σ. However, it is a

best response againstσ ∈ ∆0(C). �

As we mentioned above, in normal form games undominated strategies

are characterized by the existence of a probability distribution in the interior
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of the simplex of the set of pure strategy combinations of theopponents,

against which the undominated strategy is a best response. This property

gives a means of proposing equilibrium concepts that ensurethat no player

chooses a dominated strategy.

In normal form games the admissibility requirement is takencare of by

perfection. Every perfect equilibrium selects only undominated strategies

and, moreover, perfect equilibrium conditions do not admitjust every equi-

librium in undominated strategies, but only a subset of them.

Mertens (2004) links undominance and perfection through the concept

of admissibility. He defines 3 possible concepts of admissible best response:

(α) θ is an admissible best response againstσ if there exists a sequence

of completely mixedσk converging toσ such thatθ is a best re-

sponse against each (σk).

(β) θ is an admissible best response againstσ if θ is a best response

againstσ and there exist completely mixedσ′ such thatθ is a best

response againstσ′.

(γ) θ is an admissible best response againstσ if θ is a best response

againstσ and no other best responseθ′ is at least as good against

everyσ′ and better against some.

The third concept corresponds to the usual concept of admissibility, i.e.

undominance, while the first one is a characterization of perfect equilibria.

In normal form games, the first concept is strictly stronger than the second,

which in turn is strictly stronger than the third.

Lemmas 3.3 and 3.4 cast doubt upon the fact that the previous relation-

ship holds for Poisson games (apart from the fact that the second concept is

clearly weaker than the first). We are interested in finding out if there is any

connection betweenα andγ in the present setting. Once we know this, we
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will be able to propose a definition of a strong version of admissibility for

Poisson games.

This is done in Section 3.5. Before that we have to extend the perfect

equilibrium concept to Poisson games and look into its properties.

3.4. Perfection

Three equivalent definitions of perfect equilibrium have been proposed

for normal form games. One based on perturbed games (Selten,1975),

a second one based on the itemα of the previous list (also Selten, 1975)

and a last one based onε-perfect equilibria (Myerson, 1978). Below we

provide the three corresponding definitions for Poisson games and prove

their equivalence, so that we always have the most advantageous definition

available.

The leading definition that we use is the one based on perturbed games

DEFINITION 3.4. LetΓ be a Poisson Game, for everyt ∈ T, let ηt and

Σt(ηt) be defined by:

ηt ∈ RC with ηt(c) > 0 for all c∈C and ∑
c∈C

ηt(c) < 1

Σt(ηt) = {θ ∈ ∆(C) : θ(c)≥ ηt(c) for all c∈C}.

Furthermore, letη = (ηt)t . The perturbed Poisson game(Γ,η) is the Pois-

son game(n,T, r,C,u) where players of typet are restricted to play only

actions inΣt(ηt), for everyt.

In the perturbed Poisson game(Γ,η), an actionθ∈ Σt(ηt) is a best reply

againstσ ∈ Σ(η) = ∏t∈T Σt(ηt) for a player of typet if every pure actionc

that is not a best response inΓ againstσ for a player of typet is played with

minimum probability, that is to say,σt(c) = ηt(c). A strategyσ ∈ Σ(η) is

an equilibrium of the perturbed Poisson game(Γ,η) if for every typet, σt

is a best response toσ in (Γ,η). Kakutani fixed point theorem implies that:
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LEMMA 3.5. Every perturbed Poisson game has an equilibrium.

Perturbed games lead to the following definition of perfection:

DEFINITION 3.5. A strategyσ is a perfect equilibrium if it is the limit

point of a sequence{ση}η→0, whereση is an equilibrium of the perturbed

game(Γ,η), for all η.

Since every perturbed Poisson game has an equilibrium and since this

equilibrium is contained in the compact set(∆(C))T , every Poisson game

has a perfect equilibrium.5 By continuity of the utility function, every per-

fect equilibrium is also a Nash equilibrium.

As we mentioned earlier, another possible definition of perfect equi-

librium usesε-perfect equilibria. A completely mixed strategyσε is an

ε-perfect equilibrium if it satisfies:

Ut(c,σε) < Ut(d,σε), thenσε
t (c)≤ ε for all t ∈ T.

What follows is an adaption to Poisson games of some results and proofs

of the book of van Damme (1991, pp. 26–29) for perfect equilibrium in

normal form games. Although this is rather straightforward, we include it

here to maintain the paper self-contained. The next lemma lists the two

remaining concepts of perfect equilibrium and proves theirequivalence.

LEMMA 3.6. Let Γ be a Poisson game, and letσ ∈ (∆(C))T . The fol-

lowing assertions are equivalent:

(1) σ is a perfect equilibrium ofΓ,

(2) σ is a limit point of a sequence{σε}ε→0, whereσε is anε-perfect

equilibrium ofΓ, for all ε, and

5Take any sequence ofη → 0, and for eachη, an equilibriumση of (Γ,η). The se-

quence{ση}η→0 has a convergent subsequence whose limit point is a perfect equilibrium.
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(3) σ is a limit point of a sequence{σε}ε→0 of completely mixed strat-

egy combinations with the property that, for all t,σt is a best re-

sponse against each elementσε in this sequence.

PROOF. (1)→(2): Letσ be a limit point of a sequence{ση}η→0, where

ση is equilibrium ofΓ(η) for all η. Defineε(η) ∈ R++ by

ε(η) = max
t,c

ηt(c).

Thenση is anε(η)-perfect equilibrium forΓ.

(2)→(3): Let {σε}ε→0 be a sequence ofε-perfect equilibria with limit

σ. By continuity, every element of the carrier ofσ, which from now on we

denote asC (σ), is a best response againstσ(ε) for ε close enough to zero.

(3)→(1): Let {σε}ε→0 be a sequence as in (3) with limitσ. Defineηε

by:

ηε
t (c) =


σε

t (c) if c /∈C(σt)

ε otherwise
for all t,c.

Forε small enoughσε is equilibrium of the perturbed Poisson game(Γ,ηε),

which establishes (1). �

EXAMPLE 3.4 (Continued). We already saw that the actionb is domi-

nated by the actiona and that both are best responses againstσ = 1/2a+

1/2b. By Lemma 3.1, the actionθ = 1/2a+1/2b is also dominated bya.

Nevertheless it is a best response against the strategyσ. Consequently, the

dominated strategyσ is a perfect equilibrium.

The next example is more illustrative in showing how the perfect equi-

librium concept fails to select only undominated strategies in Poisson

games.
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EXAMPLE 3.5. Consider the Poisson gameΓ = {n,T, r,C,u}, with ex-

pected number of playersn = 2, set of typesT = {1,2}, with equal proba-

bility for each typer(1) = r(2) = 1/2, set of choicesC = {a,b}, and utility

function:

u1(a,x) =


1 if x(b) = 1

0 otherwise

u1(b,x) = e−1 ∀x∈ Z(C)

u2(a,x) = e−1 ∀x∈ Z(C)

u2(b,x) =


1 if x(a) = 1

0 otherwise.

The number of players of type 1 is a Poisson random variable with ex-

pected value equal to 1. The same is true for type 2. Notice also that

e−1 coincides with the probability that a Poisson random variable of pa-

rameter 1 is equal to 1. The actiona is dominated for players of type 1,

while actionb is dominated for players of type 2. We claim that the strat-

egy σ = (σ1,σ2) = (a,b) is a perfect equilibrium. Take the sequence of

ε-perfect equilibriaσε
1 = (1− ε)a+ εb, σε

2 = εa+ (1− ε)b. For everyε,

Ut(a,σε) = Ut(b,σε), and the sequence{σε}ε→0 converges toσ.

Each one of this last two examples actually proves the next proposition:

PROPOSITION3.1. A Perfect equilibrium can be dominated.

Hence, the doubts that we have raised at the end of the previous section

are justified. In Poisson games, the relationship betweenα and γ of the

possible concepts of admissible best response listed by Mertens is different

from the one that holds in normal form games.

In the last example, the undominated equilibriumσ = (σ1,σ2) = (b,a)

is also perfect. The next question that we must answer is whether or not

undominance implies perfection. Proposition 3.2 shows that in this case

things work as they do in normal form games.

PROPOSITION3.2. An undominated equilibrium may not be perfect.
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PROOF. Consider a Poisson gameΓ, with expected number of players

equal ton, two possible types with equal probabilities, i.e.T = {1,2} and

r(1) = r(2) = 1/2, set of available choicesC = {a,b,c} and utility func-

tion:6

u1(a,x) = x(a)+x(b)

u1(b,x) = |x(a)+x(b)−x(c)|

u1(c,x) = 0 ∀x∈ Z(C)

u2(a,x) = x(a)

u2(b,x) = 0 ∀x∈ Z(C)

u2(c,x) = 0 ∀x∈ Z(C).

The game has a continuum of undominated equilibria(λa+(1−λ)b,a),

for λ taking values in the closed interval[0,1]. Note, in particular, that the

actionb is not dominated for players of type 1 since it does better than the

actiona against the strategyσ = (σ1,σ2) = (c,c). However, the strategy

σ̂ = (σ̂1, σ̂2) = (a,a) is the unique perfect equilibrium of the game. �

The example used in the proof of the last proposition depictsthat there

may be unreasonable equilibria in undominated strategies.Consider the

strategyσ′ = (λa+(1−λ)b,a) with λ ∈ [0,1). It is difficult to justify that

a player of type 1 will stick to the prescribed strategy. A rational player

should not risk his equilibrium payoff, even more when thereis no possible

expected benefit from such behavior. Suppose there was an unexpected

deviation fromσ′ towardc, placing weight in the actionb would pay off to

players of type 1 if and only if such a deviation was drastic and it would

hurt otherwise.

6Notice that the utility functions that we use in this example, and in some of the follow-

ing ones are not bounded, as we assumed in the general description of Poisson games made

in Section 3.2. The main features of all the examples discussed are preserved if we put an

upper bound on utilities, that is to say, if utilities are given byũt(y,x) = min{ut(y,x),K},
whereK is a sufficiently large number with respect ton. However, we maintain the un-

bounded functions for the sake of simplicity.
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Since perfection does not imply undominance and undominance does

not imply perfection, we would like to have available an equilibrium con-

cept that implies both. At this early stage, we do not want to go very far

apart from the perfect equilibrium concept. We notice, nevertheless, that

the equilibrium discussed in Example 3.5 is also proper, fora straightfor-

ward extension of this concept to Poisson games,7 since every player has

only two possible choices.8 Strictly perfect equilibrium, does not help ei-

ther. As argued above, the strategyσ = 1/2a+1/2b is an equilibrium of the

7A completely mixed strategyσε is anε -proper equilibrium if it satisfies:

Ut(c,σε) < Ut(d,σε), thenσε
t (c)≤ εσε

t (d) for all t ∈ T.

A strategyσ is proper if it is a limit point of a sequence{σε}ε→0, whereσε is an

ε-proper equilibrium ofΓ, for all ε.
8As it should be expected, not every proper equilibrium is perfect. Consider the Pois-

son gameΓ = {n,T, r,C,u}, with expected number of playersn= 2, two possible types that

are equally probable, i.e.T = {1,2} andr(1) = r(2) = 1/2, set of choicesC = {a,b,c,d}
and utility function:

u1(x,a) = 0 ∀x

u1(x,b) = x(d)−x(c)

u1(x,c) =−1 ∀x

u1(x,d) =−2 ∀x

u2(x,a) =


1 if x(b) = 1

0 otherwise

u2(x,b) = e−1 ∀x

u2(x,c) =−1 ∀x

u2(x,d) =−2 ∀x.

The actiona is dominated for players of type 2 by actionb. The strategyσ =

(σ1,σ2) = (b,a) is perfect. To see this consider the sequence ofε-perfect equilibria:

σε
1 = 1

3εa+(1− ε)b+ 1
3εc+ 1

3εd

σε
2 = (1− ε−2ε2)a+ εb+ ε2c+ ε2d

For every type, actiond is always strictly worse than actionc, hence, in anyε-proper

equilibrium, the former is played with strictly less probability than the latter. Therefore, a

player of type 1 plays the actionb with a probability less thanε times the probability that

she gives toa. Hence, in no proper equilibrium she playsb with positive probability.
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Poisson game described in Example 3.4. Notice that this equilibrium uses

completely mixed strategies, and consequently, it is a strictly perfect equi-

librium (again, using a straightforward extension of the concept to Poisson

games).9

Examples 3.4 and 3.5 suggest that we may also demand robustness

against perturbations other than trembles. (In Example 3.4, the payoffe−2

coincides with the probability thatx(a) = x(b) = 1 under the strategyσ =

1/2a+1/2b. In example 3.5 the payoffe−1 coincides with the probability

thatx(a) = 1, also thatx(b) = 1, under the strategyσ = (σ1,σ2) = (a,b).)

Specifically, perturbations in the Poisson parametern seem like the natu-

ral candidate as the model is of population uncertainty. Letus study the

following equilibrium concept.

DEFINITION 3.6. The strategyσ is a perfect∗ equilibrium of the Pois-

son gameΓ = (n,T, r,C,u) if there exists aξ > 0 such thatσ is a perfect

equilibrium of the Poisson gamẽΓ = (ñ,T, r,C,u) for all ñ∈ (n−ξ,n+ξ).

A perfect∗ equilibrium is a perfect equilibrium, not only of the original

game, but also of every game that is obtained by small perturbations in

the expected number of players. Notice that we cannot rely exclusively on

perturbations in the expected numbers of players. One can easily construct

9In addition strictly perfect equilibrium does not satisfy existence. To see this, con-

sider a Poisson game with expected number of playersn > 0, only one possible type, four

different choicesC = {a,b,c,d} and utility function:

u(a,x) = 1+x(c)

u(b,x) = 1+x(d)

u(c,x) = 0 ∀x

u(d,x) = 0 ∀x.

Notice that there is no equilibrium that is “robust” to everypossible tremble.
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examples that do not pose any restriction in the expected number of players

with unreasonable Nash equilibria. See for instance Example 3.1.

Let us analyze why the perfect∗ equilibrium concept is not adequate by

means of the following example.

EXAMPLE 3.6. Consider the family of Poisson games with expected

number of players equal ton > 4
7,10 with only one type, set of choicesC =

{a,b}, and utility function:

u(a,x) = x(b)

u(b,x) =


1 if x(a) = x(b) = 0

2x(a) otherwise.

Every game has a unique equilibrium and it depends onn.11 Conse-

quently, it does not have a perfect∗ equilibrium.

This example prompts us to discard the previous equilibriumconcept

and reveals that demanding stability against variations inthe Poisson pa-

rametern forces to tolerate, at least, smooth variations of the equilibrium

strategy if we want to retain existence. Therefore, ifσ is a perfect equilib-

rium of Γ, we may want any game that only differs fromΓ in that it has a

slightly different number of expected players to have a perfect equilibrium

that is not far away fromσ.

As the next example shows, this relaxation would bring back dominated

equilibria.

EXAMPLE 3.7. LetΓ be a Poisson game with expected number of play-

ers equal ton = 6, two different typesT = {1,2} with r(1) = 2/3 and

10It is enough thatn is such thatln n >−n.

11The unique equilibrium isσ = αa+(1−α)b, whereα =
(
1− 1

nen

)
/
(
3− 2

en

)
.
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r(2) = 1/3, set of available choicesC = {a,b,c,d}, and utility function:

u1(h,x) = 0 ∀x∈ Z(C),∀h∈C

u2(a,x) =


1 if x(c) = x(d) = 1

0 otherwise

u2(b,x) = e−2 ∀x∈ Z(C)

u2(h,x) =−1 ∀x∈ Z(C),h = c,d.

Notice first that the number of players with type 1 is a Poissonran-

dom variable of parameter 4. The strategyσ = (σ1,σ2) = (1/4a+1/4b+

1/4c+ 1/4d,a) implies that the eventx(c) = x(d) = 1 occurs with proba-

bility e−2. The strategyσ is a perfect equilibrium where players of type 2

play dominated strategies. Takeg to be a small number. The Poisson game

Γg = {n+ g,T, r,C,u} has a dominated perfect equilibrium very close to

σ where players of type 1 play action(1/4+ κ,1/4+ κ,1/4−κ,1/4−κ),

for κ = g/(24+ 4g), and players of type 2 play actiona. On the other

hand, the Poisson gameΓg = {n− g,T, r,C,u} also has a dominated per-

fect equilibrium very close toσ, where players of type 1 play action

(1/4− κ′,1/4− κ′,1/4+ κ′,1/4+ κ′), for κ′ = g/(24− 4g), and players

of type 2 play actiona.

So far we have provided a number of results and examples that show

that some equilibrium concepts proposed for normal form games do not

retain either admissibility or existence when extended to Poisson games. In

the next section we propose an equilibrium concept that shows that, in this

setting, these properties are not incompatible.
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3.5. Undominated Perfect Equilibria

The same arguments that in normal form games compel to dispose of

the undominated equilibria that are not perfect are also well founded here.

Perfection is a weak requirement, it asks for stability against one single

perturbation, not against every possible perturbation. Asa result, equilibria

that are not perfect are very unstable.

The main difference in the current setting is that there are perfect equi-

libria that are dominated. We want to put forward a strong version of admis-

sibility for games with population uncertainty. Such a definition comprises

itemsα andγ from the list of possible concepts of admissibility provided

by Mertens (2004) and listed at the end of Section 3.3.

DEFINITION 3.7. θ is an admissible best response againstσ if it is un-

dominated and there exists a sequence of completely mixedσk converging

to σ such thatθ is a best response against each(σk).

Accordingly, we may say that the strategyσ is admissible if for every

t, σt is an admissible best response againstσ. Therefore, ifσ is an admis-

sible strategy it is a perfect equilibrium, and we may talk about the set of

admissible equilibria.

We want to propose an equilibrium concept that satisfies admissibility

and that generates a nonempty set of equilibria for any game.Such a con-

cept is introduced in Definition 3.8, the admissibility property will come

directly from the definition and the existence result is offered in Proposi-

tion 3.4. The following Proposition shows that every Poisson game has an

equilibrium in undominated strategies. It could have been proposed as a

corollary of our main existence result. However, we prefer to invert the

order of presentation so that the argument of the main proof can be more

easily followed.
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We proceed to prove that every Poisson game has an equilibrium in un-

dominated strategies. Lemma 3.2 implies that the set of undominated strate-

gies is not convex and, hence, we could not show existence of undominated

equilibria using a standard fixed point argument in this set.A constructive

proof shows that:

PROPOSITION3.3. Every Poisson game has a Nash equilibrium in un-

dominated strategies.

PROOF. Consider a Poisson gameΓ, with set of choicesC and utility

vectoru. Recall that ifθ is an action,C (θ) denotes the carrier ofθ. Notice

that if C (θ)⊆ C (θ′) then there exist aλ ∈ (0,1) and an actionθ′′ such that

θ′ = λθ + (1− λ)θ′′. If θ is dominated for players of typet, there exists

a θ̃ that dominates it, and âσ such thatUt(θ, σ̂) < Ut(θ̃, σ̂). Moreover, if

C (θ)⊆ C (θ′) thenθ′ = λθ+(1−λ)θ′′ is dominated bỹθ′ = λθ̃+(1−λ)θ′′

andUt(θ′, σ̂) < Ut(θ̃′, σ̂).

This implies that we can talk about dominated carriers and that, given

a dominated carrierC there exists a strategŷσ such that any action with

carrier that containsC is dominated by an action that is a strictly better

response tôσ.

Consider the set of all possible carriers, and callDt the finite set of all

dominated carriers for players of typet. For each minimal element ofDt ,

saydt , let σdt be a strategy such that any action with carrier that containsdt

is dominated by an action that is a strictly better response to such a strategy.

Let Mt be the set of minimal elements ofDt .

For λ > 0, define a new Poisson gameΓλ, with utility vector given by

uλ
t (c,x) = ut(c,x)+λ ∑

dt∈Mt

Ut(c,σdt )
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which implies expected utilities,

Uλ
t (θt ,σ) = Ut(θt ,σ)+λ ∑

dt∈Mt

Ut(θt ,σdt ).

This new Poisson game has an equilibrium. Moreover, no dominated

action of the original game is used with positive probability in that equilib-

rium. Take a sequence ofλ → 0. There exists a subsequence of equilibria

{σλ}λ that converges to somēσ. By continuity of the utility function,σ̄ is

an equilibrium in undominated strategies of the original game. �

In Section 3.4 we have defined perturbed Poisson games. In a perturbed

game(Γ,η) an actionθ ∈ Σt(ηt) is dominated for typet if there exists

an alternative actionθ′ ∈ Σt(ηt) such thatUt(θ,σ) ≤ Ut(θ′,σ), for every

possible strategyσ ∈ Σ(η) andUt(θ,σ′) < Ut(θ′,σ′) for at least oneσ′ ∈
Σ(η).

We could strenght the definition of perfection (Definition 3.5), asking

the equilibria in the sequence to be undominated:

DEFINITION 3.8. A strategyσ is an undominated perfect equilibrium

of a Poisson gameΓ if it is the limit point of a sequence{ση}η→0 whereση

is an undominated equilibrium of(Γ,η) for all η.

Every perturbed Poisson game has an undominated equilibrium.12

Moreover, forη close to zero the sets of dominated carriers inΓ and in

12To see this, a modification of the proof of Proposition 3.3 would do, where the

carrier of an action is defined as the set of pure actions that receive strictly more probability

than the minimum weight imposed byη.
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(Γ,η) coincide for every possible type. Hence, every undominatedper-

fect equilibrium is perfect and undominated (i.e., it satisfies our strong ver-

sion of admissibility). Since every pertubed Poisson game has an undomi-

nated equilibrium and since this equilibrium is contained in the compact set

(∆(C))T it follows:13

PROPOSITION 3.4. Every Poisson game has an undominated perfect

equilibrium.

The definition appears to be stronger than requiring separately perfec-

tion and undominance because it poses restrictions in the sequence of equi-

libria of the associated perturbed Poisson games. The next Proposition

shows that both definitions are equivalent. This fact, in view of Lemma

3.6, simplifies the analysis of undominated perfect equilibrium in Poisson

games.

PROPOSITION3.5. The set of undominated perfect equilibria coincides

with the intersection of the set of undominated equilibria with the set of

perfect equilibria.

PROOF. Let σ belong both to the set of perfect equilibria and to the set

of undominated equilibria ofΓ. Sinceσ is perfect it is the limit point of

a sequence{ση}η→0 whereση is an equilibrium of(Γ,η). Becauseσ is

undominated, its carrier is not a dominated one. Moreover, for η close to

zero the sets of dominated carriers inΓ and in (Γ,η) coincide for every

possible type. For eachη, let η′ be defined by:

η′t(c) =


ση

t (c) if σt(c) = 0

ηt(c) otherwise
for all c, t.

13See footnote 5.
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Then ση′ = ση is an undominated equilibrium of(Γ,η′). Moreover the

sequence ofη′ converges to zero. Hence,σ is the limit point of the sequence

{ση′}η′→0 of undominated equilibria for(Γ,η′). �





CHAPTER 4

Generic Determinacy of Nash Equilibrium in Network

Formation Games

4.1. Introduction

A basic tool in applying noncooperative game theory is to have a finite

set of probability distributions on outcomes derived from equilibria.1 When

utilities are defined over the relevant outcome space, it is well know that this

is generically the case when we can assign a different outcome to each pure

strategy profile (Harsanyi, 1973), or to each ending node of an extensive

form game (Kreps and Wilson, 1982).2

A game formendows players with finite strategy sets and specifies

which is the outcome that arises from each pure strategy profile.3 It could

identify, for instance, two ending nodes in an extensive game form with the

same outcome. Govindan and McLennan (2001) give an example of a game

form such that, in an open set of utilities over outcomes, produces infinitely

many equilibrium distributions on outcomes. In view of sucha negative re-

sult, we have to turn to specific classes of games to seek for positive results

regarding the generic determinacy of the Nash equilibrium concept. For

1By outcomeswe mean the set of physical or economic outcomes of the game (i.e. the

set of different economic alternatives that can be found after the game is played) and not

the set of probability distribution induced by equilibria.We will refer to the latter concept

as the set of equilibrium distributions.
2Harsanyi (1973) actually proves that the set of Nash equilibria is finite for a generic

assignment of payoffs to pure strategy profiles.
3More generally, it specifies a probability distribution on the set of outcomes. Game

forms are formally defined in Section 4.2.2

57
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some examples, see Park (1997) for sender-receiver games, and De Sinop-

oli (2001), De Sinopoli and Iannantuoni (2005) for voting games.

This paper studies the generic determinacy of the Nash equilibrium con-

cept when individual payoffs depend on the network connecting them. The

network literature has been fruitful to describe social andeconomic inter-

action. See for instance Jackson and Wolinsky (1996), Jackson and Watts

(2002), Kranton and Minehart (2001), or Calvo-Armengol (2004). It is,

therefore, important to have theories about how such networks form. Dif-

ferent network formation procedures have been proposed. For a compre-

hensive survey of those theories the reader is referred to Jackson (2003).

The current paper is concerned with a noncooperative approach to net-

work formation. We focus on the network formation game proposed by

Myerson (1991). It can be described as follows: each player simultaneously

proposes a list of players with whom she wants to form a link, and a direct

link between two players is formed if and only if both playersagree on that.

This game is simple and intuitive, however, since it takes two players to

form a link, a coordination problem arises which makes the game exhibit

multiplicity of equilibria. Nevertheless, we can prove that even though a

network formation game may have a large number of equilibria, every prob-

ability distribution on networks induced by equilibria is generically isolated.

The network formation game is formally presented in the nextsection.

Section 4.3 discusses an example. Section 4.4 contains the main result and

its proof. To conclude, Section 4.5 discusses some extensions of the result

to other network formation games as well as a related result for the exten-

sive form game of network formation introduced by Aumann andMyerson

(1989).
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4.2. Preliminaries

Given a finite setA, denote asP (A) the power set ofA, and as∆(A) the

set of probability distributions onA.

4.2.1. Networks. Given a set of playersN, anetwork gis a collection

of direct links. A direct link in the networkg between two different players

i and j is denoted byi j ∈ g. For the time being we focus on undirected

networks. In an undirected networki j ∈ g is equivalent toji ∈ g.4 The set

of i’s direct links ing is Li(g) = { jk ∈ g : j = i or k = i}.
The complete networkgN is such thatLi(gN) = {i j : j 6= i}, for all i ∈

N. In gN player i is directly linked to every other player. The set of all

undirected networks onN is G = P (gN).

Each playeri can be directly linked withN−1 other players. The num-

ber of links in the complete networkgN is N(N−1)/2, dividing by 2 not to

count links twice. SinceG is the power set ofgN, it has 2N(N−1)/2 elements.

4.2.2. Game forms.A game formis given by a set of playersN =

{1, . . . ,n}, nonempty finite sets of pure strategiesS1, . . . ,Sn, a finite set of

outcomesΩ, a functionθ : S→∆(Ω), and utilities defined over the outcome

spaceΩ, that is,u1, . . . ,un : Ω → R. Once we fixN, S1, . . . ,Sn, Ω, andθ, a

game form is given by a point in
(
RΩ)N

.

Utility functions u1, . . . ,un over Ω induce utility functionsv1, . . . ,vn

over S according tou1 ◦ θ, . . . ,un ◦ θ. Hence, every game form has asso-

ciated its finite normal form game.

4.2.3. The Network Formation Game.The following network for-

mation game is due to Myerson (1991). The set of players isN. All players

4In a directed network, ifi and j are two different agents, the linki j is different from

the link ji . This two links can be regarded as different if, for instance, they explain which

is the direction of information, or which is the player who issponsoring the link.
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in N simultaneously announce the set of direct links they wish toform. For-

mally, the set of playeri’s pure strategies isSi = P (N \ {i}). Therefore, a

strategysi ∈ Si is a subset ofN \{i} and is interpreted as the set of players

other thani with whom playeri wishes to form a link. Mutual consent is

needed to create a direct link, i.e., ifs is played,i j is created if and only if

j ∈ si andi ∈ sj .

We can adapt the previous general description of game forms to the

present context in order to specify the game form that structures the net-

work formation game. Let the set of players and the collection of pure

strategy sets be as above. The set of outcomes is the set of undirected net-

works, i.e.,Ω = G . The functionθ is a deterministic outcome function,

formally, θ : S→ G . Given a pure strategy profile,θ specifies which net-

work is formed respecting the rule of mutual consent to create direct links.

Utilities are functionsu1, . . . ,un : G →R. Once the set of playersN is given,

the pure strategy sets are automatically created and the network formation

game is defined by a point in
(
RG
)N

.

If players other thani play according tos−i ∈ S−i,5 the utility to player

i from playing strategysi is equal tovi(si ,s−i) = ui(θ(si,s−i)).

Let Σi = ∆(Si) be the set of mixed strategies of playeri. Furthermore, let

Σ = Σ1×·· ·×Σn. While a pure strategy profiles results in the networkθ(s)

with certainty, a mixed strategy profileσ generates a probability distribution

onG , where the probability thatg∈ G forms equals

PPP(g | σ) = ∑
s∈θ−1(g)

(
∏
i∈N

σi(si)

)
.

5S−i = ∏ j 6=i Sj .
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If players other thani play according toσ−i in Σ−i,6 the utility to

player i from playing the mixed strategyσi is equal toVi(σi,σ−i) =

∑g∈G PPP(g | (σi,σ−i))ui(g).

DEFINITION 4.1 (Nash Equilibrium). The strategy profileσ ∈ Σ is a

Nash equilibrium of the network formation game ifVi(σi ,σ−i)≥Vi(σ′i ,σ−i)

for all σ′i in Σi , and for alli in N.

4.2.4. Generic Finiteness of Equilibrium Distributions. Let us first

give the definition of a generic set.

DEFINITION 4.2. For anym≥ 0, we say thatG⊂ Rm is a generic set,

or generic, ifRm\ int(G) has Lebesgue measure 0.

Govindan and McLennan (2001) give an example of a game form that,

in an open set of utilities over outcomes, produces infinitely many equilib-

rium distributions on the outcome space.7 Nevertheless, they also provide

a number of positive results. Consider the general specification of game

forms given in Section 4.2.2. The following theorem is a slight modifica-

tion of Theorem 5.3 in Govindan and McLennan (2001).

THEOREM 4.1. If θ is such that at all completely mixed strategy tuples

and for each agent i the set of distributions onΩ that agent i can induce

by changing her strategy is(|Si|−1)-dimensional, then for generic utilities

there are finitely many completely mixed equilibria.

The proof of Theorem 4.1 is offered in the appendix.

6Σ−i = ∏ j 6=i Σ j .
7Their counterexample needs at least three players. In a recent paper, Kukushkin et al.

(2007) provide a counterexample for the two player case.
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4.3. An Example

Consider a 3 person network formation game. The corresponding game

form is depicted in Figure 4.1. Player 1 is the row player, player 2 the

column player, and player 3 the matrix player. The symbolg0 denotes the

empty network,gN denotes the complete network,gi j denotes the network

that only contains linki j , and gi denotes the network where playeri is

connected to every other player and such that there are no further links.8

{ /0} {1} {3} {1,3} { /0} {1} {3} {1,3}
{ /0} g0 g0 g0 g0 g0 g0 g0 g0

{2} g0 g12 g0 g12 g0 g12 g0 g12

{3} g0 g0 g0 g0 g13 g13 g13 g13

{2,3} g0 g12 g0 g12 g13 g1 g13 g1

{ /0} {1}

{ /0} g0 g0 g23 g23 g0 g0 g23 g23

{2} g0 g12 g23 g2 g0 g12 g23 g2

{3} g0 g0 g23 g23 g13 g13 g3 g3

{2,3} g0 g12 g23 g2 g13 g1 g3 gN

{2} {1,2}

FIGURE 4.1. The game form of a network formation game

with three players.

Suppose that the utility function of playeri = 1,2 is ui(g) = |Li(g)|,
i.e. playeri = 1,2 derives an utility from networkg equal to the number of

direct links that she maintains ing. Suppose also that player 3 has the same

utility as players 1 and 2, except that she derives an utilityequal to 2 from

8This network architecture is often referred to as astar, see Bala and Goyal (2000)
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networkg2. Speciffically,

ui(g0) = 0 for all i,

ui(g jk) =


1 if i = k or i = j

0 otherwise,

ui(g j) =


2 if i = j

2 if i = 3 and j = 2

1 otherwise,

gi(gN) = 2 for all i.

Figure 4.2 displays the set of Nash equilibria of this game. The subset

of Nash equilibria of line (i) supports the empty network, the subsets of line

(ii) support, respectively, networksg12, g13 andg23, the subsets of line (iii)

support, respectively, networksg1, g2 andg3.

NE =
{

({ /0},{ /0},{ /0})
}⋃(i)

{
({2},{1},{ /0})

}⋃{
({3},{ /0},{1})

}⋃{
({ /0},{3},{2})

}⋃(ii)

{
({2,3},{1},{1})

}⋃{
({2},{1,3},{2})

}⋃{
({3},{3},{1,2})

}⋃(iii)

{
({2,3},{1,3},λ{2}+(1−λ){1,2}) : λ ∈ [0,1]

}
.

(iv)

FIGURE 4.2. Set of Nash equilibria of the 3 person network

formation game discussed in Section 4.3.
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The subset of equilibria of line (iv) induces a continuum of probability

distribution over the set of networks that give probabilityλ to networkg2and

probability(1−λ) to the complete networkgN for λ ∈ [0,1].

Now perturb independently the utility that each player obtains from each

network. The subsets of strategy profiles of lines (i) through (iii) are still

equilibrium strategy profiles. In addition, there are two possibilities:

• Player 3 ranks the complete networkgN over networkg2. In this

case the set of Nash equilibria is composed of lines (i) through (iii)

united to {
({2,3},{1,3},{1,2})

}
,

which supports the complete network.

• Player 3 ranks networkg2 over the complet nerworkgN. Then, no

Nash equilibrium gives positive probability to the complete net-

work. The set of Nash equilibria is composed of lines (i) through

(iii) united to{
(λ{2}+(1−λ){2,3},{1,3},{2}) : λ ∈ [0,1)

}
,

which supports networkg2.

In either case, there is a finite number of probability distributions on

networks induced by equilibria.

4.4. The Result

PROPOSITION4.1. For generic u∈ (RG )N the set of probability distri-

butions on networks induced by Nash equilibria of the network formation

game is finite.

PROOF. Given a network formation game, there are a finite number of

different normal form games obtained by assigning to each playeri an ele-

ment ofP (Si) as her strategy set.
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Let T = T1× ·· · × Tn, whereTi ⊆ Si. The normal form gameΓT is

defined by the set of playersN, the collection of strategy sets{Ti}i∈N, and

the collection of utility functions{vT
i }i∈N, wherevT

i is the restriction ofvi

to T. Furthermore, letGT = θ(T).

It is enough to prove that for a generic assignment of payoffsto net-

works, completely mixed Nash equilibria of each of those games induce a

finite set of probability distributions onG . Notice that every equilibrium of

any game can be obtained as a completely mixed equilibrium ofthe modi-

fied game obtained by eliminating unused strategies.

Consider the gameΓT . If there exists a strategyti ∈ Ti with j ∈ ti and

there does not exist a strategyt j ∈ Tj such thati ∈ t j , replace strategyti with

t ′i = ti \{ j} in caset ′i is not already contained inTi, otherwise just eliminate

strategyti from Ti. Notice that by making this change, the set of probability

distributions onGT that can be obtained through mixed strategies remains

unaltered. Most importantly, for every completely mixed Nash equilibrium

of ΓT , there exists a completely mixed Nash equilibrium of the modified

game that induces the same probability distribution onGT .

Repeat the same procedure witht ′i : if there exists ak∈ t ′i and there does

not exist a strategytk in Tk with i ∈ tk substitutet ′i for t ′′i = t ′i \ {k} in case

t ′′i is not already contained inTk. Continue eliminating and replacing pure

strategies in the same vein, for everyti in Ti and for everyi in N, until every

link proposal that any player has in some on her strategies isformed with

positive probability under a completely mixed strategy profile. Let T̂ denote

the resulting set of pure strategy profiles, and notice thatG T̂ = GT .

At every completely mixed strategy profileσ of ΓT̂ , every network in

GT receives positive probability. At the strategy profile(ti ,σ−i), only those

networksg∈ GT such that{i j : j ∈ ti} ⊂ g receive positive probability, and
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since for every playeri each of her pure strategies is different, we have that:

rank
∂PPP
∂σi

(· | σ) = |T̂i|−1.

Therefore, at every completely mixed strategy profile ofΓT̂ the set prob-

ability distributions onGT that playeri can induce by varying her strategy is

(|T̂i|−1)-dimensional. We can apply Theorem 4.1 to the game form given

by T̂ andθT̂ , the restriction ofθ to T̂. This implies that for generic utilities

overGT there are finitely many completely mixed equilibria ofΓT̂ , which

in turn implies that the set of probability distributions onGT induced by

completely mixed Nash equilibria ofΓT is generically finite.

Let T ⊆ S, we can write
(
RG
)N =

(
RGT

)N ×(RG \GT

)N
. Let K be a

closed set of zero measure in
(
RGT

)N
, i.e., the closure of the set of payoffs

overGT such that the set of completely mixed Nash equilibria ofΓT induces

infinitely many probability distributions onGT , then for any closed setH in(
RG \GT

)N
the closed setK×H has zero measure in

(
RG
)N

. The same is

true for any otherT ′ ⊆ S. This concludes the proof. �

4.5. Remarks

4.5.1. Absence of Mutual Consent.Models of network formation can

be found in the literature that do not require common agreement between

the parties to create a direct link, see for instance Bala and Goyal (2000).

Thus, suppose that mutual consent is not needed to create a direct link. Let

N be the set of players, letS1, . . . ,Sn be the collection of pure strategy sets,

whereSi = P (N\{i}) for all i in N, and letG be the outcome space. In the

model analyzed in Section 4.4, a link may not be created even if a player

wants it to be created. In the current model, a link may be created even if a

player does not want it to be created.

In this modified network formation game, generically, the set of equi-

librium distributions onG is also finite. Notice that we can reinterpret pure
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strategiessi ∈ Si as the set of players other thati with whom playeri does

not want to form a link. The linki j is not created only if playeri does not

want to be linked with playerj and playerj does not want to be linked with

player i. Defineθ′ : S→ G according toθ′(s) = gN \ θ(s), whereθ is the

one defined in Section 4.2.3. Now, apply the proof of Section 4.4.

4.5.2. Directed Networks.Sometimes linksi j and ji cannot be treated

as equivalent for reasons coming from the nature of the phenomena being

modeled. Directed networks respond to this necessity, for an example see

again Bala and Goyal (2000). Denote the set of directed networks asG d.

Suppose first that link formation does not need mutual consent. The strategy

set of playeri is Si = P (N\{i}). A strategysi ∈ Si is interpreted as the set

of players other thani with whom playeri wants to start an arrowhead link

pointing at herself, i.e. the set of links that playeri wishes to receive.9

Notice that each pure strategy profile leads to a different element in

G d: each player has 2N−1 pure strategies, and there are 2N(N−1) undirected

networks. Therefore, we are in the case of normal form payoffs where the

generic finiteness of equilibria is guaranteed.

Suppose now that if a playeri wants to receive a link from playerj,

player j needs to declare that she wants to send a link to playeri for it

to be created. To accommodate for this case, let the strategyset of player

i be Si = Sr
i ×Ss

i = P (N \ {i})× P (N \ {i}). A strategysi ∈ Si has two

components,sr
i andss

i . We interpretsr
i as the set of players other thani

from whom playeri wishes to receive a link, andss
i as the set of players

other thani to whom playeri wishes to send a link. Suppose that the pure

strategy profiles is played. The linki j is created only ifj ∈ sr
i andi ∈ ss

j .

9We can assume, for instance, that the arrowhead tells which is the direction of the

flow of information.
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A similar proof to the one used in Section 4.4 establishes thegeneric

determinacy of the Nash equilibrium concept under this setting. The key

step that we must change is the following: LetT = T1× ·· · × Tn where

Ti ⊂ Si for all i. Consider the normal form gameΓT . If there exists a

strategyti ∈ Ti such thatj ∈ tr
i (such thatj ∈ ts

i ) and there does not exist

a strategyt j ∈ Tj such thati ∈ ts
j (such thati ∈ tr

j ), replace strategyti with

t ′i = (tr
i \{ j}, ts

i ) (with t ′i = (tr
i , t

s
i \{ j})). Finally, repeat the same procedure

for everyti , t ′i , . . . and for everyi until the hypothesis of Theorem 4.1 holds.

4.5.3. A Extensive Form Game of Network Formation.We have fo-

cused on normal form games of network formation. However, there ex-

ists a prominent extensive game of network formation due to Aumann and

Myerson (1989). They proposed the first explicit formalization of network

formation as a game. It relies on an exogenously given order over possible

links. Let(i1 j1, . . . , im jm) be such a ranking.

The game hasmstages. In the first stage playersi1 and j1 play a simul-

taneous move game to decide whether or not they form linki1 j1. Each of

them chooses an action from the set{yes,not}. The link i1 j1 is established

if and only if both players chooseyes. Once the decision on linki1 j1 is

taken, every player gets informed about it, and the play of the game moves

to the decision about linki2 j2. The game evolves in the same fashion, and

finishes with the stage where playersim and jm decide upon linkim jm.10

The resulting network is formed by the set linksik jk such that both play-

ersik and jk choseyesat stagek. Although in the argument we work with

10If players get informed about which has been the terminal position in the simulta-

neous move game of every stage, the same argument offered below also goes through.

Several features can be added to this basic model. For instance, two players can be

called to reconsider their decision in case some set of linksis formed, or two player may

not be allowed to decide upon the link connecting them. At this respect, if players are

forming an undirected network,m can be different from 2
N(N−1)

2 .
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undirected networks, the game can be applied to the formation of directed

networks.

The argument that follows is a modification of the one used by Govindan

and McLennan (2001) to prove that, for a given assignment of outcomes to

ending nodes in an extensive game of perfect information, and for utilities

such that no player is indifferent between two different outcomes, every

Nash equilibrium induces a degenerate probability distribution in the set of

outcomes. Such an argument is, in turn, a generalization of the one used by

Kuhn (1953) to prove his “backwards induction” theorem thatcharacterizes

subgame perfect equilibria for games of perfect information.

Consider the generic set of utilities

UG =
{

u∈
(
RG
)N

: ui(g1) 6= ui(g2) for all i ∈ N and allg1,g2 ∈ G
}

.

The claim is that if the utility vector isu∈UG, every Nash equilibrium

induces a probability distribution onG that assigns probability one to some

g∈ G .

Let Si denote the set of pure strategies of playeri, where now a pure

strategy is a function that assigns one element of{yes,not} to each infor-

mation set of playeri. As usual,Σi = ∆(Si) andΣ = Σ1×·· ·×Σn.

Let σ ∈ Σ be a Nash equilibrium foru∈UG. The appropriate modifica-

tion of σ, sayσ̄, is a completely mixed Nash equilibrium of the extensive

form game obtained by eliminating all information sets and branches that

occur with zero probability in caseσ is played. In this reduced game, ev-

ery information set has a well defined conditional probability over networks

and, obviously,̄σ induces the same probability distribution onG asσ.

If there is a stage where a player randomizes betweenyesandnot and

the other player choosesyeswith positive probability, there must be a last

such stage. But at this last stage, sayih jh, such an agent, sayih, cannot be
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optimizing, since she is not indifferent betweeng\{ih jh} andg∪{ih jh} for

anyg∈ G .

We can adapt the previous argument to the case where mutual consent is

not needed to create a link. Let(i1 j1, . . . , im jm) be an oder of links. At stage

k, playerik decides whether or not to create linkik jk. Her decision becomes

publicly known. It is, consequently, a game of perfect information and the

argument given by Govindan and McLennan (2001) covers this case.

4.6. Appendix: Proof of Theorem 4.1

The current proof is based on the one offered by Govindan and McLen-

nan (2001). It uses some concepts and results of semi-algebraic theory that

we will now revise. Expositions of semi-algebraic geometryin the eco-

nomic literature occur in Blume and Zame (1994), Schanuel et al. (1991)

and Govindan and McLennan (2001). Proofs of major results are omitted.

DEFINITION 4.3. A setA is semi-algebraic if it is the finite union of

sets of the form

{x∈ Rm : P(x) = 0 andQ1(x) > 0 and. . . andQk(x) > 0}

whereP andQ1, . . . ,Qk are polynomials inx1, . . . ,xm with real coefficients.

A function (or correspondence)g : A→ B with semi-algebraic domainA⊂
Rn and rangeB⊂Rm is semi-algebraic if its graph is a semi-algebraic subset

of Rn+m.

Each semi-algebraic set is the finite union of connected components.

Each component is asemi-algebraic manifoldof a given dimension. Ad-

dimensional semi-algebraic manifoldin Rm is a semi-algebraic setM ⊂Rm

such that for eachp ∈ M there exist polynomialsP1, . . . ,Pm−d andU , a
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neighborhood ofp, such thatDP1(p), . . . ,DPm−d(p) are linearly indepen-

dent and

M∩U = {q∈U : P1(q) = . . . = Pm−d(q) = 0} .

THEOREM4.2 (Stratification, Whitney (1957)).If A is a semi-algebraic

set, then A is the union of a finite number of disjoint, connected semi-

algebraic manifolds Aj with Aj ⊂ cl(Ak) whenever Aj ∩cl(Ak) 6= /0.

Henceforth, the superscript of a set indexes components of adecompo-

sition as per Theorem 4.2, while a subscript keeps indexing strategy sets by

players. Theorem 4.2 has important consequences. Among those, we will

use the following intuitive ones: LetA⊂Rm andB⊂Rn be semi-algebraic

sets, then

• the dimension ofA, dimA, is equal to the largest dimension of any

element of any stratification,

• if A is 0-dimensional thenA is finite,

• A is generic if and only if dim(Rm\A) < m,

• dim(A×B) = dimA+dimB.

We need one additional result. While Theorem 4.2 decomposes semi-

algebraic sets, the following one decomposes semi-algebraic functions.

THEOREM 4.3 (Generic Local Triviality, Hardt (1980)).Let A and B

be semi algebraic sets, and let g: A→ B be a continuous semi-algebraic

function. Then there is a relatively closed semi-algebraicset B′ ⊂ B with

dimB′ < dimB such that each component Bj of B\B′ has the following

property: there is a semi algebraic set Fj and a semi-algebraic homeomor-

phism h: B j ×F j → A j , where Aj = g−1(B j), with g(h(b, f )) = b for all

(b, f ) ∈ B j ×F j .

We can now proceed to prove Theorem 4.1. Recall that at every

completely mixed strategyσ ∈ Σ, the set of probability distributions on
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outcomes that playeri can induce by varying her strategy is(|Si|−1)-

dimensional.

PROOF OFTHEOREM 4.1. Let

A = {(σ,u) : σ is a completely mixed equilibrium foru} .

Let πΣ be the projection ofA ontoΣ. Apply Theorem 4.3 toπΣ and choose

Σ j such that dimA j = dimA.11 We have that dimA = dimΣ j + dimF j ≤
dimΣ+dimF j . Let σ belong toΣ j , then dimπ−1

Σ (σ) = dim{σ}+dimF j =

dimF j . Now consider a givenu, the set

{ũi ∈Ui : σ is a completely mixed equilibrium for(ũi ,u−i)}

is (dimUi − (|Si| − 1))-dimensional. Consequently, the dimension of

π−1
Σ (σ) andF j is equal to dimU−dimΣ, which implies that dimA≤ dimU .

Now apply Theorem 4.3 toπU , the projection ofA ontoU . ChooseU j

to be of the same dimension asU . Therefore, dimA j = dimU +dimπ−1
U (u).

This implies that dimπ−1
U (u)≤ dimA−dimU ≤ 0, i.e. there is a finite set of

completely mixed equilibria wheneveru belongs to a full dimensionalU j .

This concludes the proof since lower dimensionalU j ’s are nongeneric. �

11Such aΣ j can be found because we can keep applying Theorem 4.3 toπΣ :

π−1
Σ (Σ′)→ Σ′, whereΣ′ plays the role ofB′.
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