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CHAPTER 1

Introduction

The main text of this thesis is divided into three chapterbe Three
papers are contributions to the literature on equilibrigfimements in non-
cooperative game theory. Each chapter can be read indepgndéthe
rest.

Chapter 2 characterizes the class of finite extensive formsticch the
sets of Subgame Perfect and Sequential equilibrium stragegiles coin-
cide for any possible payoff function. In addition, it ideiets the class of
finite extensive forms for which the outcomes induced by d¢hes solu-
tion concepts coincide, and study the implications of ogults for perfect
Bayesian equilibrium.

Chapter 3 shows that in games with population uncertaintyegoenfect
equilibria are in dominated strategies. It is proved thargwoisson game
has at least one perfect equilibrium in undominated stieseg

Chapter 4 shows that the set of probability distributionsr aeworks
induced by Nash equilibria of the network formation gameppsed by
Myerson (1991) is finite for a generic assignment of payaifaetworks.
The same result can be extended to several variations oftne fpund in

the literature.






CHAPTER 2

Conditions for Equivalence Between Sequentiality and

Subgame Perfectioh

2.1. Introduction

Analysis of backward induction in finite extensive form gapeovides
useful insights for a wide range of economic problems. Thachalea
of backward induction is that each player uses a best repthdoother
players’ strategies, not only at the initial node of the tieat also at any
other information set.

To capture this type of rationality Selten (1965) defined ghbgame
perfect equilibrium concept. While subgame perfection lmamesimpor-
tant applications, it does not always eliminate irratiob@havior at every
information set. In order to solve this problem, Selten @9ntroduced
the more restrictive notion of “trembling-hand” perfectio

Sequential equilibrium, due to Kreps and Wilson (1982) unexg that
every player maximizes her expected payoff at every inftionaset, ac-
cording to some consistent beliefs. They showed that “tieghand”
perfection implies sequentiality, which in turn impliesgame perfection.
They also proved that for generic payoffs, almost all segakequilib-
rium strategies are “trembling-hand” perfect, a result thas strengthen
by Blume and Zame (1994) who proved that for a fixed extensiua fnd

generic payoffs it is the case that the two concepts coincide

This chapter is based on Gonzalez Pimienta and Litan (2005).

5



6 2. SEQUENTIALITY AND SUBGAME PERFECTION

Although it is a weaker concept than Selten’s perfectiomlkerg and
Mertens (1986) note that “sequential equilibrium seemseadhe direct
generalization [of backward induction] to games of impetrfaformation”.
It fulfills all the properties that characterize subgamdegmion (backward
induction) in games of perfect information. This is no longeie with
different concepts like perfect or proper equilibrigm.

In this paper we find the maximal set of finite extensive forext¢nsive
games without any payoff assignment) for which sequentidl subgame
perfect equilibrium yield the same set of equilibrium straes, for every
possible payoff function (Proposition 2.1). It can be cktedzed as the set
of extensive forms, such that for any behavior strategy lerefiery infor-
mation set is reached with positive probability conditiooa the smallest
subgame that contains it. Whenever the extensive form dddsave this
structure, payoffs can be assigned such that the set of sidgerfect equi-
libria does not coincide with the set of sequential equigibr

However, it may still happen that the set of equilibrium ames of
both concepts coincides for any possible assignment ofdiefpfunction.
Thus, we also identify the maximal set of finite extensiverferfor which
subgame perfect and sequential equilibrium always yieddsdime equilib-
rium outcomes (Proposition 2.2).

In many applications of extensive games with incompleterimfation,
the so called “perfect Bayesian equilibrium” is used. It pgno restrictions
at all on beliefs off the equilibrium path of every subgamenkk, it implies
subgame perfection and it is implied by sequential equilior We obtain
as corollaries that our equivalence conditions remain ifruee substitute

sequential for perfect Bayesian.

2See Kohlberg and Mertens (1986) for details.
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Notice that, unlike related results on equivalence betweénements
of Nash equilibrium, where the object of analysis is the flaspace (e.g.
Kreps and Wilson (1982), Blume and Zame (1994)), we find camtiton
the game form. Our results characterize the informatiouctires where
applying sequential rationality does not make a relevaffierdince with
respect to subgame perfection. We consider them as toolkscfaromic
modelling. They allow us to know if, for the extensive gamelenstudy,
subgame perfect and sequential equilibrium are alwaywvalguit, either in
equilibrium strategies or in equilibrium outcomes.

The paper is organized as follows: in Section 2.2 we briefigoofuce
the main notation and terminology of extensive form gamdss €losely
follows van Damme (1991). Section 2.3 contains definitioResults are
formally stated and proved in Section 2.4. In Section 2.5 Wwe gome

examples where our results can be applied.

2.2. Notation and Terminology

The analysis is restricted to finite extensive form games wérfect
recall. Since our characterization is based on the straichroperties of
extensive games, we cannot dispose of a complete formatiptése of
extensive form games. However, and in consideration witis¢lreaders
who are already familiar with extensive games, we relegath & long
discussion to the appendix and only offer in Figure 2.1 &f ligewith very
terse explanations of the symbols that we require.

We need the following definitions before moving to the nextiea.

If x € X, let P2 denote the probability distribution @ if the game is
started ak and the players play according to the strategy prafil&iven a
system of beliefgl, a strategy profilé and an information set, we define

the probability distributio®}* on Z asPe* = 5y M(X)PL.
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Notation Terminology

Comments

IN

fi

bi

]P’b
Ri(b)
Z(A)
PP(A)

Extensive form

Set of nodes it
Precedence relation dn
Playeri’s information sets
Choices available at

Set of final nodes

Set of decision nodes
Playeri’s payoff function

n-player extensive game

Extensive game without

payoff assignment
Typical elements,y € T
< partially orderst

Typical elementsv,w € U;
Typical elementg,d,ec C,
{zeT:IxeTstz<x}
X=T\Z
ri:Z—R,r=(rg,...,r)

r=(3,r)

Playeri’s behavioral strategy b; € Bj, b= (by,...,bp)

Probability measure oA
Playeri’s expected utility ab
Final nodes coming afteX
Probability of AC T
Subform starting ay

Subgame starting at

System of beliefs

Induced byb

5 22 PP(2)ri(2)

ACT

PP(Z(A)

Subgame without payoff
assignment

y=(3yf)

u() >0, erup—(x) =1,vu

FIGURE 2.1. Notation and terminology of finite extensive

games with perfect recall

These probability distributions allow us to compute expdattilities at

parts of the extensive game other than the initial nodeadireonsidered in

Ri(b). DefineRx(b) = ¥,z P2(2)ri(2) as playei’s expected payoff at node

x. In a similar fashionRy(b) = .2 P°(ZU)ri(2) = 3 xeuPP(X|u)Rix(b)

is playeri’s expected payoff at every information sesuch thatP®(u) >
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0. Furthermore, under the system of beligfR!. (b) = ¥,., PA¥(2)ri(2)

denotes players expected payoff at the information set

2.3. Definitions

We use the substitution notatidnb; to denote the strategy profile in
which all players play according to, except playei who playsb!. The
strategyb; is said to be a best reply agairsif it is the case thab; €
argmaxycp Ri(b\b/). If PP(u) > 0, we say that the stratedy is a best
reply againsb at the information set € U; if it maximizesRy, (b\b}) over
the domain where it is well defined.

The strategyy; is a best reply againgb, ) at the information sai € Uj
if bj € argmaycp, R, (b\I). If bj prescribes a best reply agairibt ) at
every information set € U;, we say thab; is a sequential best reply against
(b,n). The strategy profild is a sequential best reply agairist ) if it
prescribes a sequential best reply agajbgt) for every player.

With this terminology at hand we define several equilibriusnaepts.

DEFINITION 2.1 (Nash Equilibrium). A strategy profitee B is a Nash
equilibrium of " if every player is playing a best reply agaitst

We denote by NH") the set of Nash equilibria df. Subgame perfec-
tion refines the Nash equilibrium concept by requiring a Neghilibrium

in every subgame. Formally,

DEFINITION 2.2 (Subgame Perfect Equilibrium). A strategy proble
is a subgame perfect equilibrium bfif, for every subgaméy of I, the

restrictionby constitutes a Nash equilibrium 0f,.
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We denote by SPE) the set of subgame perfect equilibrialof We
write SPEQI) = {P°: b € SPHT)} for the set of subgame perfect equilib-
rium outcomes, and SPHEP) = {R(b) : be SPET )} for the set of subgame
perfect equilibrium payoffs, whef@(b) = (Ry(b),...,Ra(b)).

Sequential rationality is a refinement of subgame perfacti&very
player must maximize at every information set according o leliefs
about how the game has evolved so farb i a completely mixed strat-
egy profile, beliefs are perfectly defined by Bayes’ rule. @ilse, be-
liefs should meet a consistency requirement. A sequerdialibrium is an
assessment that satisfies such a consistency requirengetitéo with an

optimality requirement. This is formalized by the next twafiditions.

DEFINITION 2.3 (Consistent Assessment). An assessifteq is con-
sistent if there exists a sequenidé, L) }+, whereb; is a completely mixed

strategy profile ang (x) = P?(x|u) for x € u, such tha;[ limbx, k) = (b, ).

DEFINITION 2.4 (Sequential Equilibrium). A sequential equilibrium of
I" is a consistent assessmébty) such thatb is a sequential best reply

against(b, ).

If I is an extensive game, we denote by SDQEthe set of strategies
b such that(b,p) is a sequential equilibrium df, for somep. Moreover,
SQEQT) = {PP: b € SQHI)} denotes the set of sequential equilibrium
outcomes and SQEP) = {R(b) : b e SQHET )} the set of sequential equi-
librium payoffs. Recall that SQE) C SPETI) for any gamd .

We now introduce some new definitions that are needed forethdts.

DEFINITION 2.5 (Minimal Subform of an Information Set). Given an
information seu, the minimal subform that containsto be denote&(u),
is the subfornmEy that containgi and does not properly include any other

subform that contains.
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We say thaf'y = (Zy,f) is the minimal subgame that contaung =y is
the minimal subform that contains
In a given extensive form there are information sets thatahnays
reached with positive probability. When this does not happersay that

the information set is avoidable, formally:

DEFINITION 2.6 (Avoidable information set). An information setis
avoidable in the extensive for@if PP(u) = 0, for someb € B. Likewise,
we say that the information sets avoidable in the subfory if IP’ty’(u) =0,

for someb € B.

For reasons that will become clear in the next section, wenéeeested
in identifying extensive games where no information sevgdable in its
minimal subform. To get an idea about the set of extensivedahat we
have in mind consider Figures 2.2 and 2.3. In the former, farmmation
set is avoidable in the extensive form. While in the latterjmformation

set is avoidable in its minimal subform.

FIGURE 2.2. Extensive form where no information set is avoidable.

Conversely, consider Figure 2.4. Player 2's informatiorisavoidable
in the extensive form (also in its minimal subform since thére game is

the only proper subgame) because player 1 can decide natterlenove.
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FIGURE 2.3. Extensive form where no information set is

avoidable in its minimal subform.

2.4. Results

The three “best reply” concepts introduced in Section 2&edo each
other, as it is shown in the first two statements of the nexirlam The
third assertion of the same lemma shows that maximizing\behat an

information set is independent of the subgame of reference.

LEMMA 2.1. Fix agamel = (=,r). The following assertions hold:

(1) Given a strategy profile b, if & U; is such thatP?°(u) > 0 and h
is a best reply against b, then Is a best reply against b at the
information set u.

(2) Given a consistent assessmémy), if u € U; is such thaf®(u) >
0 and Q is a best reply against b at the information set u, then b
is a best reply againdt, y) at the information set u.

(3) If I'y is the minimal subgame that contains u afig, 1) is the
restriction of some assessmehbt) to I'y, then b is a best reply
against(b, ) at the information set u in the ganfieif and only if
by, is a best reply againstby, py) at the information set u in the

gamery.
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PROOF. Part 1 is knowr?. Proofs for 2 and 3 are trivial. O

In the next proposition we identify the set of extensive fermhere
sequential equilibrium has no additional bite over subgparéction. The
latter concept allows for the play of non-credible threatisfrmation sets
that might never be reached conditional on its minimal sabgaHowever,
if we restrict attention to extensive form games where normgtion set is
avoidable in its minimal subform, we can use the previousienio show
that sequential and subgame perfect equilibrium coincide.

It turns out that not only is this particular restriction fezient but also
necessary for the equivalence, in the following sense: weabaays find a
payoff assignment so that the sets of subgame perfect ane st equi-
librium differ when the restriction fails to hold. The consttion of such
payoff assignment is based on, first, taking one informaigirthat is avoid-
able in its minimal subform out of one subgame perfect eopiilm path
and, second, making one of the available actions at thiglatate informa-
tion set a strictly dominated action. Take for instance g contained in
Figure 2.4. If player 1 moveSutshe gives player 2 the possibility of taking
the strictly dominated movid, which forms a subgame perfect equilibrium

which is not sequential.

PrRoPOSITION2.1. Let= be an extensive form such that no information

set u is avoidable ix(u). Then for any possible payoff vector r, the game
I = (=,r) is such thatSPEI") = SQKET). Conversely, iE is an extensive
form with an information set u that is avoidable®{u), then we can find a

payoff vector r such that for the garie= (=,r), SPEI") # SQHET).

3For instance, see van Damme (1991), Theorem 6.2.1.
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1,1 0,0 11 0,0
FIGURE 2.4. Example of the use of the algorithm contained

in the proof of Proposition 2.1 to generate a game where

SPHT) # SQE().

PROOF Let us prove the first part of the proposition. We only have to
show that SPH") C SQKT). Consideib € SPETI") and construct a consis-

tent assessmefib, 1).* We have to prove that the set

1) U(b,p) = iLnJl{u cUi:b¢ argBrir;g?R!t(b\Bi)}

is empty. Assume to the contrary thétb, p) # 0, and consideun € U (b, ).
LetT'y be the minimal subgame that containand letj be the player mov-
ing atu. By lemma 2.1.3py; is not a best reply againgby, ) atu in
the gamey. Part 2 implies either that?(u) = 0 or thatby j is not a best
reply againsby atu. If the latter was true, part 1 would anyway imply that
IP’S(u) = 0. Howeveru is not avoidable irEy. This provides the contradic-

tion.

A general method to define consistent assessniens for any givenb € B, in an
extensive form, is the following: take a sequence of conepjemixed strategy profile
{b}¢ — b and for each, construct(x) = P (x|u) € [0,1], ¥x € u, for all information
setsu. Callk = |X\ Py|. The set0,1] is compact and sincg € [0,1]%,Vt, there exists

a subsequence dt}, call it {t;}, such that{pli }t; converges iro, 1], Define beliefs as

H=lim pi.
j—oo
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Let us now prove the second part of the proposition. Suppesb; is
an information set that is avoidable #{u) and letc € C, be an arbitrary
choice available ai. Assign the following payoffs:

@) ri(z =0 Vi ifzeZ(c)

ri(zg =1 Vi elsewhere.
Clearly any strategy; = bj\c cannot be part of a sequential equilibrium
since playing a different choice atgives player strictly higher expected
payoff at that information set.

We now have to show that there exists a subgame perfect leunti
b such that; = bj\c. By assumption there exisbs such thaﬂP’B/(u) =0
in the minimal subgaméy that containsi. The equality]P’}?(u) =0 also
holds forb = b'\c. The strategy profildy is a Nash equilibrium of"y
since nobody can obtain a payoff larger than one. By the sagusrant,b
induces a Nash equilibrium in every subgame, hence it is gasub perfect

equilibrium. This completes the proof. O

We use the extensive form of Selten’s horse game (Figuresizi2.6)
to show that the algorithm (used in the proof of the secontqdd?roposi-
tion 2.1) does not depend either on the particular avoidalidemation set,
or on the particular choice that is taken to construct th@ffaylnformation
setu in the algorithm corresponds to player 2’s (player 3’s) infation set
in Figure 2.5 (Figure 2.6), and choice= C; in the algorithm corresponds

to choiceB (choiceR) in Figure 2.5 (Figure 2.6).

Notice that the payoff assignment in the previous proofdged differ-
ence in equilibrium strategies but not in equilibrium pdgofhe reason is
that we cannot always achieve difference in equilibriuncoates (there-
fore, neither in equilibrium payoffs). Figure 2.7 contaarsextensive form

where the second information set of player 1 is avoidablésinminimal
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1,11 1,11 0,0,0 0,0,0
FIGURE 2.5. Selten’s horse. An example of the use of the

algorithm contained in the proof of proposition 2.1 to gener
ate a game where SPE # SQHET).

111 0,0,0 1,11 0,0,0
FIGURE 2.6. Selten’s horse. A different use of the algo-

rithm contained in Proposition 2.1.

subform, and nevertheless, the sets of sequential and mehgarfect equi-
librium outcomes always coincide, regardless of what thefia assigned
to final nodes are. Proposition 2.2 provides a sufficient aawkssary con-
dition for the sets of equilibrium outcomes (also, of eduilim payoffs) to
be equal for any conceivable payoff function.

Before that, we need to be able to identify which players camidav
a given information set. Lef be an information set and I&, = =(u).

Construct the set of strategiBsu) = {b € B: P9(u) > 0}.
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DEFINITION 2.7. We say that the information seican be avoided in
=(u) by playeri if there exists a strategy profile € B(u), and a choice

c e C,, with v e Uj, such thatP’S\C(u) =0.

Remember that for an information sethat is avoidable ire(u) = =y
there must be a strategy profibesuch thatIP’ty) = 0 (Definition 2.6). If a
player, say playet, is able to unilaterally modify a strategy profité for
which IP’)?' > 0, by changing only one of her choices, and hereby construct
one b for which ]Pf,’ = 0, then we say that the information setcan be
avoided in=(u) by playeri. Therefore, associated with any information
set, there is a (possibly empty) list of players who can aitaid its mini-
mal subform. Figure 2.7 is an example of an extensive fornravfor every
information set such a list is either empty or contains ohl/dwner of the
information set. When this happens, sequential equilibriuas no addi-
tional bite over subgame perfection regarding equilibriommcomes. The
reason is that subgame perfection allows a player to choctg@na sub-
optimally, but given the particular structure of the gamenfpit can only
happen at information sets already avoided by her own pusvi@havior,

and choices at such information sets do not affect the owaaiithe game.

FIGURE 2.7. The second information set of player 1 can
only be avoided by player 1. Proposition 2.2 implies that
SPERI) = SQERT).
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This condition is also necessary for equivalence in equuiib out-
comes in the following sense: if playecan avoid the information setin
its minimal subform, and if is the owner of the information saf there ex-
ists a payoff assignment so that playeran “non-credibly” threaten player
i (something ruled out by sequential equilibrium but not biggame per-
fection) bringing about the difference in equilibrium oorees.

The following lemma is useful for the proof of Propositior22.

LEMMA 2.2. Let = be an extensive form such that, whenever an infor-
mation set u is avoidable i&(u), it can only be avoided ix(u) by its
owner. Let(b, ) and (b’, /) be two consistent assessments. If b anaré

such that?? = PY for every subfornzy, then p= |’

PROOF Let (b,u) and(b', /) be two consistent assessments such that
PP = PY for every subformz,. Note thatb’ can be obtained frorb by
changing behavior at information sets that are reachedzaeith probability
within their minimal subform. Hence, without loss of gerliyalet b and
b’ differ only at one such information set, saye U;, and let=y = =(u).

The shift fromb to b’ may cause a change in beliefs only at information sets
that come afteu and are in the same minimal subfoiy. Letv e U;j be
one of those information sets.

If j =1, perfect recall and consistency imply that there is no ckang
beliefs at the information set If | # i there are two possible cases, either
]P’)t}(v) >0 orIP’{}(v) = 0. Inthe first case the beliefs\aare uniquely defined,
therefore u(x) = Y (x), Vx € v and moreovem(x) = i (x) = 0,Vx € v such
thatu < x. In the second case, since the information\setn only be
avoided by playef in =(u) there exists a choiaec Cy, of playerj such that
IPS\C(V) > 0, otherwise playeirwould also be able to avoid the information
setuin Z(u). Letb” =b\c andb” = b'\c, then by the discussion of the

/1

first casel” (x) = W (x), Vx € v, furthermore, perfect recall and consistency
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imply W’ (x) = p(x) andy” (x) = i (x), ¥x € v, which in turn impliequ(x) =
K (X),Vx € v. O

We are now ready to state and prove our second equivalende res

PROPOSITION2.2. Let = be an extensive form such that, whenever an
information set u is avoidable iB(u), it can only be avoided i&(u) by its
owner. Then for any possible payoff vector r, the gdme (=,r) is such
that SPEQI) = SQEQT ). Conversely, iE is an extensive form with an
information set u that can be avoided#tu) by a different player than its

owner, then we can find a payoff vector r such that for the gme(=,r),

SPERT) # SQERT).

PROOF Let us prove the first part of the proposition. We need to @rov
thatvb € SPET), P° € SQEQT). Take an arbitraryp € SPET) and con-
struct some consistent beligis

If the setU (b, ) = Lrj {u €U b ¢ argmax, p R}t(b\f)i)} is empty,
thenb € SQET) andIP’bl:e SQEQT). Otherwise, we need to find a sequen-
tial equilibrium (b*, u*) such thatP?®" = PP,

Step 1: Take an information set e U (b, ). Leti be the player that
moves at this information set, and Ie§ = (=(u),f). As in the
proof of proposition 2.1, notice that by Lemma 2ulshould be
such thaﬁP’§3(u) =0, hence it is avoidable in its minimal subform.
By assumptionu can only be avoided by player

Step 2: Letb’ be the strategy profile modified so that playerplays
a best reply againgb, ) at the information sat. Construct a con-
sistent assessme(if, /). Notice thatP? = pb and, in particular,

PY = PP. By Lemma 2.2,y and | assign the same probability

distribution on every information set.
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Step 3: We now prove that’ € SPET). For this we needy, €
NE(T'y). Given the strategy profilg] in the subgaméy, player
i cannot profitably deviate because this would mean that slse wa
also able to profitably deviate whéq was played in the subgame
Iy, which contradict®, € NE(Ty).

Suppose now that there exists a playe# i who has a prof-
itable deviationb{; from by ; in the subgamé&y. The hypothesis
on the extensive forn implies PS\% = IP’S/\%, which further
implies tha ’fj should have also been a profitable deviation from
by. However, this is impossible sindg € NE(T'y).

Step 4: By step 2,]U (b, )| = [U(b,w)| — 1. If U (b, )| # 0, ap-
ply the same type of transformationtb Suppose that the cardi-
nality of U (b, ) is g, then in thegth transformation we will ob-
tain a consistent assessméht?, @) such thab@ e SPET),

PP = PP andU (b@, u@) = 0. Observe thah@ € SPET) and
U (0@, u@) = 0imply b® € SQET). Thereforg(b(@, u@) is the

sequential equilibriunfb*, u*) we were looking for.

Let us now prove the second part of the proposition. For iootat
convenience, it is proved for games without proper subgahmsgever, the
argument extends immediately to the general case.

Given a node € T, the set Patfx) = {c € |J,Cy : ¢ < X} of choices is
called path tox.

Suppose that is an information set that can be avoidectiby a player,
say playerj, different from the player moving at it, say playieNote that
there must exist ar € u and a choicec € C,, wherev € Uj, such that if

b = b\ Path(x), thenP°\°(u) = 0 is true.
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Let f € Cy be an arbitrary choice available to playetu. Assign the

following payoffs:

rj(z =0 if ze Z(c)
3) r(z) =rj(2=0 ifzez(f)
(2 =rj(2=1 ifzez(u)\z(f).

Letd € Path(x) with d ¢ C,, assign payoffs to the terminal nodes, whenever

allowed by 3, in the following fashion:
4) rk(z) > rk(Z) whereze Z(d) andZ € Z(Cy \ {d}).

Playerk above is the player who has choidavailable at the information
setw. Give zero to every player everywhere else.
In words, playerj moves with positive probability in the game. She has
two choices, either moving towards the informationwsand letting player
i decide, or moving away from the information setf she moves away she
gets zero for sure. If she lets playietecide, player can either make both
get zero by choosing, or make both get one by choosing something else.
Due to 4, no player will disturb this description of the plagiof the game.
This game has a Nash equilibrium in which playerovesf and player
j obtains a payoff equal to zero by movingHowever, in every sequential
equilibrium of this game, playerdoes not choosé and, as a consequence,
player j takes the action contained in P&thnC,. Therefore, in every
sequential equilibrium, playeiisand j obtain a payoff strictly larger than

zero® This completes the proof. O

For a very simple application of the previous algorithm, sidar the
extensive game of Figure 2.4 and substitute the payoff veottowing

move Out of player 1, with the payoff vectai0,0). Again, the first player

5Equilibrium payoffs are not necessarily equal to one due¢meial moves of Nature.
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moving Out and the second player taking the strictly dominated mdye
is a subgame perfect equilibrium that yields an equilibripayoff vector

equal to(0,0). However, in any sequential equilibrium, player 2 mo@&s
and player 1 does not moveut, which makeg1,1) the only sequential

equilibrium payoff vector.

REMARK 2.1. Notice that, in the set of extensive forms under study in
the last proposition, beliefs are always uniquely definecfty given strat-
egy profile (considel’ = b in Lemma 2.2). One may incorrectly think that
it is the uniqueness of the beliefs that is behind the egemned. Consider a
modification of the game form in Figure 2.7 so that the secafatination
set of player 1 is controlled by a new player 3. This modifie@pgive form
has a unique system of consistent beliefs for any givenestygprofile but,
as seen in Proposition 2.2, the set of equilibrium outcome®i the same

for both concepts for every possible payoff vector.

2.4.1. Perfect Bayesian equilibrium.These results can be helpful in
applied work. But many applied economists use Perfect Bay&siailib-
rium in extensive games with incomplete information. Thistivates us
to analyze the relationship between this concept and owrqure findings.

The formal definition that we use is:

DEFINITION 2.8. An assessmerib, ) is a perfect Bayesian equilib-

rium of the extensive ganieif it satisfies the following conditions:
(1) For every information set if IP’)'C,’(U) > 0, thenp(x) = Pe(x]u),
where=y = =(u), for all x € u;
(2) bis a sequential best reply agaittbtp).°

5This is the weakest and the most used version. See Fudenixbiirale (1991) for

related definitions.
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Let PBET) be the set of strategies that together with some system of be-
liefs make up a perfect Bayesian equilibrium. Let PBEPand PBEQI")
be the sets of, respectively, perfect Bayesian equilibriagoffs and perfect
Bayesian equilibrium outcomes.

A quick inspection of the definition reveals that perfect Bage equi-
librium implies subgame perfection and that it is implied $gquential
equilibrium. This observation by itself proves that thefisigncy parts
of Propositions 2.1 and 2.2 hold if we replace SQEwith PBE(I") and
SQEQT) with PBEQ(T).

As for the necessity part of both propositions, the algamgtproposed
are also valid to construct subgame perfect equilibra (@oregperfect equi-
librium payoffs) that are not perfect Bayesian (perfect Bayesquilibrium
payoffs). Note that the irrational move prohibited to a glalgaving consis-
tent beliefs is also forbidden to a player that has any conbés beliefs.

In other words, the conditions for equivalence between aotsyper-
fection and perfect Bayesian equilibrium parallel thosevMeen subgame

perfection and sequentiality. Formally:

COROLLARY 2.1. If = is an extensive form such that no information set
u can be avoided ix(u), then for any possible payoff vector r, the game
I = (=,r) is such thatSPET) = PBE(I"). If = is an extensive form with
an information set u that can be avoidedsfu), then we can find a payoff

vector r such that for the ganfe= (=,r), SPEI") # PBET).

The analogous result regarding equilibrium outcomes anidlilequm

payoffs is:

COROLLARY 2.2. Let = be an extensive form such that, whenever an
information set u can be avoided #{u), it can only be avoided i&(u) by

its owner, then for any possible payoff vector r, the gdme (=,r) is such
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that SPEQI) = PBEQ[). If = is an extensive form with an information
set u that can be avoided i(u) by a different player than its owner, then
we can find a payoff vector r such that for the game (=,r), SPERT) #
PBERT).

2.5. Examples

These results can be applied to many games considered indheraic
literature. It allows us to identify in a straightforward yéhe finite ex-
tensive form games of imperfect information for which suingaperfect
equilibria are still conforming with backward inductiongessed in a se-
quential equilibrium.

Besley and Coate (1997) proposed an economic model of repaesen
tive democracy. The political process is a three-stage gamestage 1,
each citizen decides whether or not to become a candidateufdic of-
fice. At the second stage, voting takes place over the lisaofliclates. At
stage 3 the candidate with the most votes chooses the p@iesiey and
Coate solved this model using subgame perfection and fouriipielsub-
game perfect equilibria with very different outcomes inmerof number
of candidates. This may suggest that some refinement migatstiarper
predictions. However, given the structure of the game thay ttonsid-
ered, it follows immediately from the results of the pres@ection that all
subgame perfect equilibria in their model are also seqgakerifthus, no ad-
ditional insights would be obtained by requiring this pautar refinement.

The information structure of Besley and Coate’s model is aiqart
lar case of the more general framework offered by Fudenbedg_avine
(1983). They characterized the information structure afdthorizon mul-
tistage games as “almost” perfect, since in each periodeptagimultane-
ously choose actions, Nature never moves and there is notaimte at the

end of each stage. As they noticed, sequential equilibrioesadot refine
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subgame perfection in this class of games. This can alsofagnel as an
implication of Proposition 2.1 in the present paper.

In their version of the Diamond and Dybvig (1983) model,d&dand
Temzelides (1998) discussed both the issue of potentidihgmstability
as well as that of the decentralization of the optimal depmmsitract. They
addressed the first question in a model with a “social pldnio@nk. The
bank offers the efficient contract as a deposit contractarirthial period. In
the first stage agents sequentially choose whether to depdle bank or
to remain in autarky. In the second stage, those agents wieosgkected by
Nature to be patient, simultaneously choose whether toemissent their
preferences and withdraw, or report truthfully and waite Tduced normal
form of the game has two symmetric Nash equilibria in puratsgies.
The first one has all agents choosing depositing in the badkeporting
faithfully, the second one has all agents choosing autdmg.fact that both
equilibria are sequential is presented in their Propasi#ioBecause of the
game form they used, our Proposition 2.1 also implies tlesiult.

In the implementation theory framework, Moore and Repull®88)
present the strength of subgame perfect implementatioa.cHoice func-
tion is implementable in subgame perfect equilibria by @&gimechanism,
the strategy space is finite, and no information set is atdéda its minimal
subform in the extensive form of the mechanism, then our west&blishes
the implementability in sequential equilibrium. (See, iimstance, the ex-
ample they study in Section 5, pp. 1213-1215.)

More examples can be found in Game Theory textbooks, likeetlud
Fudenberg and Tirole (1996), Myerson (1991) and Osbornéramihstein
(1994). Notice that whenever subgame perfect and sequeqtidibrium

differ for an extensive game, there are information settdha avoidable
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in its minimal subform. As examples consider Figures 8.4 &&din Fu-
denberg and Tirole (1996), Figures from 4.8 to 4.11 in Myer&®91) and
Figures 225.1 and 230.1 in Osborne and Rubinstein (1994).

2.6. Appendix: Notation and Terminology

2.6.1. Extensive form.An n-player extensive form is a sextupte=
(T,<,PU,C, p), whereT is the finite set of nodes and is a partial order
onT, representing precedence. We use the notatiary to say that nodg
comes after node. The immediate predecessonal A(X) = max{y:y <
x}, and the set of immediate successors & S(x) = {y: x€ A(y)}. The
pair (T, <) is a tree with a unique roat: for anyx € T, X # a, there exists a
unigue sequence = Xg, X1, - . -, Xnp = X With X; € S(Xi—1), 1 <i < n. The set
of endpoints iZ = {x: §(x) = 0} andX =T \ Z is the set of decision points.
We writeZ(x) = {y € Z : x < y} to denote the set of terminal successors of

X, and ifE is an arbitrary set of nodes we writgdE) = {z€ Z(x) : x € E}.

2.6.2. Player partition. The player partitionP, is a partition ofX into
setsPy, Py, ..., Pn, wherePR is the set of decision points of playeand Py
stands for the set of nodes where chance moves. The prapalsgignment

p specifies for everx € Py a completely mixed probability distributiopy
on §(x).

2.6.3. Information partition. The information partitionJ is an n-
tuple (Ug,...,Un), whereU; is a partition ofR into information sets of
playeri, such that (i) ifu € U;, X,y € uandx < zfor z€ X, then we cannot
havez <y, and (ii) if u € U, x,y € u, then|S(x)| = |S(y)|. Therefore, ifu is
an information set ang € X, it makes sense to write< x. Also, if u € U;,

we often refer to playeras the owner of the information set

2.6.4. Choice partition. If u € U;, the seCC, is the set of choices avail-

able fori atu. A choicec € C, is a collection oflu| nodes with one, and



2.6. APPENDIX: NOTATION AND TERMINOLOGY 27

only one, element of(x) for eachx € u. If playeri chooses € C,; at the
information setu € U; when she is actually at € u, then the next node
reached by the game is the elemen8f{) contained inc. The entire col-
lectionC = {C, : u € |Ji_,U;} is called the choice partition. We assume

throughout thaiCy| > 1 for every information se.

2.6.5. Extensive form gameWe define a finiten-person extensive
form game as a palr = (=,r), where= is ann-player extensive form and
r, the payoff function, is am-tuple (r4,...,rn), wherer; is a real valued
function with domainZ. We assume throughout that the extensive fam
satisfies perfect recall, i.e. for alE {1,...,n},u,ve U, c€ C,andx,y € v,
we havec < xif and only ifc < y. Therefore, we can say that choweomes
before the information set(to be denoted@ < v) and that the information

setu comes before the information sefto be denoted < v).

2.6.6. Behavior strategies, beliefs and assessmengsbehavior strat-
egyb; of playeri is a sequence of functiorib') cy; such thab!: C, — R
andyc.c,bi'(c) = 1,Vu. The setB; represents the set of behavior strate-
gies available to player. A behavior strategy profile is an element of
B =i_1Bi. As common in extensive form games, we restrict attention
to behavior strategies Throughout, we simply refer to them as strategies.
If by € Bj andc € C, with u € U;, thenb;\c denotes the stratedy changed
so thatc is taken with probability one at If b € B andb{ € B; thenb\b/ is
the strategy profilgby,...,bi_1,b{,bit1,....bn). If cis a choice of player
thenb\c = b\b{, whereb/ = bj\c.

A system of beliefgtis a functionu: X\ Py — [0, 1] with 'y, M(X) = 1,

Yu. An assessmer(, ) is a strategy profile together with a system of
beliefs.

"We can do this without loss of generality due to perfect learadl Kuhn’s Theorem,

see Kuhn (1953).
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2.6.7. Subforms and subgamesLet T c T be a subset of nodes such
that () Jy e T withy < x, ¥xe T, x#Yy, (i) if xe T thenS(x) ¢ T, and
is a subform of starting aty, where(<, p.U,C, p) are defined fronk in
T by restriction. A subgame is a pdiy = (=y,f), whereris the restriction
of r to the endpoints ofy. We denote by the restriction ob € B to the
subform=y (to the subgameéy). The restriction of a system of beligfisto

the subfornty (to the subgaméy) is denoted byy,.



CHAPTER 3

Undominated (and) Perfect Equilibria in Poisson Games

3.1. Introduction

Models of population uncertainty have been introduced byeidgn
(1998, 2000) and Milchtaich (2004), in order to describeatibns in which
players do not know the number of opponents. Among these gjaarspe-
cial attention has been reserved to Poisson games, whereuthber of
players is a Poisson random variable with a given mean andavthe play-
ers’ types are independent identically distributed rand@mables. The
properties of the Poisson distribution make Poisson gamesxaemely
convenient subclass of games. They are characterized bygrtiperties
of independent actionffor every possible strategy profile the number of
players who take different actions are independent randamaies) and
environmental equivaleng@ player assesses the same probability for the
type profile of the others as an external observer does fdygeeprofile of
the whole game, where a type profile is a vector that lists hamnplayers
there are of each type).

Myerson (1998) extends the definition of Nash equilibriund ac-
knowledges its existence. The existing literature on dayuilm refinements
in noncooperative game theory warns that we should be eesuéibout the
strategic stability of the Nash equilibrium concept. Ifstiioncern is well
founded, we can ask which Nash equilibria are self-enfgrairthis setting.

The following example serves us to both introducing Poiggmes to

the reader and illustrating the nature of the question. Al sitting at

This chapter is based on De Sinopoli and Gonzalez PimieG@7(2

29
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home and faces two possible alternatives, either she goés some social
event, or she stays home. She does not know how many playefacang
this same disjunctive, but she knows that this number is asBairandom
variable with parameten. If she goes out and meets somebody she receives
a payoff equal to 1. If she meets nobody or decides to stay hsheegets
a payoff equal to 0. Every player faces this same two optiowshas the
same preferences.

The strategy “everybody stays home” is a Nash equilibriurthefde-
scribed game. However, we cannot consider it a good equitibsince
players use a dominated strategy. It is not difficult to comevith similar
examples with patently implausible Nash equilittia.

Recall that in conventional normal form games (from now o fus-
mal form games), a modest refinement like perfection onlgcslundom-
inated strategies. This is the case in the previous exantptevever, in
Poisson games this is not true in general. We can go furttraigktfor-
ward extensions of proper and strictly perfect equilibridm not satisfy
undominance either and, in addition, not every game hasail\siperfect
equilibrium.

On the other hand, as it happens in normal form games, noy ever
dominated equilibrium is perfect. The same arguments thabrmal form
games suggest that we should dispose of some of the undechieauilib-
ria that are not perfect are valid here. The difference bthag as argued
above, some perfect equilibria may be dominated.

We define undominated perfect equilibria for Poisson garaasrategy
combinations that are limits of sequences of undominatedileda of per-

turbed Poisson games. We prove that every Poisson game leasiabne

2For instance, Myerson (2002), analyzing voting contextssiers only Nash equi-

libria in which weakly dominated actions have been elimeddbr all the types.
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undominated perfect equilibrium and that the set of undaieith perfect
equilibria is exactly the set of perfect equilibria whichealso undomi-
nated.

Our analysis is focused on Poisson games. However, we mingtqud
that none of the implications that we derive relies on thecsigeshape of
the Poisson distribution. Only some payoffs and threshosisd in some
examples would have to be recomputed if we want to tranghet® tinto a
framework with a different underlying probability disttition.

This paper is organized as follows: In the next section wm#dly de-
fine Poisson games, strategies and Nash equilibria. Welglfmdlow the
description of Poisson games made by Myerson (1998). The skeiction
is devoted to examine the properties of undominated siesteg Poisson
games, where we show that there exist important asymmetiiksespect
to normal form games. The fourth section studies the pedeguatlibrium
concept and some of its possible variations. We define theegrof un-
dominated perfect equilibrium for Poisson games in Sec8dhn where

some of its properties are also proven.

3.2. Preliminaries

Recall that a Poisson random variable is a discrete probabiitribu-
tion that takes only one parameter. The probability thatiadém random

variable of parametar takes the valu&, beingk a nonnegative integer, is

k

n

. _ N
f(kin)=¢ K

A Poisson game is a five-tuple(n, T,r,C,u). The number of players in
the game is a Poisson random variable with paranmete®. The sef rep-
resents the set of possible types of players, we assume ét acnonempty

finite set.
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As usual, ifAis a finite setA(A) represents the set of probability dis-
tributions overA. Given the event that a player is in the game, she is of
typet € T with probabilityr (t). This information is contained in the vector
r € A(T). Thedecomposition propertgf the Poisson distribution implies
that for each typéin T, the number of players of the game whose type is
is a Poisson random variable with paramet€t). These random variables
together are mutually independent and form a vector, ctietype profile
which lists the number of players in the game who have eaah typ

For any finite seB, we denote aZ(S) the set of elements ¢ RS such
thatw(s) is a nonnegative integer for ale S. Using this notation, the set
Z(T) denotes the set of possible values for the type profile in &émeey

The setC is the set of available choices or pure actions that a player
may take. We assume that it is common to all players regardietheir
type and that it is a finite set containing at least two diffier@ternatives.
The setA(C) is the set of mixed actions. Henceforth, we refer to mixed
actions simply as actions.

The utility to each player depends on her type, on the achahshe

chooses and on the number of players, not counting herskd, coose
each possible action. A vector that lists these numbersayleps for each
possible element & is called araction profileand belongs to the sg(C).
We assume that preferences of a player of typan be summarized with a
bounded functiony; : C x Z(C) — R, i.e. u(b,x) is the payoff that a player
of typet receives if she takes the pure actimand the number of players
who choose actionis x(c), for all c € C. Furthermore, leti = (Ut )teT.

In games with population uncertainty, as Myerson (1998, p7) &r-
gues, “...players’ perceptions about each others’ stimateghavior cannot
be formulated as a strategy profile that assigns a randorsizatégy to

each specific individual of the game, because a player iswateaof the
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specific identities of all the other players”. Notice thabtplayers of the
same type do not have any other known characteristic by wdtloérs can
assess different conducts. The conclusion of the previeasoning is that
a strategyo is an element ofA(C))7, i.e. a mapping from the set of types
to the set of possible actiors.

This symmetry assumption is a fundamental part of the detsmni of
the game. Notice that it is not made for convenience, on thé&ragy, sym-
metry is a critical assumption of a model of population uteiaty for it to
be meaningful and well constructed.

If players play according to the strategyoi(c) is the probability that
a player of typd chooses the pure actian The decomposition property of
the Poisson distribution implies that the number of plapétgpet € T who
choose the pure actiaris a Poisson distribution with parameteit)o;(c).
The aggregation propertyf the Poisson distribution implies that any sum
of independent Poisson random variables is also a Poisadomavariable.

It follows that the total number of players who take the purtaoa c is a
Poisson distribution with parameter(c), wheret(c) = S7r(t)ot(c).
A player of typet who plays the pure actidme C while all other players

are expected to play accordingddias expected utility equal to

Ui(b,0) = Z P(x|o)ut (b, x)
xeZ(C)

where,

~m(c) (M(€)*®
]P)(X’O') = Clle ( )W

Sone may wonder how the game might be affected if the subdivisi types was
finer, thus, allowing a larger variety of different behagioMyerson (1998) proves that,
for Poisson games, utility-irrelevant subdivitions of égocannot substantially change the

set of Nash equilibria (Theorem 4, page 386).



34 3. UNDOMINATED (AND) PERFECT EQUILIBRIA IN POISSON GAMES

and her expected utility from playing actiéne A(C) is

Ui(8,0) = be;e(b)ut(b, o).

The set of best responses for a player of ty@gainst a strategy is
the set of actions that maximizes her expected utility givet the rest of
the players, including those whose typetidehave as prescribed loy
The set PBRo) = {ce C: c e argmaxccU;(b,0)} is the set of pure best
responses againgtfor a player of typd. The set of mixed best responses

againsto for a player of typd is the set of actions Bffo) = A(PBR(0)).

DEFINITION 3.1. The strategg™ is a Nash equilibrium i6; € BRy(0*)

for all t.

Standard fixed-point arguments show that every Poisson Gasat

least one Nash equilibrium, see Myerson (1998).

3.3. Dominated Strategies

The admissibility principle, which in normal form gamegsiiates that
no player must choose a dominated strategy, translatesthet@urrent

framework imposing that no player should choose a dominatédn.

DEFINITION 3.2. The actio® € A(C) is dominated for a player of type
t if there exists an alternative actid such thatJ;(6,0) < U(¢,0), for

every possible strategyandU;(6,0’) < Ui (6,0’) for at least one’.

Although contained in a voting framework, Myerson (2002ed a
weaker definition of dominated action. Under such definitioa (pure)
actionc is dominated for a player of typeif there exists an alternative
(pure) actionb such thatu(c,x) < w(b,x) for everyx € Z(C) and with
strict inequality for at least oné. However, we prefer the former since it is

equivalent to the definition of dominated strategy for ndrfoem games.
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In games with population uncertainty dominated strategresdefined

in the following way:

DEFINITION 3.3. A strategyo is dominated if there is some typdor

which at is a dominated action.

We can use this formal apparatus to revisit the example sisszlin the

introduction. Leta stand for “going out” andb for “staying home”:

ExXAMPLE 3.1. Letl" be a Poisson game with> 0, only one possible
type, set of available choic€= {a, b}, and utility function:

W(ax) = 1 if x(a) >0

0 otherwise

ulb,x)= 0 Vx e Z(C).

Since this Poisson game has only one possible type, we catifyde
set of strategies with the set of actions. There are two ibgiai) a andb. We
have already argued that the equilibrium strategg/unsatisfactory. Notice
thatb is a dominated action, even when we consider the weaker tiefini

given by Myerson (2002), which makesa dominated strategy.

The example highlights that the Nash equilibrium conceptasequate
for Poisson games since it allows for equilibrium points rehglayers use
dominated actions (strategies).

In normal form games it is well known that a dominated stratisgy
never a best response against a completely mixed stratelgg opponents.
This property implies, for instance, that a perfect eqiilitm only selects
undominated strategies. Ideally, we would like to estabdis analogy be-
tween the properties of (un)dominated strategies in nofonal games and

(un)dominated actions in Poisson games. In the remaind#nitection
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we examine which are the differences and similarities betwbe two set-
tings with regard to (un)dominated strategies.

The following straightforward result is true in both casdthough it has
to be stated in terms of strategies for normal form gamesn¢eferth we
skip this last clarification when comparing actions of Poisgames with

strategies of normal form games.)

LEMMA 3.1. If a pure action is dominated then every mixed action that

gives positive probability to that pure action is also doated.

This implies that a strategy that prescribes that some tigyes an action
which gives positive probability to a dominated pure act®iominated.
On the other hand, as so happens in normal form games, a dechimaed
action does not necessarily give positive weight to a dotaahpure action.

We illustrate this in the following example.

ExamMPLE 3.2. Consider a Poisson game with an expected number of
players such that > In2, only one possible type, three available choices in
the selC = {a,b,c}, and utility function:

Wax) = 10 ifx(a) > x(b) U(b.x) 10 ifx(a) < x(b)

0 otherwise 0 otherwise
uic,x)= 6 ¥xeZ(C).

The pure actiomis not dominated. Itis the unique best response against
the strategya. The pure actiorb is not dominated either. In particular,
notice that it is not dominated bg, given the assumption that > In2,
whose unique purpose is to make sufficiently small the priiibathat the
number of players who turn up in the game is equal to zero. Aghepure
actionc, it does better thaa against the strategyand better thab against

the strategy.
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The mixed actio® = 1/2a+ 1/2bis dominated by the pure actiéh=
c. To see this note that given a strategy, we can assign pidpabto the
eventx(a) > x(b) and probability - p to the eveni(a) < x(b). We can
compute the expected utility of playing actién= 1/2a+1/2bas 3/2(1—
p)10+1/2pl0=>5.

Therefore, we have proved:

LEMMA 3.2. An action that does not give positive probability to a dom-

inated pure action may be dominated.

It is also true that a pure strategy may only be dominated byxadn
strategy. Modify the utility function of the previous exal@pso that
u(x,c) = 4 for all x in Z(C), and raise the lower bound ofto In(5/2).
In this modified game, the pure actioiis dominated by neithex norb, but
it is dominated by the actiob=1/2a+1/2b.

In normal form games, the process of discerning which graseare
dominated is simplified by the fact that it suffices to considely pure
strategies of the opponents. As the next example illustrdtes is not

enough in Poisson games.

EXAMPLE 3.3. Letl be a Poisson game with expected number of play-
ers equal ta, only one possible type, set of choices equalte {a,b,c},
and utility function:

Wax) = 1 ifx(@=x(b)>0 (b = 1 ifx(@) =x(b) >0

0 otherwise 0 otherwise
uc,x)= 0 ¥xeZ(C).
The pure actiomr does strictly worse than the pure acti@endb if and

only if the strategyo gives strictly positive probability to bothandb.
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Nevertheless, to compute expected payoffs and, theretforieentify
dominated actions for one player of some type, it sufficettsitler that
every other player plays the same action, regardless ofyiper tThis is
so because from the strategyc (A(C))T we can define a global action
1€ A(C) givenbyt(c) = Y7 r(t)ot(c), which implies the same probability
distribution over the set of action profil@4C).

An important fact about undominated strategies in normahfgames
is that a strategy is undominated if and only if it is a bespoese against
some element contained in the interior of the simplex of thieod pure
strategy combinations of the opponents. As mentioned attusemplies
that a perfect equilibrium only selects undominated sgiate Our previ-
ous circumspection suggests that things may work diffgrémthe present
framework. As it turns out, no result similar to this is trum fPoisson
games.

If Ais a finite set, lef\°(A) stand for the set of probability distributions

overA that give positive probability to every elementAf

LEMMA 3.3. An undominated action may be a best response against no

element oRA%(CT).

PrRoOOF Consider a Poisson game with expected number of players
n= 1% only one possible type so tha®(CT) = (A%(C))T, set of available

choices equal t€ = {a,b,c} and utility function:

“The set of examples in the paper is designed to be as cleairapbksas possible.
This is the reason why we many times fix the expected numbelagéps to ben =1 or
n = 2. This contrasts with the fact that Poisson games fit morerally to a situation
where the expected number of players is large. At the expefremputational simplicity,

similar examples can be constructed that put no restrigtionthe Poisson parameter
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5e if x(a) =1 andx(c) =0
u(ax)=1q5e if x(c)>0

0 otherwise
\

(

5e if x(b) =1 andx(c) =0

u(b,x) = { 5e if x(c) >0

0 otherwise
\

uic,x)= 4 ¥xeZ(C).

If a player expects every other potential player to behaweraing to
the strategy = b, the actiorc gives her a larger payoff than the actimnn
turn, if she expects every other potential player to behaceraing to the
strategyo = a, the actionc gives her a larger payoff than the actibnTo
see that no mixed action betweaandb dominatesc, consider that = a,

then the following inequalities hold:
U(b,0) =0<U(c,0)=4<U(a,0)=5.

From here it follows that under the strategy= a, the actiornc does strictly

better than the actiod=Aa+ (1—A)bfor A € [0,4/5). If 0 =D,
U(a,0)=0<U(c,0)=4<U(b,0)=5,

in which case the actioondoes better than the actién=Aa-+ (1—A)b for
A € (1/5,1]. Therefore, no mixed action betwearandb does always at
least as good as the actioffor every possible strategy.

It remains to prove that the actianis never a best response to any
strategyo. Consider first the case wheserandomizes only betweemnand

b. Note that to minimize the maximum payoff obtained by play&aithera
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or bwe needo = 1/2a+ 1/2b. However, in such a case

4=U(c,0) <U(a,0)=U(b,0) :g\/é

Finally, the actionc is never a best response against any completely
mixed strategy because any weight that the strateguts in the choice

increases the expected payoff from both the actaasdb. O

The next lemma completes the previous one. In Poisson gach@sa
inated action can be a best response even if every othemrplags a com-

pletely mixed action.

LEMMA 3.4. A dominated action may be a best response against a com-

pletely mixed strategy.
ProoOF Consider the following example:

EXAMPLE 3.4. Letl be a Poisson game with expected number of play-
ers equal tan = 2, only one possible type, set of choid@s- {a,b}, and

utility function
_ a2
uax)= e < vx

W(b.x) — 1 if x(a) =x(b) =1

0 otherwise.
Notice thate=? is the probability thak(a) = x(b) = 1 under the strategy
o =1/2a+1/2b. Also notice that the actioh is dominated by the action
a, the former only does as good as the latter against the gyrate 1/2a+
1/2b, and does strictly worse for any other strategy: . However, it is a

best response agairsi A°(C). O

As we mentioned above, in normal form games undominatetegies

are characterized by the existence of a probability distidin in the interior
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of the simplex of the set of pure strategy combinations ofdpponents,
against which the undominated strategy is a best resportss.pioperty
gives a means of proposing equilibrium concepts that erthatano player
chooses a dominated strategy.

In normal form games the admissibility requirement is tagare of by
perfection. Every perfect equilibrium selects only undoatéd strategies
and, moreover, perfect equilibrium conditions do not adust every equi-
librium in undominated strategies, but only a subset of them

Mertens (2004) links undominance and perfection throughctincept

of admissibility. He defines 3 possible concepts of admie&ibst response:

(a) Bis an admissible best response agami§there exists a sequence
of completely mixedsX converging too such thai is a best re-
sponse against eact{.

(B) 6 is an admissible best response agamgt 0 is a best response
againsto and there exist completely mixed such tha® is a best
response against.

(y) 8 is an admissible best response agamét 0 is a best response
againsto and no other best respon@eis at least as good against

everyo’ and better against some.

The third concept corresponds to the usual concept of adtitysi.e.
undominance, while the first one is a characterization diggeequilibria.
In normal form games, the first concept is strictly strongpantthe second,
which in turn is strictly stronger than the third.

Lemmas 3.3 and 3.4 cast doubt upon the fact that the prevedaison-
ship holds for Poisson games (apart from the fact that thensbconcept is
clearly weaker than the first). We are interested in findingfdbere is any

connection betweea andy in the present setting. Once we know this, we
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will be able to propose a definition of a strong version of ahihility for
Poisson games.

This is done in Section 3.5. Before that we have to extend thiegie

equilibrium concept to Poisson games and look into its pridgse

3.4. Perfection

Three equivalent definitions of perfect equilibrium haver@roposed
for normal form games. One based on perturbed games (S&éR&h),
a second one based on the itenof the previous list (also Selten, 1975)
and a last one based arperfect equilibria (Myerson, 1978). Below we
provide the three corresponding definitions for Poissonagsaand prove
their equivalence, so that we always have the most advamiagiefinition
available.

The leading definition that we use is the one based on pedgémes

DEFINITION 3.4. Letl be a Poisson Game, for everg¢ T, letn; and
>:(nt) be defined by:

Nt € R® with n¢(c) > 0 for allc e C and zcr]t(c) <1
ce

2i(nt) = {6 € A(C):08(c) > nt(c) forallce C}.

Furthermore, lefy = (n¢):. The perturbed Poisson gar{ie n) is the Pois-
son gamen, T,r,C,u) where players of typé are restricted to play only

actions inZ;(nt), for everyt.

In the perturbed Poisson garffe ), an actiorb € Z;(n;) is a best reply
againsio € Z(n) = [tet Zt(Nt) for a player of typs if every pure actiorc
that is not a best responseliragainsio for a player of typé is played with
minimum probability, that is to say:(c) = n¢(c). A strategyo € Z(n) is
an equilibrium of the perturbed Poisson gaffien) if for every typet, ot

is a best response tin (I',n). Kakutani fixed point theorem implies that:
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LEMMA 3.5. Every perturbed Poisson game has an equilibrium.
Perturbed games lead to the following definition of perfacti

DEFINITION 3.5. A strategyo is a perfect equilibrium if it is the limit
point of a sequencéo” },,_.0, wherea" is an equilibrium of the perturbed

game(l',n), for all n.

Since every perturbed Poisson game has an equilibrium aocd #his
equilibrium is contained in the compact $&(C))", every Poisson game
has a perfect equilibrium By continuity of the utility function, every per-
fect equilibrium is also a Nash equilibrium.

As we mentioned earlier, another possible definition of garequi-
librium usese-perfect equilibria. A completely mixed strategy is an

e-perfect equilibrium if it satisfies:
Ui(c,0%) < U(d,0%), thenof(c) < eforallt € T.

What follows is an adaption to Poisson games of some resuitpaoofs
of the book of van Damme (1991, pp. 26-29) for perfect equilib in
normal form games. Although this is rather straightforwave include it
here to maintain the paper self-contained. The next lemsta the two

remaining concepts of perfect equilibrium and proves taguivalence.

LEMMA 3.6. Let™ be a Poisson game, and letc (A(C))". The fol-
lowing assertions are equivalent:
(1) ois a perfect equilibrium ofF ,
(2) ois a limit point of a sequencgo® }¢_.o, whereo?® is ane-perfect
equilibrium ofT", for all €, and

STake any sequence gf— 0, and for eacm, an equilibriuma" of (I',n). The se-

quence{a"},,_o has a convergent subsequence whose limit point is a pedaditeium.
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(3) ois alimit point of a sequencgo® }¢_.o of completely mixed strat-
egy combinations with the property that, for alld is a best re-

sponse against each elemeitin this sequence.

PROOF (1)—(2): Leto be a limit point of a sequend®" },_.0, where

o' is equilibrium ofl" (n) for all n. Defineg(n) € R, by

&(n) = max; (c).

Thena" is ang(n)-perfect equilibrium forl".
(2)—(3): Let{c®}¢_.0 be a sequence afperfect equilibria with limit
0. By continuity, every element of the carrier of which from now on we
denote ag (0), is a best response agaigt) for € close enough to zero.
(3)—(1): Let{o®}¢_0 be a sequence as in (3) with linat Definen?®
by:

of(c if c¢ C(o
ni(c) = e #Clo) forallt,c.
€ otherwise
Fore small enouglo? is equilibrium of the perturbed Poisson gathen?®),

which establishes (1). O

ExamMPLE 3.4 (Continued). We already saw that the actios domi-
nated by the actioa and that both are best responses againstl/2a+
1/2b. By Lemma 3.1, the actiofi = 1/2a+1/2b is also dominated bg.
Nevertheless it is a best response against the strate@pnsequently, the

dominated strategy is a perfect equilibrium.

The next example is more illustrative in showing how the @etrequi-
librium concept fails to select only undominated strategie Poisson

games.
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ExampLE 3.5. Consider the Poisson gare= {n,T,r,C,u}, with ex-

pected number of players= 2, set of typed = {1, 2}, with equal proba-

bility for each typer (1) =r(2) = 1/2, set of choice€ = {a, b}, and utility

function:
1 ifx(b)=1 w(ax) = e vxeZzZ(C)
Ul(a, X) =
0  otherwise 1 if x(a) =1
Uz(b, X) =
ur(b,x)= el wxez(C) 0  otherwise.

The number of players of type 1 is a Poisson random varialile ex-
pected value equal to 1. The same is true for type 2. Notioe thist
e coincides with the probability that a Poisson random vaeiati pa-
rameter 1 is equal to 1. The actians dominated for players of type 1,
while actionb is dominated for players of type 2. We claim that the strat-
egy o = (01,02) = (a,b) is a perfect equilibrium. Take the sequence of
e-perfect equilibriac] = (1—¢€)a+€b, 05 = ca+ (1—¢)b. For everyg,

Ui (a,0%) = U;(b, ), and the sequend@®}._.o converges t@.
Each one of this last two examples actually proves the nextgsition:
PrROPOSITION3.1. A Perfect equilibrium can be dominated.

Hence, the doubts that we have raised at the end of the peeséution
are justified. In Poisson games, the relationship betvweeamdy of the
possible concepts of admissible best response listed biehkeis different
from the one that holds in normal form games.

In the last example, the undominated equilibriare: (01,02) = (b,a)
is also perfect. The next question that we must answer ishehetr not
undominance implies perfection. Proposition 3.2 shows ithdhis case

things work as they do in normal form games.

PROPOSITION3.2. An undominated equilibrium may not be perfect.
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PROOF Consider a Poisson ganie with expected number of players
equal ton, two possible types with equal probabilities, ie= {1,2} and

r(1) =r(2) = 1/2, set of available choices = {a,b,c} and utility func-

tion:®
ur(a,x) = x(a) + x(b) Ux(a,X) = X(a)
u(b,x) = [x(a) +x(b) —x(c)| up(b,x) =0 Vxe Z(C)
ui(c,x) =0 Vxe Z(C) w(c,x) =0 W¥xe Z(C).

The game has a continuum of undominated equiliprat- (1—A)b, a),
for A taking values in the closed intervi@, 1]. Note, in particular, that the
actionb is not dominated for players of type 1 since it does betten tha
actiona against the strategy = (01,02) = (c,c). However, the strategy

0 = (01,02) = (a,a) is the unique perfect equilibrium of the game. O

The example used in the proof of the last proposition dephasthere
may be unreasonable equilibria in undominated strategi&msider the
strategyo’ = (Aa+ (1—A)b,a) with A € [0,1). It is difficult to justify that
a player of type 1 will stick to the prescribed strategy. Aiawal player
should not risk his equilibrium payoff, even more when theneo possible
expected benefit from such behavior. Suppose there was apested
deviation fromo’ towardc, placing weight in the actioh would pay off to
players of type 1 if and only if such a deviation was drastid @&would

hurt otherwise.

SNotice that the utility functions that we use in this exampled in some of the follow-
ing ones are not bounded, as we assumed in the general diesooifiPoisson games made
in Section 3.2. The main features of all the examples diszliase preserved if we put an
upper bound on utilities, that is to say, if utilities aregivby i (y,x) = min{u(y,X),K},
whereK is a sufficiently large number with respectrio However, we maintain the un-

bounded functions for the sake of simplicity.
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Since perfection does not imply undominance and undomaaoes
not imply perfection, we would like to have available an dguum con-
cept that implies both. At this early stage, we do not wantdo/ery far
apart from the perfect equilibrium concept. We notice, ninadess, that
the equilibrium discussed in Example 3.5 is also properafstraightfor-
ward extension of this concept to Poisson gamesince every player has
only two possible choices.Strictly perfect equilibrium, does not help ei-
ther. As argued above, the strategy- 1/2a+1/2bis an equilibrium of the

A completely mixed strategg® is ane -proper equilibrium if it satisfies:
Ui(c,0%) < Ui(d,c®), thenat(c) < eof(d) forallt € T.

A strategyo is proper if it is a limit point of a sequencio®}._.o, wherec® is an

e-proper equilibrium of", for all €.
8As it should be expected, not every proper equilibrium isqmer Consider the Pois-
son gamé = {n, T,r,C,u}, with expected number of playens= 2, two possible types that
are equally probable, i.d. = {1,2} andr(1) =r(2) = 1/2, set of choice€ = {a,b,c,d}
and utility function:
1 ifx(b)y=1
u(x,a)=0 Vx Uz(X,a) =
0 otherwise
uy (x,b) = x(d) —x(c)
uw(x,b)=e1 wx
up(x,c)=—-1 W¥x
Uz(X,c) =—1 VX
ur(x,d) =-2 Vx
up(x,d) =—-2 W¥x

The actiona is dominated for players of type 2 by actiim The strategyo =
(01,02) = (b,a) is perfect. To see this consider the sequencemdrfect equilibria:
of = Jea+ (1—€)b+ Jec+ Led
05 = (1—e—2¢?)a+eb+e?c+€d
For every type, actiom is always strictly worse than actior)y hence, in anye-proper
equilibrium, the former is played with strictly less proliap than the latter. Therefore, a

player of type 1 plays the actidnwith a probability less thaa times the probability that

she gives t@. Hence, in no proper equilibrium she playsvith positive probability.
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Poisson game described in Example 3.4. Notice that thidieguim uses
completely mixed strategies, and consequently, it is atstmperfect equi-
librium (again, using a straightforward extension of thaea&pt to Poisson
games)

Examples 3.4 and 3.5 suggest that we may also demand rosistne
against perturbations other than trembles. (In ExampletBedpayoffe2
coincides with the probability thata) = x(b) = 1 under the strategy =
1/2a+1/2b. In example 3.5 the payoé—! coincides with the probability
thatx(a) = 1, also tha(b) = 1, under the strategy = (01,02) = (a,b).)
Specifically, perturbations in the Poisson paramateeem like the natu-
ral candidate as the model is of population uncertainty. usestudy the

following equilibrium concept.

DEFINITION 3.6. The strategy is a perfect equilibrium of the Pois-
son gamd™ = (n, T,r,C,u) if there exists & > 0 such thao is a perfect

equilibrium of the Poisson ganie= (f, T,r,C,u) forall fie (n—&,n+&).

A perfect equilibrium is a perfect equilibrium, not only of the origin
game, but also of every game that is obtained by small pextiors in
the expected number of players. Notice that we cannot redjusively on

perturbations in the expected numbers of players. One cly eanstruct

9n addition strictly perfect equilibrium does not satisfyistence. To see this, con-
sider a Poisson game with expected number of player®, only one possible type, four
different choice€ = {a, b, c,d} and utility function:
u(a,x) = 1+x(c)
u(b,x) = 1+x(d)
u(c,x) =0 Vvx

u(d,x) =0 Wx

Notice that there is no equilibrium that is “robust” to evggssible tremble.
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examples that do not pose any restriction in the expectedauot players
with unreasonable Nash equilibria. See for instance Exal.
Let us analyze why the perféatquilibrium concept is not adequate by

means of the following example.

ExamMPLE 3.6. Consider the family of Poisson games with expected
number of players equal o> ‘7‘,10 with only one type, set of choic&3=

{a,b}, and utility function:
u(a,x) = x(b)

ubxy—dt  TX@=xB)=0

2x(a) otherwise.

Every game has a unique equilibrium and it depends.bh Conse-

quently, it does not have a perféetquilibrium.

This example prompts us to discard the previous equilibroamcept
and reveals that demanding stability against variationthénPoisson pa-
rameterm forces to tolerate, at least, smooth variations of the @iyitim
strategy if we want to retain existence. Thereforey i a perfect equilib-
rium of ', we may want any game that only differs frdmin that it has a
slightly different number of expected players to have agquréquilibrium
that is not far away frono.

As the next example shows, this relaxation would bring bakidated

equilibria.

EXAMPLE 3.7. Letl be a Poisson game with expected number of play-

ers equal ton = 6, two different typesT = {1,2} with r(1) = 2/3 and

101t is enough that is such thatn n > —n.

1The unique equilibrium is = aa+ (1 — a)b, wherea = (1— L)/ (3-%).
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r(2) = 1/3, set of available choic&3= {a,b,c,d}, and utility function:

ur(h,x)= 0 VvxeZ(C),vheC

1 ifx(c)=x(d)=1
uz(a,x) =

0 otherwise
ux(b,x)= €2 VxeZ(C)

uz(h,x) = —1 ¥xe Z(C),h=c,d.

Notice first that the number of players with type 1 is a Poissom
dom variable of parameter 4. The stratepy- (01,02) = (1/4a+1/4b+
1/4c+1/4d,a) implies that the event(c) = x(d) = 1 occurs with proba-
bility e~2. The strategy is a perfect equilibrium where players of type 2
play dominated strategies. Tageo be a small number. The Poisson game
rY={n+g,T,r,C,u} has a dominated perfect equilibrium very close to
o where players of type 1 play actig¢t/4+«k,1/44+K,1/4—K,1/4—K),
for kK = g/(24+ 4g), and players of type 2 play acticm On the other
hand, the Poisson ganfi@ = {n—g, T,r,C,u} also has a dominated per-
fect equilibrium very close tas, where players of type 1 play action
(1/4—-«",1/4—«',1/4+K',1/4+K), for K" = g/(24— 4g), and players
of type 2 play actiora.

So far we have provided a number of results and examples hioat s
that some equilibrium concepts proposed for normal form egoo not
retain either admissibility or existence when extendedais$dn games. In
the next section we propose an equilibrium concept that slibat, in this

setting, these properties are not incompatible.
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3.5. Undominated Perfect Equilibria

The same arguments that in normal form games compel to dispios
the undominated equilibria that are not perfect are alsé fmehded here.
Perfection is a weak requirement, it asks for stability agabne single
perturbation, not against every possible perturbationa Assult, equilibria
that are not perfect are very unstable.

The main difference in the current setting is that there aréept equi-
libria that are dominated. We want to put forward a strongiegr of admis-
sibility for games with population uncertainty. Such a digfam comprises
itemsa andy from the list of possible concepts of admissibility prouide

by Mertens (2004) and listed at the end of Section 3.3.

DEFINITION 3.7. 8 is an admissible best response againstit is un-
dominated and there exists a sequence of completely niikednverging

to o such tha® is a best response against ech).

Accordingly, we may say that the strategyis admissible if for every
t, o¢ is an admissible best response agamstherefore, ifo is an admis-
sible strategy it is a perfect equilibrium, and we may talkwaithe set of
admissible equilibria.

We want to propose an equilibrium concept that satisfies ssliity
and that generates a nonempty set of equilibria for any g&ueh a con-
cept is introduced in Definition 3.8, the admissibility peoty will come
directly from the definition and the existence result is kgtein Proposi-
tion 3.4. The following Proposition shows that every Poisgame has an
equilibrium in undominated strategies. It could have besppsed as a
corollary of our main existence result. However, we preteimvert the
order of presentation so that the argument of the main praofbe more

easily followed.
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We proceed to prove that every Poisson game has an equttilimiun-
dominated strategies. Lemma 3.2 implies that the set ofmimttied strate-
gies is not convex and, hence, we could not show existencedufminated
equilibria using a standard fixed point argument in this Setonstructive

proof shows that:

PrROPOSITION3.3. Every Poisson game has a Nash equilibrium in un-

dominated strategies.

PROOF Consider a Poisson ganie with set of choice€ and utility
vectoru. Recall that iff is an actionc (6) denotes the carrier & Notice
that if ¢(8) C ¢ (') then there exist & € (0,1) and an actio®” such that
8 =A0+ (1—AN)0". If B is dominated for players of type there exists
a 6 that dominates it, and & such thatJ;(6,5) < U(8,5). Moreover, if
c(8) C c(0') then® = A8+ (1—\)0” is dominated by = A8+ (1—A)0”
andU,(6',6) < Uy(¢,6).

This implies that we can talk about dominated carriers aat| tjiven
a dominated carrier there exists a strategy such that any action with
carrier that containg is dominated by an action that is a strictly better
response t@.

Consider the set of all possible carriers, and Ealthe finite set of all
dominated carriers for players of typeFor each minimal element @,
sayd, letog, be a strategy such that any action with carrier that conthins
is dominated by an action that is a strictly better responseith a strategy.
Let M; be the set of minimal elements Df.

For A > 0, define a new Poisson garfi&, with utility vector given by
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which implies expected utilities,
U (81,0) =Ut(6,0) +A 5 Ur(Br,04).

This new Poisson game has an equilibrium. Moreover, no dat@ih
action of the original game is used with positive probayilit that equilib-
rium. Take a sequence af— 0. There exists a subsequence of equilibria
{0}, that converges to som@ By continuity of the utility functiong is

an equilibrium in undominated strategies of the originahga O

In Section 3.4 we have defined perturbed Poisson games. hiuatped
game(I',n) an action® € %;(n;) is dominated for typé if there exists
an alternative actio®’ € Z;(n;:) such thatJ;(6,0) < U(¢',0), for every
possible strategg € X (n) andU;(6,0’) < Uy(6/,d’) for at least onev’ €
z(n).

We could strenght the definition of perfection (Definitiob)3.asking

the equilibria in the sequence to be undominated:

DEFINITION 3.8. A strategyo is an undominated perfect equilibrium
of a Poisson gamE if it is the limit point of a sequencéa” },_.o whereg"

is an undominated equilibrium ¢f ,n) for all ).

Every perturbed Poisson game has an undominated equiliBfiu

Moreover, forn close to zero the sets of dominated carrier$ iand in

1215 see this, a modification of the proof of Proposition 3.3 ldodo, where the
carrier of an action is defined as the set of pure actions&eaive strictly more probability

than the minimum weight imposed loy
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(F',n) coincide for every possible type. Hence, every undominated
fect equilibrium is perfect and undominated (i.e., it Sa&sour strong ver-
sion of admissibility). Since every pertubed Poisson gaasedn undomi-
nated equilibrium and since this equilibrium is containethie compact set
(A(C))T it follows:*3

PROPOSITION 3.4. Every Poisson game has an undominated perfect

equilibrium.

The definition appears to be stronger than requiring seglgrpérfec-
tion and undominance because it poses restrictions in theesee of equi-
libria of the associated perturbed Poisson games. The nexBition
shows that both definitions are equivalent. This fact, i@ Lemma
3.6, simplifies the analysis of undominated perfect equilib in Poisson

games.

PrROPOSITION3.5. The set of undominated perfect equilibria coincides
with the intersection of the set of undominated equilibrighvilie set of

perfect equilibria.

PrROOF Leto belong both to the set of perfect equilibria and to the set
of undominated equilibria of . Sinceao is perfect it is the limit point of
a sequencgao” },,_.o wherea"l is an equilibrium of(I",n). Because is
undominated, its carrier is not a dominated one. Moreowem)fclose to
zero the sets of dominated carrierslfirand in (I',n) coincide for every
possible type. For eaah letn’ be defined by:

of(c) ifor(c)=0
ni(c) = t(c) e) for all c,t.

ni(c) otherwise

1335ee footnote 5.
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Theno" = ¢" is an undominated equilibrium df",n’). Moreover the
sequence afi’ converges to zero. Henagjs the limit point of the sequence

{0} of undominated equilibria fof", n’). O






CHAPTER 4

Generic Determinacy of Nash Equilibrium in Network

Formation Games

4.1. Introduction

A basic tool in applying noncooperative game theory is toeha¥inite
set of probability distributions on outcomes derived froguiéibria.! When
utilities are defined over the relevant outcome space, ieiskmow that this
is generically the case when we can assign a different owd¢ormach pure
strategy profile (Harsanyi, 1973), or to each ending nodenoéxensive
form game (Kreps and Wilson, 1982).

A game formendows players with finite strategy sets and specifies
which is the outcome that arises from each pure strategyl@foft could
identify, for instance, two ending nodes in an extensive@émm with the
same outcome. Govindan and McLennan (2001) give an exarhalgame
form such that, in an open set of utilities over outcomesgpees infinitely
many equilibrium distributions on outcomes. In view of sachegative re-
sult, we have to turn to specific classes of games to seek &itiy@results

regarding the generic determinacy of the Nash equilibriamcept. For

1By outcomesve mean the set of physical or economic outcomes of the gaenet{e
set of different economic alternatives that can be founerafte game is played) and not
the set of probability distribution induced by equilibri/e will refer to the latter concept

as the set of equilibrium distributions.
2Harsanyi (1973) actually proves that the set of Nash eqialis finite for a generic

assignment of payoffs to pure strategy profiles.
SMore generally, it specifies a probability distribution dretset of outcomes. Game

forms are formally defined in Section 4.2.2

57
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some examples, see Park (1997) for sender-receiver ganteBeaSinop-
oli (2001), De Sinopoli and lannantuoni (2005) for votingrgess.

This paper studies the generic determinacy of the Nashileduih con-
cept when individual payoffs depend on the network conngdtiem. The
network literature has been fruitful to describe social andnomic inter-
action. See for instance Jackson and Wolinsky (1996), dacasd Watts
(2002), Kranton and Minehart (2001), or Calvo-Armengol @00lt is,
therefore, important to have theories about how such né&svarm. Dif-
ferent network formation procedures have been proposeda Eompre-
hensive survey of those theories the reader is referrectisda (2003).

The current paper is concerned with a noncooperative apprtoanet-
work formation. We focus on the network formation game psgabby
Myerson (1991). It can be described as follows: each playmslsaneously
proposes a list of players with whom she wants to form a limkl a direct
link between two players is formed if and only if both playaggee on that.
This game is simple and intuitive, however, since it takes phlayers to
form a link, a coordination problem arises which makes thmgaxhibit
multiplicity of equilibria. Nevertheless, we can prove ttiezen though a
network formation game may have a large number of equililexiary prob-
ability distribution on networks induced by equilibria isrgerically isolated.

The network formation game is formally presented in the sextion.
Section 4.3 discusses an example. Section 4.4 containsdimeresult and
its proof. To conclude, Section 4.5 discusses some extensibthe result
to other network formation games as well as a related resuthke exten-
sive form game of network formation introduced by Aumann Eherson
(1989).
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4.2. Preliminaries

Given a finite sef,, denote a® (A) the power set oA, and as\(A) the

set of probability distributions oA.

4.2.1. Networks. Given a set of playerdl, anetwork gis a collection
of direct links. A direct link in the networlg between two different players
i and j is denoted byij € g. For the time being we focus on undirected
networks. In an undirected networke g is equivalent toji € g.* The set
of i's directlinks ingisLj(g) ={jkeg:j=iork=i}.

The complete networgN is such that(g\) = {ij : j #i}, for alli €
N. In gV playeri is directly linked to every other player. The set of all
undirected networks oN is ¢ = 2 (gV).

Each player can be directly linked wittN — 1 other players. The num-
ber of links in the complete network' is N(N — 1) /2, dividing by 2 not to

count links twice. Since is the power set a§", it has 2(N-1)/2 elements.

4.2.2. Game forms.A game formis given by a set of playerlsl =
{1,...,n}, nonempty finite sets of pure strategi®s. .., S,, a finite set of
outcomeq, a function8: S— A(Q), and utilities defined over the outcome
spaceQ, that is,u1,...,uy: Q — R. Once we fixN, S,..., S, Q, andb, a
game form is given by a point i(iRQ)N.

Utility functions uy,...,uy over Q induce utility functionsvy, ..., v,
over S according tou; 06, ...,uy0 0. Hence, every game form has asso-

ciated its finite normal form game.

4.2.3. The Network Formation Game. The following network for-
mation game is due to Myerson (1991). The set of playeks &ll players
4In a directed network, if and j are two different agents, the lirik is different from

the link ji. This two links can be regarded as different if, for instaribey explain which

is the direction of information, or which is the player whasmonsoring the link.
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in N simultaneously announce the set of direct links they wigbnm. For-
mally, the set of player's pure strategies i§ = »(N\ {i}). Therefore, a
strategys € S is a subset oN \ {i} and is interpreted as the set of players
other than with whom playeri wishes to form a link. Mutual consent is
needed to create a direct link, i.e.sifs played,ij is created if and only if

j €s andi €s;.

We can adapt the previous general description of game foontlset
present context in order to specify the game form that sirastthe net-
work formation game. Let the set of players and the collecbb pure
strategy sets be as above. The set of outcomes is the seticéaiad net-
works, i.e.,Q = g. The functionB is a deterministic outcome function,
formally, 8: S— g. Given a pure strategy profil®, specifies which net-
work is formed respecting the rule of mutual consent to eréaect links.
Utilities are functionsiy, ..., uy: G — R. Once the set of playebsis given,
the pure strategy sets are automatically created and threformation
game is defined by a point i(’RG)N.

If players other tham play according ta_j € S_;,” the utility to player
i from playing strategy is equal tovi(s,s_i) = Uij(6(s,S-i)).

Let>; = A(S) be the set of mixed strategies of playeFurthermore, let
> =23 x---x Xy While a pure strategy profikresults in the networR(s)
with certainty, a mixed strategy profitegenerates a probability distribution

on g, where the probability thag € g forms equals

P(g|o) = ( 0i(3)>-
seezl(g) il;l“

°S.i =4S
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If players other thari play according too_; in =_;,° the utility to
player i from playing the mixed strategg; is equal toVi(oj,0_ij) =

Ygeg P(9] (0i,0-i))ui(9).

DEFINITION 4.1 (Nash Equilibrium). The strategy profitec Z is a
Nash equilibrium of the network formation gam#&fifoi,o_;) > Vi(o},0_;)

for all of in Z;, and for alli in N.

4.2.4. Generic Finiteness of Equilibrium Distributions. Let us first

give the definition of a generic set.

DEFINITION 4.2. For anym > 0, we say thaG c R™ is a generic set,

or generic, ifR™\ int(G) has Lebesgue measure 0.

Govindan and McLennan (2001) give an example of a game foa) th
in an open set of utilities over outcomes, produces infipiteny equilib-
rium distributions on the outcome spatcélevertheless, they also provide
a number of positive results. Consider the general spedditatf game
forms given in Section 4.2.2. The following theorem is aldignodifica-

tion of Theorem 5.3 in Govindan and McLennan (2001).

THEOREMA4.1. If 8 is such that at all completely mixed strategy tuples
and for each agent i the set of distributions Onthat agent i can induce
by changing her strategy {$S| — 1)-dimensional, then for generic utilities

there are finitely many completely mixed equilibria.
The proof of Theorem 4.1 is offered in the appendix.

624 =4 2j-
Their counterexample needs at least three players. In atrpaper, Kukushkin et al.

(2007) provide a counterexample for the two player case.
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4.3. An Example

Consider a 3 person network formation game. The correspgmdime
form is depicted in Figure 4.1. Player 1 is the row playeryepta2 the
column player, and player 3 the matrix player. The syngfallenotes the
empty networkg\ denotes the complete networ denotes the network
that only contains linkj, andg denotes the network where playieis

connected to every other player and such that there are tiefuinks®

{0y {1} {3} {1,3} {0} {1} {3} {1,3}
o} o o o o ® o ¢ o

{2} gO g12 gO ng go g12 gO ng
{3} gO go gO gO 913 913 913 913
{2’ 3} go g12 gO ng ng gl gl3 gl
{0} {1}
{0} go 90 923 923 go 90 923 923
{ 2} go g12 g23 g2 go g12 g23 g2
{ 3} go 90 923 923 913 913 g3 g3
{2’ 3} go g12 g23 g2 g13 gl g3 gN
{2} {12}

FIGURE 4.1. The game form of a network formation game

with three players.

Suppose that the utility function of player= 1,2 is ui(g) = |Li(9)|,
i.e. player = 1,2 derives an utility from networkg equal to the number of
direct links that she maintains @ Suppose also that player 3 has the same

utility as players 1 and 2, except that she derives an uslipyal to 2 from

8This network architecture is often referred to asta, see Bala and Goyal (2000)
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networkg?. Speciffically,

u(®) = 0 foralli,

" 1 ifi=kori=]j
ui(9™) =
{0 otherwise,
2 ifi=]

u(@)=<2 ifi=3andj=2

1 otherwise,

g@)= 2 foralli.

Figure 4.2 displays the set of Nash equilibria of this gamiee Jubset
of Nash equilibria of line (i) supports the empty networle gubsets of line
(i) support, respectively, networkg?, g2 andg??, the subsets of line (iii)

support, respectively, networks, g2 andg®.

()
NE={ ({0}.{@},{o}) }U
(i)
{ (21 4an1on JU{ (340 2h U { (o131 420 U
(iii)
{(23h {23 11h JU{ (2 (2,31 120 JU{ (8h 8hiz.2h JU
()
{({231{1.3 M2+ (1-M){1.2) ;A e [0,1]}.

FIGURE4.2. Set of Nash equilibria of the 3 person network

formation game discussed in Section 4.3.
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The subset of equilibria of line (iv) induces a continuum oflgability
distribution over the set of networks that give probabikity networkg?and
probability (1 — ) to the complete networg for A € [0, 1].
Now perturb independently the utility that each player oig&om each
network. The subsets of strategy profiles of lines (i) thio(ig) are still

equilibrium strategy profiles. In addition, there are twagbilities:

e Player 3 ranks the complete netway® over networkg?. In this
case the set of Nash equilibria is composed of lines (i) tiind(ii)

united to
{(23n{13n{12) }.
which supports the complete network.
e Player 3 ranks networg? over the complet nerworg". Then, no
Nash equilibrium gives positive probability to the completet-
work. The set of Nash equilibria is composed of lines (i) tigio

(iii) united to
{2} +@-N{234{13{2) A e o),

which supports networg?.

In either case, there is a finite number of probability disttions on

networks induced by equilibria.

4.4. The Result

PROPOSITION4.1. For generic ue (Rg)N the set of probability distri-
butions on networks induced by Nash equilibria of the netwankdbion

game is finite.

PROOF Given a network formation game, there are a finite number of
different normal form games obtained by assigning to eaahgul an ele-

ment of? (§) as her strategy set.
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Let T =Ty x--- x Ty, whereT; € §. The normal form gamé is
defined by the set of playeh, the collection of strategy se{g; }icn, and
the collection of utility functions{ViT}ieN, WhereviT is the restriction ofy;
to T. Furthermore, let;T = 6(T).

It is enough to prove that for a generic assignment of paytoffiset-
works, completely mixed Nash equilibria of each of those gsiinduce a
finite set of probability distributions og. Notice that every equilibrium of
any game can be obtained as a completely mixed equilibriutineoiodi-
fied game obtained by eliminating unused strategies.

Consider the gamET. If there exists a strategy € T; with j € tj and
there does not exist a strateg\e T; such that € tj, replace strategly with
t' =t \ {j} in casd/ is not already contained ifi, otherwise just eliminate
strategytj from T;. Notice that by making this change, the set of probability
distributions ongt that can be obtained through mixed strategies remains
unaltered. Most importantly, for every completely mixedsNaquilibrium
of I't, there exists a completely mixed Nash equilibrium of the iied
game that induces the same probability distributiorgen

Repeat the same procedure vijthif there exists & € t/ and there does
not exist a strategg in T with i € t substitutet/ for t” =t/ \ {k} in case
t” is not already contained if. Continue eliminating and replacing pure
strategies in the same vein, for evarin T; and for everyi in N, until every
link proposal that any player has in some on her strategisnsed with
positive probability under a completely mixed strategyfiigoLet T denote
the resulting set of pure strategy profiles, and noticeghat= Gt.

At every completely mixed strategy profieof I'+, every network in
GT receives positive probability. At the strategy profitec_;), only those

networksg € gt such that{ij : j €tj} C greceive positive probability, and
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since for every playeareach of her pure strategies is different, we have that:

Therefore, at every completely mixed strategy profil€ pthe set prob-
ability distributions ong 7 that playeii can induce by varying her strategy is
(my —1)-dimensional. We can apply Theorem 4.1 to the game form given
by T and@s, the restriction o to T. This implies that for generic utilities
over gt there are finitely many completely mixed equilibrialGf, which
in turn implies that the set of probability distributions gr induced by
completely mixed Nash equilibria &fr is generically finite.

Let T C S we can Write(]Rg)N - (]RQT)N X <R§\9T>N. LetK be a
closed set of zero measure(iRgT)N, i.e., the closure of the set of payoffs
over gt such that the set of completely mixed Nash equilibrig-pfnduces
infinitely many probability distributions og, then for any closed sét in
(RG\GT)N the closed se x H has zero measure i(ng)N. The same is

true for any othefl’ C S. This concludes the proof. O

4. 5. Remarks

4.5.1. Absence of Mutual ConsentModels of network formation can
be found in the literature that do not require common agre¢ietween
the parties to create a direct link, see for instance Bala ang32000).
Thus, suppose that mutual consent is not needed to createcaldik. Let
N be the set of players, I&;, ..., S, be the collection of pure strategy sets,
whereS = 2(N\ {i}) foralli in N, and letg be the outcome space. In the
model analyzed in Section 4.4, a link may not be created dvaiplayer
wants it to be created. In the current model, a link may beteteaven if a
player does not want it to be created.

In this modified network formation game, generically, the afeequi-

librium distributions ong is also finite. Notice that we can reinterpret pure
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strategies € S as the set of players other thawith whom player does
not want to form a link. The linkj is not created only if playardoes not
want to be linked with playey and playerj does not want to be linked with
playeri. Define® : S— ¢ according tod'(s) = gV \ 8(s), where8 is the
one defined in Section 4.2.3. Now, apply the proof of Sectidn 4

4.5.2. Directed Networks. Sometimes linksj andji cannot be treated
as equivalent for reasons coming from the nature of the phena being
modeled. Directed networks respond to this necessity,fi@xample see
again Bala and Goyal (2000). Denote the set of directed n&snasg 9.
Suppose first that link formation does not need mutual can3ére strategy
set of playeii isS =2 (N\ {i}). A strategys € S is interpreted as the set
of players other thanwith whom player wants to start an arrowhead link
pointing at herself, i.e. the set of links that playevishes to receivé.

Notice that each pure strategy profile leads to a differestneht in
G 9: each player has"2'1 pure strategies, and there af¥"?-1 undirected
networks. Therefore, we are in the case of normal form payeffere the
generic finiteness of equilibria is guaranteed.

Suppose now that if a playerwants to receive a link from player,
player j needs to declare that she wants to send a link to plajer it
to be created. To accommodate for this case, let the strattgyf player
ibeS =9 x§=2(N\{i}) x2(N\{i}). A strategys € S has two
componentssg ands’. We interprets as the set of players other than
from whom playeri wishes to receive a link, angt as the set of players
other than to whom playeri wishes to send a link. Suppose that the pure

strategy profilesis played. The linkj is created only iff € 5 andi € s;.

SWe can assume, for instance, that the arrowhead tells whittei direction of the

flow of information.
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A similar proof to the one used in Section 4.4 establishegg#reeric
determinacy of the Nash equilibrium concept under thisgrsgttThe key
step that we must change is the following: et= Ty x --- x T, where
T, ¢ § for all i. Consider the normal form ganier. If there exists a
strategyt; € T; such thatj € tf (such thatj € t°) and there does not exist
a strategyt; € Tj such that € t} (such thai € t]), replace strategy with
t' ="\ {j},t°) (witht/ = (t},t3\ {j})). Finally, repeat the same procedure

for everyt;,t/, ... and for everyi until the hypothesis of Theorem 4.1 holds.

4.5.3. A Extensive Form Game of Network Formation.We have fo-
cused on normal form games of network formation. Howevesrelex-
ists a prominent extensive game of network formation dueumann and
Myerson (1989). They proposed the first explicit formali@atof network
formation as a game. It relies on an exogenously given ondarmossible
links. Let(i1j1,-..,imjm) be such a ranking.

The game ham stages. In the first stage playérsnd j; play a simul-
taneous move game to decide whether or not they formilink Each of
them chooses an action from the $gésnot}. The linkiy j; is established
if and only if both players choosges Once the decision on link j1 is
taken, every player gets informed about it, and the play @édime moves
to the decision about link jo. The game evolves in the same fashion, and
finishes with the stage where playéssand j, decide upon linkimjm.t°
The resulting network is formed by the set lingx such that both play-
ersix and jx choseyesat stagek. Although in the argument we work with

10i¢ players get informed about which has been the terminaitiposin the simulta-
neous move game of every stage, the same argument offe@d élsb goes through.

Several features can be added to this basic model. For ggstamo players can be
called to reconsider their decision in case some set of imksrmed, or two player may
not be allowed to decide upon the link connecting them. Ad tieispect, if players are

. . . N(N-1)
forming an undirected networky can be different from 2z .
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undirected networks, the game can be applied to the formafiadirected
networks.

The argument that follows is a modification of the one used dyi@lan
and McLennan (2001) to prove that, for a given assignmentitsfames to
ending nodes in an extensive game of perfect informatiod fanutilities
such that no player is indifferent between two differentcomes, every
Nash equilibrium induces a degenerate probability distitim in the set of
outcomes. Such an argument is, in turn, a generalizatidmeodme used by
Kuhn (1953) to prove his “backwards induction” theorem ttfsracterizes
subgame perfect equilibria for games of perfect infornmatio

Consider the generic set of utilities

N
Ug = {ue <R§) Ui(g1) # Ui(ge) foralli e Nand allgy, gz € g}.

The claim is that if the utility vector is € Ug, every Nash equilibrium
induces a probability distribution o that assigns probability one to some
geg.

Let § denote the set of pure strategies of playerhere now a pure
strategy is a function that assigns one elemenftyefs not} to each infor-
mation set of player. As usualX; = A(S) andX =23 x --- X Z.

Let o € Z be a Nash equilibrium fon € Ug. The appropriate modifica-
tion of o, sayg, is a completely mixed Nash equilibrium of the extensive
form game obtained by eliminating all information sets anahiches that
occur with zero probability in case is played. In this reduced game, ev-
ery information set has a well defined conditional probabdiver networks
and, obviouslyg induces the same probability distribution gnaso.

If there is a stage where a player randomizes betwesandnot and
the other player choosg®swith positive probability, there must be a last

such stage. But at this last stage, §gy, such an agent, say, cannot be
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optimizing, since she is not indifferent betwegn{injn} andguU{injn} for
anyge gG.

We can adapt the previous argument to the case where munhssdids
not needed to create a link. L@{j1,...,imjm) be an oder of links. At stage
k, playeriyx decides whether or not to create linkk. Her decision becomes
publicly known. It is, consequently, a game of perfect infation and the

argument given by Govindan and McLennan (2001) covers Hss.c

4.6. Appendix: Proof of Theorem 4.1

The current proof is based on the one offered by Govindan aclcelt
nan (2001). It uses some concepts and results of semi-algeheory that
we will now revise. Expositions of semi-algebraic geomairythe eco-
nomic literature occur in Blume and Zame (1994), Schanuel. €1891)

and Govindan and McLennan (2001). Proofs of major resuét®anitted.

DEFINITION 4.3. A setA is semi-algebraic if it is the finite union of

sets of the form

{xeR™: P(x) = 0 andQi(x) > 0 and...and)(x) > 0}

whereP andQy, ..., Qk are polynomials irxy, . .., Xm with real coefficients.
A function (or correspondenceg). A — B with semi-algebraic domaiA C
R"and rangd c R™is semi-algebraic if its graph is a semi-algebraic subset

of R™M,

Each semi-algebraic set is the finite union of connected comipts.
Each component is semi-algebraic manifol@df a given dimension. Al-
dimensional semi-algebraic manifald R™ is a semi-algebraic sét ¢ R™

such that for eaclp € M there exist polynomial$,...,Pn_q andU, a
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neighborhood of, such thaDP;(p),...,DPn_q(p) are linearly indepen-

dent and
MNU ={qeU:Pi(q)=...=Pyn_q(q) =0}.

THEOREMA4.2 (Stratification, Whitney (1957))f A is a semi-algebraic
set, then A is the union of a finite nhumber of disjoint, conedcemi-

algebraic manifolds Awith Al ¢ cl(AX) whenever Ancl(AX) # 0.

Henceforth, the superscript of a set indexes componentsie€ampo-
sition as per Theorem 4.2, while a subscript keeps indexnagegy sets by
players. Theorem 4.2 has important consequences. Amosg,tix@ will
use the following intuitive ones: L&t ¢ R™ andB C R" be semi-algebraic
sets, then

¢ the dimension oA, dimA, is equal to the largest dimension of any
element of any stratification,
e if Ais O-dimensional theA is finite,
e Ais generic if and only if difiR™\ A) < m,
e dim(A x B) = dimA+dimB.
We need one additional result. While Theorem 4.2 decompasas s

algebraic sets, the following one decomposes semi-algeforactions.

THEOREM 4.3 (Generic Local Triviality, Hardt (1980))Let A and B
be semi algebraic sets, and let § — B be a continuous semi-algebraic
function. Then there is a relatively closed semi-algebsst B C B with
dimB' < dimB such that each component Bf B\ B' has the following
property: there is a semi algebraic set Bnd a semi-algebraic homeomor-
phism h Bl x FI — Al, where A = g~1(B), with g(h(b, f)) = b for all
(b, f) € Bl x F.

We can now proceed to prove Theorem 4.1. Recall that at every

completely mixed strategy < %, the set of probability distributions on
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outcomes that playerr can induce by varying her strategy (55| — 1)-

dimensional.

PROOF OFTHEOREM4.1. Let
A={(o,u) : ois a completely mixed equilibrium far}.

Let 1 be the projection oA ontoZ. Apply Theorem 4.3 tat and choose
>) such that dinAl = dimA.*! We have that dimA = dim3! 4 dimF] <
dimZ +dimF 1. Leto belong toz}, then dinti; (o) = dim{c} +dimFJ =

dimFJ. Now consider a given, the set
{li € U; : 0 is a completely mixed equilibrium fqifi,u_;) }

is (dimU; — (|S| — 1))-dimensional. Consequently, the dimension of

5 1(0) andF! is equal to dintJ —dimZ, which implies that dird < dimU.
Now apply Theorem 4.3 toy, the projection ofA ontoU. ChooseJ |

to be of the same dimensiontds Therefore, dind) = dimU +dimTg;* (u).

This implies that dimlel(u) <dimA—-dimU <0, i.e. there is afinite set of

completely mixed equilibria wheneverbelongs to a full dimensional /.

This concludes the proof since lower dimensidd&k are nongeneric. O

1such a3l can be found because we can keep applying Theorem 418 to

T51(Z') — %/, whereZ’ plays the role o8'.
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