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Abstract. In [1] a generalisation of Formal Concept Analysis was intro-
duced with data mining applications in mind, K-Formal Concept Anal-
ysis, where incidences take values in certain kinds of semirings, instead
of the standard Boolean carrier set. A fundamental result was missing
there, namely the second half of the equivalent of the main theorem of
Formal Concept Analysis. In this continuation we introduce the struc-
tural lattice of such generalised contexts, providing a limited equivalent
to the main theorem of K-Formal Concept Analysis which allows to in-
terpret the standard version as a privileged case in yet another direction.
We motivate our results by providing instances of their use to analyse
the confusion matrices of multiple-input multiple-output classifiers.

1 Motivation: the Exploration of Confusion Matrices
with K-Formal Concept Analysis

In pattern recognition tasks, when a classifier is provided training data in the
form of feature vectors tagged with an input pattern set and produces for each
vector a tag within an output pattern set, the performance of the classifier can
be gleaned from the collection of pairs (gi,mj) of one input tag, gi, for the
input data and one output tag, mj , produced by the classifier. These results are
aggregated into a confusion matrix, T , whose element Tij gives a “measure” of
the joint event (G = gi,M = mj), “providing an input pattern gi to the classifier
who then produces an output pattern mj”.

In the pattern recognition community we often encounter methods that use
confusion matrices to analyse classification results. However, most of the times
the analysis is manual and limited to the (human-based) pondering of a confu-
sion matrix-representation like the one depicted in figure 1, where the warmer,
brighter (resp. cooler, darker) colour hues are designed to be related to high oc-
currence (resp. to low occurrence) of events. Often, this type of analysis is used
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Fig. 1. Confusion matrix of the desired transformation of English phoneme labels of
speech frames versus their true Mandarin phoneme labels

to bootstrap existing classifiers in order to obtain even better classification fig-
ures or simply to understand the underlying principles of the methods employed
in designing the classification. In particular, in speech recognition, the designer
of a system is challenged to find in this type of representation meaningful or sys-
tematic confusions to determine to what degree the behaviour of an automatic
system differs from human performance.
K-Formal Concept Analysis was introduced in [1] as a generalisation of stan-

dard Formal Concept Analysis in the sense that incidences R ∈ Kn×p represented
as matrices may take values in an idempotent, reflexive semifield K and we take
R(i, j) = λ to mean “object gi has attribute mj in degree λ.” Adequate ana-
logues of basic objects in Formal Concept Analysis become therefore available.

Two serious obstacles may prevent widespread adoption of K-Formal Concept
Analysis as a data exploration technique complementary to the standard theory:
on the one hand, the K-Formal Concept Analysis analogue of the main theorem
of Formal Concept Analysis is incomplete and this may worry the user willing
to be on a sound mathematical ground; on the other hand, [1] did not provide
an algorithm for constructing the lattice of a K-valued formal context, which
prevents its use as a data-intensive exploration procedure.

In this paper, we try to explore further whether K-Formal Concept Analysis
is a proper generalisation of standard Formal Concept Analysis for finite contexts
and to pave the way for the completion of the main theorem. In order to do so
we introduce the structural lattice of a K-Formal Context and try to relate it to
the Concept Lattice of a Formal Context.

In section 2 we first review the theory of idempotent semirings and their
semimodules with a view to providing the necessary objects for our discussion.
In section 3.1 we present a summary of the theory of K-Formal Concept Anal-
ysis presented in ([1], §. 3) and add a new theoretical construct, the structural
lattice of a semimodule over an idempotent, reflexive semiring. We demonstrate
in section 4 the use of this new tool to analyse confusion matrices of multiple



input-multiple output classifiers, which turn out to be amenable to K-Formal
Concept Analysis modelling, and finish with a summary of contributions and an
outlook.

2 Mathematical Preliminaries: semimodules over
idempotent, reflexive semifields as vector spaces

2.1 Idempotent Semirings

A semiring K = 〈K,⊕,⊗, ε, e〉 is an algebraic structure whose additive struc-
ture, 〈K,⊕, ε〉, is a commutative monoid and the multiplicative one, 〈K,⊗, e〉,
a monoid whose multiplication distributes over addition from right and left and
whose neutral element is absorbing for ⊗, ε ⊗ x = ε,∀x ∈ K [2] . On any
semiring K left and right multiplications can be defined:

La : K → K Ra : K → K (1)
b 7→ La(b) = ab b 7→ Ra(b) = ba

A commutative semiring is a semiring whose multiplicative structure is commu-
tative, and a semifield one whose multiplicative structure over K\{ε} is a group.
Thus, compared to a ring, a semiring which is not a ring lacks additive inverses.

An idempotent semiring K is a semiring whose addition is idempotent: ∀a ∈
K, a ⊕ a = a . All idempotent commutative monoids (K,⊕, ε) are endowed
with a natural order ∀a, b ∈ K, a ≤ b ⇐⇒ a ⊕ b = b , which turns them into
join-semilattices with least upper bound defined as a∨ b = a⊕ b . Moreover, for
the additive structure of and idempotent semiring K the neutral element is the
infimum for this natural order, εK = ⊥ .

An idempotent semiring K is complete, if it is complete as a naturally ordered
set and left (La) and right (Ra) multiplications are lower semicontinuous, that
is, they commute with joins over any subset of K . Therefore, complete idem-
potent semirings, as join-semilattices with infimum are automatically complete
lattices [3] with join (∨, max or sup) and meet (∧, min or inf) connected by the
equivalences: ∀a, b ∈ K, a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a .

Example 1. 1. The Boolean semiring B = 〈B,∨,∧, 0, 1 〉, with B = {0, 1} , is
complete, idempotent and commutative.

2. The completed Maxplus semiring Rmax,+ = 〈R ∪ {±∞},max,+,−∞, 0 〉 ,
is a complete, idempotent semifield when defining −∞ +∞ = −∞, so that
εK ⊗>K = εK for K ≡ Rmax,+

3. The completed Minplus semiring Rmin,+ = 〈R ∪ {±∞},min,+,∞, 0 〉 is a
complete, idempotent semifield with a similar completion to that of ex. 2 with
∞+ (−∞) =∞, that is εK ⊗>K = εK for K ≡ Rmin,+ .

2.2 Idempotent Semimodules: Basic Definitions

A semimodule over a semiring is defined in a similar way to a module over a
ring [4,5,6] 1: a left K-semimodule, X = 〈X,⊕, εX〉, is an additive commutative
1 We are following essentially the notation of [4].



monoid endowed with a map (λ, x) 7→ λ · x such that for all λ, µ ∈ K, x, z ∈ X,
and following the convention of dropping the symbol for the scalar action and
multiplication for the semiring we have:

(λµ)x = λ(µx) εKx = εX (2)
λ(x⊕ z) = λx⊕ λz eKx = x

The definition of a right K-semimodule, Y, follows the same pattern with the
help of a right action, (λ, y) 7→ yλ and similar axioms to those of (2.) A
(K,S)-semimodule is a set M endowed with left K-semimodule and a right S-
semimodule structures, and a (K,S)-bisemimodule a (K,S)-semimodule such
that the left and right multiplications commute. For a left K-semimodule, X ,
the left and right multiplications are defined as:

LKλ : X → X RX
x : K → X (3)

x 7→ LKλ (x) = λx λ 7→ RX
x (λ) = λx

And similarly, for a right K-semimodule. If X , Z are left semimodules a mor-
phism of left semimodules or left linear map F : X → Z is a map that preserves
finite sums and commutes with the action: F (λv ⊕ µw) = λF (v)⊕ µF (w), and
similarly, mutatis mutandis for right linear maps of right semimodules.

The elements of a semimodule may be conceived as vectors2. Given a semiring
K and a left K-semimodule X , for each finite, non-void set W ⊆ X, there exists
an homomorphism α : KW → X, f 7→

⊕
w∈W f(w)w . Moreover, α induces a

congruence of semimodules ≡α on KW , by f ≡α g ⇐⇒ α(f) = α(g) . Then
W is a set of generators or a generating family precisely when α is surjective, in
which case any element x ∈ X can be written as x =

⊕
w∈W λww, and we will

write X = 〈W 〉K, that is, X is the span of W . A semimodule is finitely generated
if it has a finite set of generators.

For individual vectors, we say that x ∈ W is dependent (in W ) if x =⊕
w∈W\{ x } λww otherwise, we say that it is free (in W ). The set W is lin-

early independent if and only if ≡α is the trivial congruence, that is, when⊕
w∈W f(w)w =

⊕
w∈W h(w)w ⇐⇒ f = h, otherwise, W is linearly depen-

dent. Let kerα = { f ∈ KW | α(f) = 0 }; then W is weakly linearly independent
if and only if kerα = {0}, otherwise it is weakly linearly dependent.

A basis for X (over K) is a linearly-independent set of generators, and a
semimodule generated by a basis is free. By definition, in a free semimodule
X with with basis {xi }i∈I each element x ∈ X can be uniquely written as
x =

⊕
i∈I αixi, with [ai]i∈I the co-ordinates of x with respect to the basis. A

weakly linearly-independent set of generators for X is a weak basis for X (over
K). The cardinality of a (weak) basis is the (weak) rank of the semimodule.

In this framework, notions in usual vector spaces have to be imported with
care. For instance, the image of a linear map F : X → Y is simply the semim-
odule ImF = {F (x) | x ∈ X }, but it is in general not free.

2 Most of the material in this section is from [5], §17, and [7,8,9].



Given a free semimodule X with basis {xi }i∈I , for each family { yi }i∈I of
elements of an arbitrary semimodule Y there is a unique morphism of semimod-
ules F : X → Y such that F (xi) = yi,∀i ∈ I, namely F

(⊕
i∈I λixi

)
=

⊕
i∈I λiyi

and all the linear maps Lin(X ,Y) are obtained in this way ([7], prop. §73; [5],
prop. §17.12). That is, linear maps from free semimodules are characterised by
the images of the elements of a basis.

On the other hand, a semiring K has the linear extension property if for all
free, finitely generated K-semimodules X ,Y, for all finitely generated subsemi-
modules Z ⊂ X and for all F ∈ Lin(Z,Y), there exists H ∈ Lin(X ,Y) such
that ∀x ∈ X, H(x) = F (x) . The importance of this property derives from the
fact that when the linear extension property holds, each linear map between
finitely generated subsemimodules of free semimodules is represented by a ma-
trix. In particular, when it holds for free, finitely generated (left) semimodules,
X and Y with bases {xi }i∈I and { yj }j∈J , each linear map is characterised by
the n × p-matrix R = (F (xi)j), which sends vector x = {xi}ni=1 to the vector
F (x) ' ((xR)1, . . . , (xR)p) .

2.3 Semimodules over Idempotent Semirings

In this section all semimodules will be defined over an idempotent semifield.
Recall that examples of these are B, the Boolean semifield and the completed
maxplus and minplus semifields.

Idempotency and Natural Order in Semimodules. A left, right K-semi-
module X over an idempotent semiring K inherits the idempotent law, v ⊕ v =
v,∀v ∈ X, which induces a natural order on the semimodule by v ≤ w ⇐⇒
v ⊕ w = w,∀v, w ∈ X whereby it becomes a ∨-semilattice, with εX the mini-
mum. In the following we systematically equate idempotent K-semimodules and
semimodules over an idempotent semiring K . When K is a complete idempo-
tent semiring, a left K-semimodule, X is complete (in its natural order) if it
is complete as a naturally ordered set and its left and right multiplications are
(lower semi)continuous. Trivially, it is also a complete lattice, with join and meet
operations given by: v ≤ w ⇐⇒ v ∨ w = w ⇐⇒ v ∧ w = v . This extends
naturally to right- and bisemimodules.

Example 2. 1. Each semiring, K, is a left (right) semimodule over itself,
with the semiring product as left (right) action. Therefore, it is a (K, K)-
bisemimodule over itself, because both actions commute by associativity. Such
is the case for the Boolean (B,B)-bisemimodule, the Maxplus and the Minplus
bisemimodules. These are all complete and idempotent.

2. For n, m ∈ N, the set of matrices Kn×p is a (Kn×n,Kp×p)-bisemimodule
with matrix multiplication-like left and right actions and component-wise
addition, the set of column vectors Kp×1 is a (Kp×p,K)-bisemimodule and
the set of row vectors K1×n a (K, Kn×n)-bisemimodule with similarly defined
operations. If K is idempotent (resp. complete), then all are idempotent (resp.
complete) with the component-wise partial order their natural order.



As in the semiring case, because of the natural order structure, the actions
of idempotent semimodules admit residuation: given a complete, idempotent left
K-semimodule, X , we define for all x, z ∈ X, λ ∈ K the residuals:(

LKλ
)#

: X → X
(
LKλ

)#
(z) =

∨
{x ∈ X | λx ≤ z } = λ\z (4)(

RX
x

)#
: X → K

(
RX

x

)#
(z) =

∨
{λ ∈ K | λx ≤ z } = z/x

and likewise for a right semimodule, Y .
There is a remarkable operation that changes the character of a semimodule

while at the same time reversing its order by means of residuation:

Definition 3. Let K be a complete, idempotent semiring, and Y be a complete
right K-semimodule, its opposite semimodule is the complete left K-semimodule

Yop = 〈Y,
op
⊕,

op→〉 with the same underlying set Y , addition defined by (x, y) 7→
x

op
⊕ y = x ∧ y where the infimum is for the natural order of Y, and left action:

K × Y → Y (λ, y) 7→ λ
op→ y = y/λ

Consequently, the order of the opposite is the dual of the original order.

For the opposite semimodule the residual definitions are:

λ
op

\ x =
(
LY

op

λ

)#

(x) =
∧
{ y ∈ Y | x ≤ y/λ } = x · λ (5)

x
op

/ y =
(
RYop

y

)#

(x) =
∨
{λ ∈ K | x ≤ y/λ } = x\y

Note that we can define mutatis mutandis the opposite semimodule of a left
K-semimodule, X , with right action x

op← λ = λ\x . Also, noticing that the first
residual in eq. 5 is in fact an involution we may conclude that the operation of
finding the opposite of a complete (left, right) K-semimodule is an involution:
(Yop)op = Y .

Constructing Galois Connections in Idempotent Semimodules. The
following construction is due to Cohen et al. [4]. Let K be a complete idempotent
semiring; for a bracket 〈· | ·〉 : X×Y → Z between left and right K-semimodules,
X and Y respectively, onto a K-bisemimodule Z and an arbitrary element ϕ ∈ Z,
which we call the pivot, define the maps:

·−ϕ : X → Y x−ϕ = L#
x (ϕ) =

∨
{ y ∈ Y | 〈x | y〉 ≤ ϕ } (6)

−
ϕ · : Y → X −

ϕ y = R#
y (ϕ) =

∨
{x ∈ X | 〈x | y〉 ≤ ϕ }

We have 〈x | y〉 ≤ ϕ ⇐⇒ y ≤ x−ϕ ⇐⇒ x ≤ −
ϕ y, whence the pair is a

Galois connection between Y and X , (·−ϕ ,−ϕ ·) : X ( Y . This construction is
affected crucially by the choice of a suitable pivot ϕ: if we consider the bracket



to reflect a degree of relatedness between the elements of each pair, only those
pairs (x, y) ∈ X × Y are considered by the connection whose degree amounts
at most to ϕ . Therefore we can think of the pivot as a maximum degree of
existence allowed for the pairs.

Recall X and Y are both complete lattices as well as free vector spaces. Note
that the closure lattices X = −

ϕ (Y) and Y = (X )−ϕ do not agree with their
ambient vector spaces in their joins, but only in their meets. To improve on this,
the notion of a left (resp. right) reflexive, (K, ϕ), semiring is introduced in [4]
as a complete idempotent semiring such that (〈· | ·〉 : K × K → K, ϕ) with
〈λ | µ〉 = λµ induces a perfect Galois connection3 under construction (6) for all
λ ∈ K, −(λ−) = λ (resp. (−λ)− = λ .)4 The interest in reflexive semirings stems
from the fact that in such semirings X and Y are actually subsemimodules (that
is their suprema coincide with those) of the corresponding spaces ([4], prop. 28).

Note that ϕ need not be unique: if (K, ϕ) is right (or left) reflexive, for any
λ ∈ K invertible, (K, ϕλ) is left reflexive (and (K, λϕ) is right reflexive.) Finally,
Cohen et al. [4] prove that idempotent semifields are left and right reflexive, and
suggest that for the Boolean semiring we must choose ϕ = 0B, the bottom in the
order. For other semifields any invertible element may be chosen, e.g. ϕ = eK .

Idempotent Semimodules as Vector Spaces. When K is an idempotent
semiring if a K-semimodule has a (weak) basis, it is unique up to a permuta-
tion and re-scaling of the axes, that is a scaling endomorphism ([9], Th. §3.1),
x′i = λixi , and every finitely generated K-semimodule has a weak basis ([9],
Coroll. §3.6). In particular, let K be an idempotent semifield, then the free idem-
potent semimodule with n generators is isomorphic to Kn . Essentially, such
free idempotent semimodules are generated by the bases En , {ei}ni=1 , ei =
(δi1, δi2, . . . , δin), where δij is the Kronecker symbol over K, δii = eK, δij =
εK, i 6= j .

Importantly, the linear property holds in every idempotent semiring which
is a distributive lattice for the natural order ([7], Th. §83). This is the case for
the semifields B (the Boolean semiring), Rmax,+ and Rmin,+ . Therefore, in such
semimodules, modulo a choice of bases for X and Y, we may identify X ∼= K1×n

and Y ∼= K1×p, and linear maps to matrix transformations Lin(X ,Y) ∼= Kn×p,
R : K1×n → K1×p, x 7→ xR . When passing from left to right semimodules this
should read Kp×1 → Kn×1, y 7→ Ry .

Idempotent semimodules have additional properties which make them easier
to work with as spaces: when X is a vector space over an idempotent semiring
K, for a set of vectors, W ⊆ X , the set of finite sums W+ , {

⊕
i wi | wi ∈W},

is a ∨-subsemilattice of 〈W 〉K . Therefore, the ∨-irreducibles of W , generate the
span of W , 〈J (W )〉K = 〈W 〉K . This makes the ∨-irreducibles an interesting set
to obtain a basis.

3 That is, a pair of mutually inverse isomorphisms.
4 When the pivot is the multiplicative unit ϕ = e we drop it.



The Projective Space and the Structural Semilattice. Let X be a left
K-semimodule over an idempotent semiring K. The relation x 4 y ⇔ ∃λ ∈
K, x ≤ λ⊗ y defines a quasi-order 〈X ,4〉 . Since any basis WX is unique up to
a re-scaling map, the Hasse diagram of (WX ,4) is independent of the choice of
basis.

Now define the equivalence relation ([7], p. 41), x ' y
4⇔ x 4 y and y 4 x .

This relation appears already in ([10], p. 2018) and was later considered under
the name of siblinghood relation [11] where two vectors v and w are siblings if
w = λ⊗ v for some λ ∈ K . This is a congruence of ∨-semilattices, therefore [7],
the projective space is the quotient set P(X ) , {[x]' | x ∈ X} (where [x]' the
equivalence class of x ∈ X , is also called the ray of x or the sibling class of x ),
which is also a ∨-semilattice, 〈P(X ),4〉 with the induced order.

For any subset W ⊆ X, let a section of the quotient set W/' , σ : 2X →
X, W 7→ σ(W ) be a set obtained by choosing a single representative from each
sibling class. Note that a section has the order directly induced by 4X [11] . It
is now clear that a section of the quotient set of the join irreducibles of a set of
vectors is a (weak) basis of their span σ [J (W )] = 〈W 〉K .

Next, consider the siblinghood relation above and a basis WX :

Definition 4 (Wagneur [10]). Let X be a left K-semimodule over and idem-
potent semifield K with a basis WX . The structural (∨-)semilattice of X , S(X )
is the quotient set of WX

+ through the siblinghood relation S(X ) , WX
+/' .

The following theorem states that the quotient set WX
+/' is an intrinsic

invariant of X .

Theorem 1 ([10], Th. 2). For any basis WX of a left K-semimodule over and
idempotent semifield K, the quotient map π : WX

+ → WX
+/', w 7→ [w]' is

an epimorphism of ∨-semilattices and WX
+/' is independent of the particular

choice of basis WX .

Since π is an epimorphism of ∨-semilattices and ' a ∨-congruence, the quo-
tient set of the basis through the siblinghood relation WX /' = {[w]' | w ∈WX }
is the set of ∨-irreducibles of the quotient set, J

(
WX

+/'
)

= WX /' [10].

3 The Structural Lattice of a K-Concept Lattice

3.1 K-Formal Concept Analysis, a Reminder

The following has been adapted from [1] to emphasise the fact that the theory
does not cover the case of unbounded cardinalities5.

Definition 5 (K-valued formal context ). For n, p ∈ N, given two sets of
objects G = {gi}ni=1, and attributes M = {mj}pj=1, an idempotent semiring, K,
and a K-valued matrix, R ∈ Kn×p, where R(i, j) = λ reads as “object gi has
attribute mj in degree λ” and dually “attribute mj is manifested in object gi to
degree λ”, the triple (G, M, R)K is called a K-valued formal context.
5 This section follows in the tracks of §1.1 of [12].



Clearly single objects are isomorphic to elements of the space K1×p, that is rows
of R or object descriptions, vectors of as many values as attributes. And dually,
single attributes are isomorphic to elements of the space Kn×1, columns of R or
attribute descriptions. We model (K-valued) sets of objects as row vectors in a
left K-semimodule, x ∈ X ∼= K1×n, and sets of attributes as column vectors in a
right K-semimodule, y ∈ Y ∼= Kp×1 as generalisations of characteristic functions
in the power sets 2G,2M , respectively.

The proof of the following proposition is crucial for future argumentation,
hence we reproduce it in full:

Proposition 2. Let (K, ϕ) be a reflexive, idempotent semiring. For a K-valued
formal context (G, M, R)K, with n, p ∈ N, there is at least one Galois connection
between the lattices of (K-valued) sets of objects K1×n and attributes Kp×1 .

Proof. Recall that X = K1×n is a left semimodule and Y = Kp×1 a right semim-
odule, whence X op and Yop are right and left semimodules, respectively, whose
multiplications are R

op← x = xt\R and y
op→ R = R/yt . We build a new bracket

over the opposite semiring Kop as given by 〈y | x〉R = y
op→ R

op← x = xt\R/yt.
Therefore, by the construction of section 2.3 the following maps form a Galois
connection (·−ϕ ,−ϕ ·) : Yop ( X op :

y−ϕ =
∧
{x ∈ X | 〈y | x〉R≥ϕ } =

(
y

op→ R
) op

\ ϕ (7)

−
ϕ x =

∧
{ y ∈ Y | 〈y | x〉R≥ϕ } = ϕ

op

/
(
R

op← x
)

In fact, in an idempotent semifield we are guaranteed enough ϕ to build as many
connections as necessary: choose any invertible λ ∈ K, so that ϕ = λ⊗ eK . ut

Definition 6 (ϕ-polars). Given a reflexive, idempotent semiring (K, ϕ) and a
K-valued formal context (G, M, R)K satisfying the conditions of proposition 2,
we call ϕ-polars the dually adjoint maps of the corresponding Galois connection
of equation (7.)

However, in this dualised construction the pivot describes a minimum degree
of existence required for pairs (x, y) ∈ X × Y to be considered for operation.

Definition 7 (Formal ϕ-concepts and ϕ-Concept Lattices). Given a re-
flexive, idempotent semiring (K, ϕ), a K-valued formal context (G, M, R)K with
n, p ∈ N, and K-valued vector spaces of rows X ∼= K1×n and columns Y ∼= Kp×1

1. A (formal) ϕ-concept of the formal context (G, M, R)K is a pair (a, b) ∈
X ×Y such that −ϕ a = b and b−ϕ = a . We call a the extent and b the intent
of the concept (a, b), and ϕ its (minimum) degree of existence.

2. If (a1, b1) (a2, b2) are ϕ-concepts of a context, they are ordered by the relation

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 ⇐⇒ b1

op

≤ b2, called the hierarchical order.
The set of all concepts ordered in this way is called the ϕ-concept lattice,
Bϕ(G, M, R)K, of the K-valued context (G, M, R)K



The nomenclature introduced in definition 7 is supported by the following:

Theorem 3 (Fundamental theorem of K-valued Formal Concept Anal-
ysis, finite version, 1st half). Given a reflexive, idempotent semiring (K, ϕ),
the ϕ-concept lattice Bϕ(G, M, R)K of a K-valued formal context (G, M, R)K
with n, p ∈ N, is a (finite, complete) lattice in which infimum and supremum are
given by:

∧
t∈T

(at, bt) =

 op⊕
t∈T

at,

−

ϕ

[
op⊕

t∈T

at

] ∨
t∈T

(at, bt) =

[
op⊕

t∈T

bt

]−
ϕ

,

op⊕
t∈T

bt

 (8)

In [1] the question was posed whether this theorem could be completed in
the direction of §1.1 of [12] . This will be looked into next.

3.2 The Structural Lattice of a K-Concept Lattice

This section contains this paper’s theoretical contributions to the characterisa-
tion of the semimodules over an idempotent, reflexive semifield K that allow to
define the anti-isomorphic lattices of theorem 3.

From definition 4 and theorem 1 the notion of structural semilattice emerges
as important to characterise semimodules over an idempotent semifield. We may
wonder whether more interesting characterisations may be possible when the set
of generators comes from a homomorphism of spaces of finite dimension.

For that purpose, recall that in the Galois connection of equation (7), (·−ϕ ,−ϕ ·) :
Yop ( X op , the dually isomorphic closure lattices are:

Yop =
{

ϕ
op

/
(
R

op← x
)
| x ∈ X

}
X op =

{(
y

op→ R
) op

\ ϕ | y ∈ Y

}
(9)

where X is the free space of object sets and Y is the free space of attribute sets.
Now let the singleton sets of objects (row vectors), gi = [ε · · · ei · · · ε] , and
attributes (column vectors), mj = [ε · · · ej · · · ε]T , which are bases of their re-
spective spaces, be mapped through the polars WYop ,

−
ϕ
({gi}ni=1) and WXop ,(

{mj}pj=1

)−
ϕ

, to obtain generator sets for the closure lattices: 〈WYop〉Kop = Yop

〈WXop〉Kop = X op .
But note that the generation process is directed by the algebra of the opposite

semiring Kop , that is, the generation process is carried out using the addition

in the opposite semimodules,
op
⊕= ∧ . As we know that the

op
∨-irreducibles are

included in each set of generators we may test the latter to find the former:

J
(
Yop

)
⊆ 〈WYop〉Kop = Yop J

(
X op

)
⊆ 〈WXop〉Kop (10)

Next recall that the Galois connection of equation (7) is
op
∨-inverting, in other

words, ∧-inverting, therefore, the images of the
op
∨-irreducibles are

op
∧-irreducibles:

M
(
X op

)
=

(
J

(
Yop

))−
ϕ

M
(
Yop

)
= −

ϕ

(
J

(
X op

))
(11)



Alternatively we may think of the product of each pair of join- and meet-
irreducible sets as being comprised of ∨-irreducible concepts ∧-irreducible con-
cepts with definitions resembling those of the standard theory:

γ̃ϕ (gi) =
((−

ϕ (gi)
)−
ϕ

,−ϕ (gi)
)

µ̃ϕ (mj) =
(
(mj)

−
ϕ ,−ϕ

(
(mj)

−
ϕ

))
(12)

Definition 8 (Structural Lattice). The structural lattice B(G, M, Iϕ
R) of a

K-Concept Lattice Bϕ(G, M, R) is the Concept Lattice of the context, (G, M, Iϕ
R) ,

where

Iϕ
R (i, j) = γ̃ϕ (gi) ≤ µ̃ϕ (mj) (13)

Note that we have not used the siblinghood relation to define the structural
lattice. The coalescing of different join- or meet-irreducibles in the same ray to
obtain a basis is in this case counterproductive because in any section of a parti-
tionedM

(
X op

)
, J

(
X op

)
or their images some join- or meet-irreducibles may

be missing, for instance if structural lattice has the appearance of the N5 lat-
tice. We believe this is one more instance of the differences between idempotent
semimodules and traditional vector spaces.

4 Example : The Analysis of Cross-Lingual Classifier
Adaptation Systems

In this example we analyse a particular problem: the cross-lingual adaptation
of an automatic speech recogniser trained to recognise English phonemes into a
system capable of recognising Mandarin phonemes. Our aim in this task is to
analyse several ways of mapping the English outputs of such classifiers into Man-
darin phonemes by observing whether the mapping has an intuitive, meaningful
structure. We will compare two ways to accomplish this:

– An original system trained with English-speech data with a particular classi-
fier-building technique.

– An enhanced system which uses the previous system as a start point and
improved afterwards by using some Mandarin-speech data to learn to map
the English outputs into Mandarin phonemes.

In both cases, the input to our algorithm will be the confusion matrix (more prop-
erly called the translation matrix, T , in this context) between English phonemes
(outputs, n = 46) and Mandarin phonemes (inputs, p = 71) by observing the
English labels that both networks assign to the Mandarin speech frames and
confronting it with the true Mandarin labels.

4.1 Lattice Construction

This section describes the algorithm employed to obtain the structural lattice of
relation T for a range of degrees of existence ϕ as defined in previous sections.



For that purpose, we first transform the event counts of the confusion matrix
into a maximum-likelihood estimate of the probability of the true Mandarin label
gi given that the output of the classifier is the English label mj , P (G = gi |
M = mj) . We then take logarithms to transform probabilities in [0, 1] into log-
likelihoods, that is Rmax,+ costs to obtain R ∈ Rn×p

max,+ The following algorithm
then obtains the structural lattice of the cost matrix, R:

Step 1 Compute the closures of the n unitary row vectors of dimension 1 × n,
gi = [ε · · · ei · · · ε] and p unitary column vectors of dimension p × 1,
mj = [ε · · · ej · · · ε]T that stand for the characteristic functions of singleton
sets of objects and attributes, respectively. The ϕ-polars of definition 6 allow
us to obtain, the ∨- and ∧-irreducible concepts of the structural lattice using
equation (12).

Step 2 Build the standard context associated to those concepts and the structural
lattice by comparing the previous concepts, B(G, M, Iϕ

R) where Iϕ
R is the

incidence with {0, 1} entries in formula (13.)
Step 3 Once the standard context adequate for the structural lattice is obtained for

each particular ϕ we used ConExp [13] to obtain the standard lattices.

Because the Galois connection that obtains the formal concepts depends on
the pivot, ϕ, typically the above algorithm must be carried out a number of
times, one for each choice of ϕ that is deemed interesting.

4.2 Lattice Exploration

The Influence of the Enhancement stage: Choosing ϕ. Our aim now
is to explore the behaviour of the K-Concept Lattice for a particular K-formal
context with varying ϕ . For this purpose, we have found the standard context
of the structural lattice with the algorithm above for each ϕ and worked out the
number of concepts resulting for the standard Formal Contexts of the original
and enhanced systems. Figure 2 shows this evolution where we have chosen to
sample the curve more frequently as we approach the right end (i.e. ϕ = 0)
by using the tangent function of a uniform sampling. A logarithmic scale has
been used in the vertical axis to improve the comparison of the two curves given
the notorious differences in the number of concepts of the two examples we are
evaluating here.

For a perfect translation between two phonemic systems of identical cardi-
nality, the best system would show a diagonal matrix in the K-Formal Context,
equivalent to a diamond lattice of as many ∨- and ∧-irreducibles as phonemes.
We expect to find systems that do a worse translation further and further from
this structure and with increasing concept counts. Indeed, the most significant
observation we can gather from the plot above is the reduction in the number
of concepts achieved by the enhanced system. We can infer, therefore, that the
enhancing stage improves the translation in such direction.

We notice that the overall shapes of the curves are very similar. For smaller
ϕ the number of concepts remains constant for each matrix being evaluated.



Fig. 2. Number of concepts vs. ϕ

For ϕ ≥ maxi,j Rij , the incidence matrix is everywhere null IR = 0 leading to
a two-concept lattice for both curves. In between these ranges we see how the
enhanced system shows less and less concepts while the original system’s number
of concepts reaches a really high peak (around 105) and then quickly diminishes.

Reading Structural Lattices. We now try to understand what kind of infor-
mation can be gleaned from structural lattices. We begin by observing the most
salient properties of the systems, that is, those lattices obtained with the higher
values of the pivot. Afterwards we try to bring more detail into the picture by
decreasing the value of the pivot so as to vary the number of concepts from
right to left as suggested by figure 2. We thus obtain a sequence of structural
lattices starting from the least complex (and the least number of concepts) and
gradually increasing the complexity as new concepts appear.

The first thing we can notice in both the sequence from the original and the
enhanced system is the appearance of the silence attribute concept (tagged ’-’ in
the figures). This is a well-known peculiarity of systems such as those we explore
in this example and it is therefore a good sign that our analysis is progressing
correctly.

Figure 3 shows a more advanced stage of analysis for a pivot ϕ = −0.40. In it
some groups of Mandarin objects are assigned just to three English attribute con-
cepts. Both silence and r are attributed to several different Mandarin phonemes
which can be interpreted as an error of the system. However, uw is always at-
tributed to Mandarin vowel sounds which, at this level of detail, seems to be a
good choice.

As we continue our analysis we can find lattices such as those in figures 4
and 5. We have omitted here the objects names that clutter the picture but the
radius of the nodes is proportional to the number of objects pertaining just to
them. Here, in contrast with figure 3 where most of the objects were assigned
the top concept, they are all distributed into the non-extremal nodes. We can



Fig. 3. Structural lattice of the enhanced system with a ϕ = −0.40 and 5 concepts.

also observe that these objects are grouped (most of the times) meaningfully
from the point of view of their acoustic properties.

Although we show no picture here due to the large number of concepts, it is
interesting to consider the lattice corresponding to the leftmost constant portion
of figure 2. Despite the difficulty of drawing any conclusion from such a big lattice
the most salient characteristic is that some English phonemes remain attached
to the bottom concept which could be interpreted as the systems being unable to
assign those English phonemes to any of the Mandarin, either due to limitations
of the system or to some intrinsic characteristics of these phoneme sets.

5 Conclusion

We have presented an attempt at the solution of two problems of K-Formal
Concept Analysis of different ilk: first, the lack of an analogue for the second
half of the basic theorem of Formal Concept Analysis, and second, the lack of a
building procedure for the K-Concept Lattice.

For the first purpose we have introduced the concept of the structural lattice
of the K-Concept Lattice based in the similar structural semilattice, as featured
in idempotent algebra. Thus we expect the structural lattice to provide the
“scaffolding” for the bigger K-concept lattice. As to the relation of the structural
lattice to the lattice described in the second half of the Basic Theorem of Formal
Concept Analysis, we recall that (for n, p ∈ N) Formal Concept Analysis may
be taken to be the particular case of K-Formal Concept Analysis when the
idempotent reflexive semiring is the Boolean semiring, and the pivot is ⊥Bop = 1,
B(G, M, I) = B1(G, M, I)B . It is easy to see that in that case the definition



Fig. 4. Structural lattice of the enhanced system with a ϕ = −0.99 and 18 concepts.

Fig. 5. Structural lattice of the enhanced system with a ϕ = −1.09 and 20 concepts.



of the structural lattice and the lattice of the second part of Theorem 3 of [12]
coincide.

Secondly, we have provided an algorithm to build the structural lattice by
reducing its calculations to those of a standard Concept Lattice, and have used
such construction to analyse the behaviour of the confusion matrices of multiple
input-multiple output classifiers. We have also discussed the role of the pivot
ϕ introduced in [1] to modulate the Galois connection between the spaces of
(multi-valued) sets of objects and attributes in such a setting and we have tried
to argue how the performance of the classifier relates to its K-Concept Lattice
conforming to a particular, expected shape.
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