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Abstract 
 
 
This paper addresses the multi-armed bandit problem with switching penalties including both 
costs and delays, extending results of the companion paper [J. Niño-Mora. ``Two-Stage Index 
Computation for Bandits with Switching Penalties I:  Switching Costs.'' Conditionally accepted at 
INFORMS J. Comp.], which addressed the no switching delays case. Asawa and Teneketzis 
(1996) introduced an index for bandits with delays that partly characterizes optimal policies, 
attaching to each bandit state a ``continuation index'' (its Gittins index) and a ``switching index,'' 
yet gave no algorithm for it. This paper presents an efficient, decoupled computation method, 
which in a first stage computes the continuation index and then, in a second stage, computes the 
switching index an order of magnitude faster in at most  arithmetic operations 
for an -state bandit. The paper exploits the fact that the Asawa and Teneketzis index is the 
Whittle, or marginal productivity, index of a classic bandit with switching penalties in its semi-
Markov restless reformulation, by deploying work-reward analysis and LP-indexability methods 
introduced by the author. A computational study demonstrates the dramatic runtime savings 
achieved by the new algorithm, the near-optimality of the index policy, and its substantial gains 
against a benchmark index policy across a wide instance range. 
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This paper addresses the multi-armed bandit problem with switching penalties including both costs and de-

lays, extending results of the companion paper [J. Niño-Mora. “Two-Stage Index Computation for Bandits

with Switching Penalties I: Switching Costs.” Conditionally accepted at INFORMS J. Comp.], which ad-

dressed the no switching delays case. Asawa and Teneketzis (1996) introduced an index for bandits with

delays that partly characterizes optimal policies, attaching to each bandit state a “continuation index” (its

Gittins index) and a “switching index,” yet gave no algorithm for it. This paper presents an efficient, de-

coupled computation method, which in a first stage computes the continuation index and then, in a second

stage, computes the switching index an order of magnitude faster in at most(5/2)n2 +O(n) arithmetic op-

erations for ann-state bandit. The paper exploits the fact that the Asawa andTeneketzis index is the Whittle,

or marginal productivity, index of a classic bandit with switching penalties in its semi-Markov restless re-

formulation, by deploying work-reward analysis and LP-indexability methods introduced by the author. A

computational study demonstrates the dramatic runtime savings achieved by the new algorithm, the near-

optimality of the index policy, and its substantial gains against a benchmark index policy across a wide

instance range.
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1. Introduction

This paper addresses themulti-armed bandit problem with switching penalties(MABSP) — see, e.g., Jun

(2004) for an extensive survey — which incorporates both switching costs and delays, extending results

of the companion (Part I) paper Niño-Mora (2006c), which addressed the simpler case with no switching

delays. While this paper also deploys the work-reward analysis approach to restless bandit indexation used

in Part I, we will see that incorporation of switching delayswarrants a separate treatment, as the previous

analysis does not directly extend to the present case. We thus start by pointing out the key differences that,

we argue, justify the present paper: (i) in Part I, classic bandits with switching costs were formulated as
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Markovian restless bandits, whereas incorporation of switching delays requires a semi-Markovian formu-

lation; (ii) the analysis in Part I held under the assumptionthat the sum of startup and shutdown costs be

nonnegative, whereas here the extra assumption is requiredthat bandit rewards be nonnegative — as pointed

out in (Asawa and Teneketzis, 1996, Sec. IV.C); (iii) in PartI, a fast index algorithm was given that sub-

stanstially improved upon that proposed in Asawa and Teneketzis (1996) for the case of switching costs

only, yet no index algorithm is given in their paper for the case of switching delays; (iv) the complexity of

the switching-index algorithm in Part I is of at mostn2 + O(n) arithmetic operations for ann-state bandit,

whereas incorporation of switching delays requires an algorithm with increased complexity of (at most)

(5/2)n2 + O(n) operations; and (v) more importantly, in Part I, the indexability analysis was based on es-

tablishing that the restless bandits of concern satisfied the PCL-indexability conditions we had introduced

in earlier work; yet, the analyses below reveal that incorporation of switching delays yields restless bandits

that need not be PCL-indexable, and hence require a different approach to establish their indexability; in

this paper we successfully deploy for such a purpose the morepowerfulLP-indexabilityconditions recently

introduced in Niño-Mora (2007).

The present paper follows the form and structure of its Part Icounterpart as closely as possible, even

using vertatim sentences from it when a variation would add nothing of substance, with the intent that a

reader of both papers can more easily appreciate their similarities and differences.

To extend the initial example given in Part I, imagine a firm owning a portfolio of dynamic and stochastic

projects, of which it can engage one at a time. To (re)start a project, the firm must incur an upfront lump-sum

startup cost, as well as astartup delay, after which it accrues rewards and operating expenses. Thefirm can

decide, at any time, to abandon the project currently in operation, incurring a lump-sumshutdown cost, as

well as ashutdown delay. It can then switch to another project. Such a firm faces the problem of designing

a dynamic project selection policy that maximizes the expected total discounted value of its net earnings.

In this and many other applications switching delays play a fundamental role, and should thus be in-

corporated into corresponding system models. Thus, startup delays may represent, e.g., time to lay up

the groundwork or to build up infrastructure, as well as training or learning time for workers. Similarly,

shutdown delays may arise, e.g., when dismantling installed infrastructure.

The problem is cast as asemi-Markov decision process(SMDP) by modeling projects asbandits, i.e.,

binary-action (active/passive) SMDPs that can only changestate while active. In the no switching penalties

case, one thus obtains themulti-armed bandit problem(MABP), which is optimally solved by theGittins

indexpolicy. See Gittins (1979).

The optimal index solution for the MABP prompted investigation of priority-index policiesfor the

MABPSP. As discussed in Banks and Sundaram (1994), such policies attach an indexνm(a−m, im) to each
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banditm, which is a function of its previous actiona−m and current stateim, thus decoupling into a “continua-

tion index” νm(1, im) and a “switching index”νm(0, im). They observed that “it is obvious that in comparing

two otherwise identical arms, one of which was used in the previous period, the one which was in use

must necessarily be more attractive than the one which was idle.” To be consistent which such ahysteretic

property, the indices must satisfy

νm(1, im) ≥ νm(0, im). (1)

Though Banks and Sundaram (1994) proved that such policies are not generally optimal in the presence

of switching costs, Asawa and Teneketzis (1996) introducedan intuitively appealing index for the MABSP,

which we will refer to henceforth as theAT index, both for the case of only switching costs and for that of

only switching delays, and showed that it partly characterizes optimal policies. Their continuation index is

the bandit’s Gittins index, while their switching index is the maximum rate, achievable by stopping rules that

engage an initially passive bandit, of expected discountedreward earned minus initial startup cost incurred,

per unit of expected discounted time — including the initialdelay.

In Asawa and Teneketzis (1996), an index computation methodis presented to jointly compute both

indices in the case of only switching costs. Yet, no algorithm is given in there to compute the index under

switching delays. This raises the need to develop an efficient index computation method for bandits with

switching delays, which is the prime goal of this paper, while the second goal is to investigate empirically

the performance of the resulting AT index policy.

We will address such goals in the setting of an extended modelthat allows state-dependent startup

and shutdown costs and delays for each bandit, which we will reduce to the case of no shutdown penalties,

through a seemingly indirect route: by exploiting the natural reformulation of a classic bandit with switching

penalties as asemi-Markov restless bandit— one that can change state while passive —without switch-

ing penalties, through which the MABSP is cast as asemi-Markov multi-armed restless bandit problem

(SMARBP).

Such a reformulation will allow us to deploy the powerful indexation theory available for restless bandits.

This was introduced by Whittle (1988), who first realized that the Gittins-index definition via calibration also

yields an index for restless bandits, albeit only for the limited range of so-calledindexableinstances. He

proposed to use the resulting index policy as a heuristic forthe MARBP, which is generally suboptimal. The

theory has been developed in Niño-Mora (2001, 2002, 2006b,2007), where theWhittle indexand extensions

are shown to measure trade-off (reward vs. work) rates, whence our terming itmarginal productivity index

(MPI).

Of most relevance to this paper is Niño-Mora (2007), where the tractable class ofLP-indexablebandits

— as they are based onlinear programming(LP) analyses — is introduced, for which the MPI is efficiently
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computed by anadaptive-greedy algorithm. The scope of such an algorithm is thus extended from the class

of PCL-indexablebandits in the author’s earlier work to the larger class of LP-indexable bandits. Such

an extension will play a crucial role in this paper, as the restless bandits of concern will be shown to be

LP-indexable, yet are not necessarily PCL-indexable.

We deploy here such a theory, by proving and exploiting the fact that the AT index of a bandit with

switching costs and delays is precisely the bandit’s Whittle index/MPI in its semi-Markov restless refor-

mulation. We will establish that such restless bandits are LP-indexable, relative to the family of hysteretic

policies consistent with (1), which will allow us to computethe index using the adaptive-greedy algorithm

referred to above. A work-reward analysis will then reveal that such an algorithm decouples into two stages:

a first stage that computes the Gittins index and required extra quantities; and a second stage, which is fed

the first-stage’s output, that computes the switching index.

To implement such a scheme, one can use for the first stage any of severalO(n3) algorithms introduced

in Niño-Mora (2006a). For the second stage, we will presenthere a fast switching-index algorithm that

performsat most(5/2)n2 +O(n) arithmetic operations, thus achieving an order of magnitude improvement

that renders negligible the marginal effort to compute the switching index. Such an algorithm is the main

contribution of this paper.

The paper further reports on a computational study demonstrating that such an improved complexity

translates into dramatic runtime savings. Such a study is complemented by a set of experiments that demon-

strate the near-optimality of the index policy and its substantial gains against the benchmark Gittins index

policy across an extensive range of two- and three-bandit instances.

Section 2 describes the model, shows how to reduce it to the normalized no shutdown penalties case,

defines the AT index, and gives the SMARBP reformulation. Section 3 reviews the indexation theory to be

deployed. Section 4 carries out a work-reward analysis of reformulated restless bandits. Section 5 draws

on such an analysis to develop the new decoupled index algorithm. Section 6 discusses dependence of the

index on switching penalties. Section 7 reports the computational study’s results. Section 8 concludes.

2. Model, AT index and Restless-Bandit Reformulation

2.1. The MABPSP

Consider a collection ofM finite-state bandits, one of which must be engaged (active) at each discrete

decision periodτk ∈Z+, with 0≤ τk ↗ ∞ ask→ ∞, while the others are rested (passive). Switching bandits

is costly, involving startup and shutdown costs and delays.We assume that a freshly set up bandit must be

worked onfor at least one period, and will say that a bandit isengagedif it is either being worked on, or is
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undergoing a startup or a shutdown delay.

A rested banditm occupying stateim — belonging in its state spaceNm — accrues no rewards, i.e.,

R0
m(im) ≡ 0, and its state remains frozen. When freshly engaged, it incurs startup costcm(im), followed by

a discrete random startup delayξm(im) ∈ Z+ having z-transformφm(z; im) , E
[
zξm(im)

]
, during which no

rewards accrue. When the startup is completed, the bandit must be worked on, yielding an active reward

R1
m(im) = Rm(im) and changing state at the following period tojm with probability pm(im, jm). After one or

more periods at which the bandit is worked on, it may be rested. If this happens in statejm, shutdown cost

dm( jm) is incurred, followed by a random shutdown delayηm ∈ Z+ havingz-transformψm(z) , E
[
zηm

]
,

during which no rewards accrue. Then, the bandit must be rested for at least one period. Note that we allow

startup delay distributions to be state-dependent, while shutdown delay’s are constant — due to results in

Section 2.2. Rewards and costs are time-discounted with factor 0< β < 1. We will find it convenient to

write φm(β ; im) andψm(β ) asφm(im) andψm.

Note that such a model can readily accomodate the case where switching costs are instead incurred

at ratesCm(im) andDm(im) per period during the startup and shutdown delays, respectively. Clearly, one

should then use the equivalent lump-sum switching costs

cm(im) ,
1−φm(im)

1−β
Cm(im) and dm(im) ,

1−ψm

1−β
Dm(im).

Actions are chosen by adoption of ascheduling policyπ, drawn from the classΠ of admissible policies,

which are nonanticipative relative to the history of statesand actions, and engage one bandit at a time. Focus

on such a version, instead of on that whereat mostone bandit can be engaged, is without loss of generality.

The MABPSP is to find an admissible policy that maximizes the expected total discounted value of rewards

earned minus switching costs incurred.

We will denote byXm(t) and am(t) ∈ {0,1} the prevailing state and action for banditm at periodt,

respectively, wheream(t) = 1 (resp. am(t) = 0) means that the bandit is engaged (resp. rested). Since it

must be specified whether each banditm is initially set up, we denote such status bya−m(0). We define

the bandit’saugmented stateto be X̂m(t) , (a−m(t),Xm(t)), which moves over theaugmented state space

N̂m , {0,1} ×Nm. The joint augmented stateis thusX̂(t) ,
(
X̂m(t)

)M
m=1, and thejoint action processis

a(t) ,
(
am(t)

)M
m=1.

2.2. Reduction to the Normalized No Shutdown Penalties Case

We show in this section that it suffices to restrict attentionto the no shutdown penalties case, without loss

of generality. Suppose that, at a certain time, which we taketo bet = 0, a bandit is freshly engaged for a

random duration given by a stopping time/ruleτ . Let us drop the bandit labelm, and denote byR = (Rj),
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c = (c j) andd = (d j) the bandit’s state-dependent active reward, startup and shutdown cost vectors. Let

us further denote byφ = (φ j) the bandit’s state-dependent startupz-transform vector, evaluated atz = β ,

and letψ denote the corresponding constant shutdownz-transform value. We can thus write the expected

discounted net reward earned on the bandit during such a timespan, starting atX(0) = i, as

f τ
i

(
R,c,d,φ ,ψ

)
, E

τ
i

[
−ci + β ξi

τ−1

∑
t=0

RX(t)β t −dX(τ)β ξi+τ
]
, (2)

whereξi is the random startup delay starting ati. The corresponding discounted amount ofwork expended

on the bandit is

gτ
i

(
φ ,ψ

)
, E

τ
i

[
1−β ξi

1−β
+ β ξi

τ−1

∑
t=0

β t +
1−β η

1−β
β ξi+τ

]
, (3)

where, as mentioned above, both the startup and shutdown delaysξi andη are counted as “work.”

We have the following result, whereI is the identity matrix indexed by the state spaceN, P = (pi j )i, j∈N

is the transition probability matrix, and0 is a vector of zeros.

Lemma 2.1

(a) f τ
i

(
R,c,d,φ ,ψ

)
= f τ

i

(
1
ψ

{
R+(I −βP)d

}
,(c j + φ jd j) j∈N,0,ψφ ,1

)
.

(b) gτ
i

(
φ ,ψ

)
= gτ

i

(
ψφ ,1

)
.

Proof. (a) Use the elementary identity

dX(τ)β τ = di −
τ−1

∑
t=0

{dX(t) −βdX(t+1)}β t

to obtain

f τ
i

(
R,c,d,φ ,ψ

)
, E

τ
i

[
−ci + β ξi

τ−1

∑
t=0

RX(t)β t −dX(τ)β ξi+τ
]

= −ci + φiE
τ
i

[
τ−1

∑
t=0

RX(t)β t −dX(τ)β τ

]

= −ci + φi

{
−di +E

τ
i

[
τ−1

∑
t=0

{
RX(t) +dX(t)−βdX(t+1)

}
β t

]}

= −ci −φidi + φiE
τ
i

[
τ−1

∑
t=0

{
RX(t) +dX(t)−βdX(t+1)

}
β t

]

= −ci −φidi + φiψE
τ
i

[
τ−1

∑
t=0

RX(t) +dX(t)−βdX(t+1)

ψ
β t

]

= f τ
i

( 1
ψ

{
R+(I −βP)d

}
,(c j + φ jd j) j∈N,0,ψφ ,1

)
.
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(b) This part follows by writing

gτ
i , E

τ
i

[
1−β ξi

1−β
+ β ξi

τ−1

∑
t=0

β t +
1−β η

1−β
β ξi+τ

]
=

1−φi

1−β
+ φiE

τ
i

[
τ−1

∑
t=0

β t +
1−ψ
1−β

β τ

]

=
1−φi

1−β
+ φiE

τ
i

[
τ−1

∑
t=0

β t +
1−ψ
1−β

{
1− (1−β )

τ−1

∑
t=0

β t}
]

=
1−φiψ
1−β

+ φiE
τ
i

[
τ−1

∑
t=0

{
1− (1−ψ)

}
β t

]
=

1−φiψ
1−β

+ φiψE
τ
i

[
τ−1

∑
t=0

β t

]

= gτ
i

(
ψφ ,1

)
.

�

Lemma 2.1 shows how to eliminate shutdown penalties: one need simply incorporate them into modified

startup costs and delay transforms, as well as active rewards, given by the transformations

c̃ j , c j + φ jd j , φ̃ j , ψφ j , and R̃ ,
1
ψ

{
R+(I −βP)d

}
. (4)

Note that, in the casec j ≡ c andd j ≡ d, one obtains̃c j ≡ c+dφ j andR̃j = {Rj +(1−β )d}/ψ .

We will hence focus our discussion henceforth in thenormalizedno shutdown penalties case.

2.3. The AT Index

We next define the AT index for a bandit, whose labelmwe drop from the notation, extending the definitions

in Asawa and Teneketzis (1996) to the present setting. The continuation AT index is

νAT
(1,i) , max

τ>0

E
τ
i

[
τ−1

∑
t=0

RX(t)β t

]

E
τ
i

[
τ−1

∑
t=0

β t

] , (5)

whereτ is a stopping time/rule that engages a bandit starting at state i needing no setup; hence,νAT
(1,i) is

precisely the bandit’s Gittins index. The switching AT index is

νAT
(0,i) , max

τ>0

−ci +E
τ
i

[
β ξi

τ−1

∑
t=0

RX(t)β t

]

E
τ
i

[
ξi−1

∑
t=0

β t + β ξi

τ−1

∑
t=0

β t

] = max
τ>0

−ci + φiE
τ
i

[
τ−1

∑
t=0

RX(t)β t

]

1−φi

1−β
+ φiE

τ
i

[
τ−1

∑
t=0

β t

] , (6)

where nowτ is a stopping time/rule that engages a bandit starting ati which needs to be set up.

Notice that, writinggτ
i = E

τ
i

[
∑τ−1

t=0 β t
]

and f τ
i = E

τ
i

[
∑τ−1

t=0 RX(t)β t
]
, we have that

f τ
i

gτ
i
−

−ci + φi f τ
i

1−φi

1−β
+ φig

τ
i

=
1
gτ

i

(1−β )cigτ
i +(1−φi) f τ

i

1−φi +(1−β )φigτ
i

≥ 0,
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provided thatc j ≥ 0 andRj ≥ 0, for j ∈ N. In such a case, on which we will focus our analyses, it follows

from the above thatνAT
(1,i) ≥ νAT

(0,i), consistently with (1).

2.4. Semi-Markov Restless-Bandit Reformulation

Taking X̂m(t) as the state of each banditm yields a reformulation of the MABPSP as a SMARBPwithout

switching penalties, having joint state and action processesX̂(t) anda(t), where actions can only be taken at

the sequenceτk of decision periods discussed above. The rewards and dynamics for restless banditm in such

a reformulation are as follows. If at periodτk the bandit occupies (augmented) state(1, im) and is engaged,

the active reward̂R1
m(1, im) , Rm(im) is earned, and the state moves at the next decision periodτk+1 = τk+1

to (1, jm) with active transition probabilitŷp1
m

(
(1, im),(1, jm)

)
, pm(im, jm). If the bandit is instead rested,

no passive reward is earned, i.e.,R̂0
m(1, im)≡ 0, and the state moves at the next decision periodτk+1 = τk+1

to (0, im) with a unity passive transition probability, i.e.,p̂0
m

(
(1, im),(0, im)

)
≡ 1.

If the restless bandit occupies atτk state(0, im) and is engaged, the expected active reward

R̂1
m(0, im) , E[−cm(im)+ β ξm(im)Rm(im)] = −cm(im)+ φm(im)Rm(im) (7)

accrues up to the next decision periodτk+1 = τk +ξm(im)+1, at which its state moves to(1, jm) with active

transition probabilityp̂1
m

(
(0, im),(1, jm)

)
, pm(im, jm). If the bandit is instead rested, no passive reward

accrues, i.e.,̂R0
m(0, im) ≡ 0, and the state remains frozen at the next decision periodτk+1 = τk + 1, i.e.,

p̂0
m

(
(0, im),(0, im)

)
≡ 1.

We can thus formulate the MABPSP as the SMARBP

max
π∈Π

E
π
ı̂

[
∞

∑
k=0

M

∑
m=1

R̂am(τk)
m

(
X̂m(τk)

)
β τk

]
, (8)

whereE
π
ı̂ [·] denotes expectation under policyπ conditional on the initial joint statêX(0) = ı̂.

3. Restless Bandit Indexation: Theory and Computation

We discuss in this section the semi-Markov restless bandit indexation theory referred to in Section 1, as

it applies to a single banditm as above — in its restless reformulation. We hence drop againthe bandit

label m henceforth, so that, e.g.,N and N̂ , {0,1}×N denote the bandit’s original and augmented state

spaces. We will denote byΠ the space of admissible bandit operating policiesπ, where such a notation

distinguishes them from their boldface counterparts used in the multi-bandit setting above. We will assume

that (normalized) startup costs and active rewards are nonnegative.

Assumption 3.1 For i ∈ N:
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(i) ci ≥ 0; and

(ii) Ri ≥ 0.

3.1. Indexability and the MPI

We use two criteria to evaluate a policyπ, relative to an initial state(a−0 , i0): thereward measure

f π
(a−0 ,i0)

, E
π
(a−0 ,i0)

[
∞

∑
k=0

R̂
(
X̂(τk)

)
β τk

]
,

which gives the expected total discounted value ofnet rewards— net of switching costs — that accrue on

the bandit; and thework measure

gπ
(a−0 ,i0)

, E
π
(a−0 ,i0)

[
∞

∑
t=0

a(t)β t

]
,

which gives the corresponding expected total discounted amount of work expended. We will actually con-

sider the average measuresf π andgπ obtained by drawing the initial state from a positive probability mass

function p(a−,i) > 0 for (a−, i) ∈ N̂.

Imagining that work is paid for atwagerateν leads us to consider theν-wage problem

max
π∈Π

f π −νgπ , (9)

which is to find an admissible bandit operating policy achieving the maximum value of net rewards earned

minus labor costs incurred. We will use (9) tocalibratethemarginal value of workat each state, by analyzing

the structure of optimal policies asν varies.

MDP theory ensures that for every wageν ∈ R there exists an optimal policy that is stationary deter-

ministic and independent of the initial state. Any such a policy is characterized by itsactive set, or subset of

states where it prescribes to engage the bandit. We will write active sets as

S0⊕S1 , {0}×S0∪{1}×S1, S0,S1 ⊆ N.

Thus, the policy that we denote byS0⊕S1 engages the bandit when it was previously rested (resp. engaged)

if the original stateX(t) lies inS0 (resp. inS1).

Hence, to any wageν there corresponds aunique maximal optimal active set S∗
0(ν)⊕S∗1(ν) ⊆ N̂, which

is the union of all optimal active sets. Now, we say that the bandit is indexableif there exists anindexν∗
(a−,i)

for (a−, i) ∈ N̂ such that

S∗0(ν) =
{
(0, i) : ν∗

(0,i) ≥ ν
}

and S∗1(ν) =
{
(1, i) : ν∗

(1,i) ≥ ν
}
, ν ∈ R.
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We then say thatν∗
(a−,i) is the bandit’smarginal productivity index(MPI), or Whittle index, termingν∗

(1,i) the

continuation MPI, andν∗
(0,i) theswitching MPI.

Thus, the bandit is indexable with MPIν∗
(a−,i) if it is optimal in (9), to engage (resp. rest) the bandit

when it occupies state(a−, i) iff ν∗
(a−,i) ≥ ν (resp.ν∗

(a−,i) ≤ ν). Note that Whittle (1988)’s original definition

of indexability was stated in an equivalent form in terms of optimal passive sets.

To establish indexability and compute the MPI, we have developed in Niño-Mora (2001, 2002, 2006b,

2007) an approach based on positing and then establishing the structure of optimal active sets, as anactive-

set familyF̂ ⊆ 2N̂ that containsall setsS∗0(ν)⊕S∗1(ν) as ν varies, under a possibly restricted range of

reward/cost parameters. The intuition that, if startup costs satisfy Assumption 3.1, optimal policies should

have the hysteretic property that, if it is optimal to engagea bandit when it was previously rested, then, other

things being equal, it should be optimal to engage it when it was previously active, leads us to guess that the

right choice ofF̂ should be

F̂ ,
{

S0⊕S1 : S0 ⊆ S1 ⊆ N
}
. (10)

Notice thatF̂ represents a family of policies consistent with (1), which we posit to contain the optimal

policies for (9). WhenS0 6= S1, such policies present thehysteresis region S1\S0, on which bandit dynamics

depend on the previous action. We will thus aim to establish indexability relative to such a family, meaning

that the bandit is indexable andS∗0(ν)⊕S∗1(ν) ∈ F̂ for ν ∈ R.

3.2. An Illustrative Example

To help the reader unfamiliar with the above concepts to grasp them, we present next an illustrative example.

Consider the 3-state normalized (no shutdown penalties) bandit instance with no startup cost, startup delay

given by itsz-transform valueφ = φ(β ),

β = 0.95, R =




0.0250
0.4242
0.0338


 , and P =




0.6635 0.0285 0.3080
0.6345 0.3583 0.0072
0.4868 0.0530 0.4602


 .

Work and reward measuresgπ and f π are evaluated assuming that the initial state is uniformly drawn.

The left pane in Figure 1 shows theachievable work-reward performance regionin the classic no startup

delay (φ = 1) case. The four points displayed, which determine the region’s upper boundary, are the work-

reward performance points corresponding to the policies having active sets, from left to right, /0,{2}, {2,3},

and{2,3,1}. The work-reward trade-off slopes/rates between such points are the bandit’s Gittins index

values:

ν∗
2 = 0.4242> ν∗

3 = 0.061487> ν∗
1 = 0.048002.
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The right pane in Figure 1 shows a corresponding plot for the case withφ = 0.98. The upper work-

reward boundary is determined by the seven points displayed, which are the work-reward performance points

corresponding, from left to right, to the policies having active sets /0⊕ /0, /0⊕{2}, {2}⊕{2}, {2}⊕{2,3},

{2,3}⊕{2,3}, {2,3}⊕{2,3,1} and{2,3,1}⊕{2,3,1}. The work-reward trade-off slopes between such

points give the MPI values:

ν∗
(1,2) = 0.424> ν∗

(0,2) = 0.334> ν∗
(1,3) = 0.061> ν∗

(0,3) = 0.051> ν∗
(1,1) = 0.048> ν∗

(0,1) = 0.047.

The plot represents the right end-points giving a continuation index value by a black circle, and those giving

a switching index value by a white square. Note further that the continuation index matches the Gittins index

of the previous case.

gπ

fπ

no startup delay (φ = 1)

gπ

fπ

startup delay withφ = 0.98

Figure 1: Achievable Work-Reward Performance Regions and Structure of Upper Boundaries.

The left pane of Figure 2 shows the achievable work-reward performance region for the caseφ = 0.8.

Now, the seven points displayed, which characterize the upper boundary, correspond, from left to right, to

the policies having active sets /0⊕ /0, /0⊕{2}, {2} ⊕{2}, {2}⊕ {2,3}, {2} ⊕{2,3,1}, {2,3} ⊕ {2,3,1}

and{2,3,1}⊕{2,3,1}. The work-reward trade-off slopes/rates between such points give the bandit’s MPI

values:

ν∗
(1,2) = 0.424> ν∗

(0,2) = 0.099> ν∗
(1,3) = 0.061> ν∗

(1,1) = 0.048> ν∗
(0,3) = 0.039> ν∗

(0,1) = 0.038.

Finally, the right pane of Figure 2 shows the corresponding plot for the caseφ = 0.5. The seven points

characterizing the region’s upper boundary correspond, from left to right, to the policies having active sets

/0⊕ /0, /0⊕{2}, /0⊕{2,3}, /0⊕{2,3,1}, {2} ⊕ {2,3,1}, {2,3} ⊕ {2,3,1}, and{2,3,1} ⊕ {2,3,1}. The

resulting MPI values given by the successive slopes are

ν∗
(1,2) = 0.424> ν∗

(1,3) = 0.061> ν∗
(1,1) = 0.048> ν∗

(0,2) = 0.038> ν∗
(0,3) = 0.025> ν∗

(0,1) = 0.024.
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Note that in each case the continuation index valueν∗
(1,i) matches the Gittins index valueν∗

i . Further, the

successive active setsS0⊕S1 characterizing the efficient frontiers belong in the active-set familyF̂ in (10).

Also, the continuation index valueν∗
(1,i) is larger than the corresponding switching index valueν∗

(0,i) value,

consistently with (1).

gπ

fπ
startup delay withφ = 0.8

gπ
fπ

startup delay withφ = 0.5

Figure 2: Achievable Work-Reward Performance Regions and Structure of Upper Boundaries.

3.3. LP-Indexability and Adaptive-Greedy Index Algorithm

We next discuss the approach we will deploy to establish indexability and compute the MPI of the restless

bandits of concern herein, based on showing that they are LP-indexable relative tôF , and using the adaptive-

greedy index algorithm that is valid for such bandits.

Given an actiona∈ {0,1} and an active setS0⊕S1 ∈ F̂ , denote by〈a,S0⊕S1〉 the policy that initially

takes actiona and adopts theS0⊕S1-active policythereafter. Now, for an augmented state(a−, i) and an

active setS0⊕S1 ∈ F̂ , define themarginal work measure

wS0⊕S1
(a−,i) , g〈1,S0⊕S1〉

(a−,i) −g〈0,S0⊕S1〉
(a−,i) , (11)

along with themarginal reward measure

rS0⊕S1
(a−,i) , f 〈1,S0⊕S1〉

(a−,i) − f 〈0,S0⊕S1〉
(a−,i) , (12)

and, whenwS0⊕S1
(a−,i) 6= 0, themarginal productivity measure

νS0⊕S1
(a−,i) ,

rS0⊕S1
(a−,i)

wS0⊕S1
(a−,i)

. (13)

We will deploy the LP-indexability approach to indexation introduced in Niño-Mora (2007), which

extends the earlier PCL-indexability approach introducedand developed in Niño-Mora (2001, 2002, 2006b).
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For an active set̂S= S0⊕S1 ∈ F̂ , let

∂ out
F̂

Ŝ,
{
(a−, i) ∈ Ŝc : Ŝ∪{(a−, i)} ∈ F̂

}
=

{
(0, i) : i ∈ S1\S0}∪{(1, i) : i ∈ Sc

1

}
, (14)

whereŜc , N̂\ ŜandSc
1 , N\S1, be theouter boundary of̂S relative toF̂ ; and let

∂ in
F̂

Ŝ,
{
(a−, i) ∈ Ŝ: Ŝ\{(a−, i)} ∈ F̂

}
=

{
(1, i) : i ∈ S1\S0}∪{(0, i) : i ∈ S0

}
(15)

be the correspondinginner boundary. Note that the right-most identities in (14)–(15) follow from (10).

Now, we require thatset system(N̂,F̂ ) be monotonically connected, which in the present setting means

that:

(i) /0,N̂ ∈ F̂ ;

(ii) for every Ŝ, Ŝ′ ∈F with Ŝ⊂ Ŝ′ there exist(a, j)∈ ∂ out
F̂

Ŝand(a′, j ′)∈ ∂ in
F̂

Ŝ′ such that̂S⊂ Ŝ∪{(a, j)} ⊆

Ŝ′ andŜ⊆ Ŝ′ \{(a′, j ′)} ⊂ Ŝ′;

(iii) for any Ŝ, Ŝ′ ∈ F̂ with Ŝ 6= Ŝ′, it holds thatŜ∪ Ŝ′ ∈ F̂ ,

As the reader can immediately verify, thêF defined in (10) satisfies indeed such conditions.

We will further write below

r Ŝ , max
(a−, j)∈Ŝc,wŜ

(a− , j)
=0

r Ŝ
(a−, j) and r Ŝ , min

(a−, j)∈Ŝ,wŜ
(a− , j)

=0
r Ŝ
(a−, j),

adopting the convention that the maximum (resp. minimum) over an empty set is−∞ (resp.+∞).

Now, we will say that the bandit isLP-indexablerelative toF̂ , or LP(F̂ )-indexable, if:

(i) w/0
(a−,i),w

N̂
(a−,i) ≥ 0 for (a−, i) ∈ N̂, andr /0 ≤ 0≤ r N̂;

(ii) for each active set̂S∈ F̂ , wŜ
(a−,i) > 0 for (a−, i) ∈ ∂ in

F̂
Ŝ∪∂ out

F̂
Ŝ; and

(iii) for every wageν ∈ R there exists an optimal policy for (9) with active setŜ∈ F̂ .

We will further refer to theadaptive-greedy algorithmic schemeAG
F̂

shown in Table 1, wheren ,

|N| denotes the number of bandit states in the original (nonrestless) formulation. The algorithm pro-

duces an output consisting of a string{(a−k , ik)}2n
k=1 of distinct augmented states spanningN̂, with Ŝk ,

{(a−1 , i1), . . . ,(a
−
k , ik)} ∈ F̂ , for 1≤ k ≤ 2n, along with corresponding index values{ν∗

(a−k ,ik)
}2n

k=1. Ties for

picking the(a−k , ik)’s are broken arbitrarily. We use the termalgorithmic schemeas it is not yet specified

how to compute the required marginal productivity rates.

We will later invoke the following key result, introduced in(Niño-Mora, 2007, Th. 5.4), which refers to

a generic restless bandit and active-set familyF .

13



Table 1: Version 1 of Adaptive-Greedy Algorithmic Scheme AG
F̂

.

ALGORITHM AG
F̂

:

Output:
{
(a−k , ik),ν∗

(a−k ,ik)

}2n
k=1

Ŝ0 := /0⊕ /0
for k := 1 to 2n do

pick (a−k , ik) ∈ argmax
{

ν Ŝk−1

(a−,i) : (a−, i) ∈ ∂ out
F̂

Ŝk−1
}

ν∗
(a−k ,ik)

:= ν Ŝk−1

(a−k ,ik)
; Ŝk := Ŝk−1∪{(a−k , ik)}

end{ for }

Table 2: Version 2 of Algorithmic Scheme AĜ
F

.

ALGORITHM AG
F̂

:
Output:

{
(0, ik0

0 ),ν∗

(0,i
k0
0 )

}n
k0=1,

{
(1, ik1

1 ),ν∗

(1,i
k1
1 )

}n
k1=1

S0
0 := /0; S0

1 := /0; k0 := 1; k1 := 1
while k0 +k1 ≤ 2n+1 do

if k1 ≤ n pick jmax
1 ∈ argmax

{
ν(k0−1,k1−1)

(1, j) : j ∈ N\Sk1−1
1

}

if k0 < k1 pick jmax
0 ∈ argmax

{
ν(k0−1,k1−1)

(0, j) : j ∈ Sk1−1
1 \Sk0−1

0

}

if k1 = n+1 or
{

k0 < k1 ≤ n and ν(k0−1,k1−1)
(1, jmax

1 )
< ν(k0−1,k1−1)

(0, jmax
0 )

}

ik0
0 := jmax

0 ; ν∗

(0,i
k0
1 )

:= ν(k0−1,k1−1)

(0,i
k0
1 )

; Sk0
0 := Sk0−1

0 ∪{ik0
0 }; k0 := k0 +1

else
ik1
1 := jmax

1 ; ν∗

(1,i
k1
1 )

:= ν(k0−1,k1−1)

(1,i
k1
1 )

; Sk1
1 := Sk1−1

1 ∪{ik1
1 }; k1 := k1 +1

end { if }
end { while }

Theorem 3.2 An LP(F )-indexable bandit is indexable and algorithmAGF computes its MPI.

Using the definition ofF̂ in (10) yields the more explicitVersion 2of the algorithm shown in Table 2,

where the output is decoupled. We use in this and later versions a more algorithm-like notation, writing,

e.g., νS
k0−1
0 ⊕S

k1−1
1

(0, j) as ν(k0−1,k1−1)
(0, j) . Notice that the active sets constructed in both versions are related by

Ŝk−1 , Sk0−1
0 ⊕Sk1−1

1 , with k = k0 + k1−1 andk0 ≤ k1. Version 2 draws on the fact that, at each step, the

algorithm augments the current active set by a state that canbe of the form(1, i) or (0, i). SetsSk0
0 andSk1

1

in the algorithm areSk0
0 = {i10, . . . , i

k0
0 } andSk1

1 = {i11, . . . , i
k1
1 }, and satisfy thatSk0

0 ⊂ Sk1
1 , for 1≤ k0 < k1 ≤ n,

consistently with (10).
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3.4. Optimality of Hysteretic F̂ -Policies

We proceed to show that PCL(F̂ )-indexability condition (ii) above holds for the model of concern, namely

that F̂ -policies, i.e., those with active setŝS∈ F̂ , solve (9). For such a purpose we will use theBellman

equationscharacterizing the value functionϑ∗
(a−,i)(ν) for (9) starting at(a−, i):

ϑ∗
(1,i)(ν) = max

{
βϑ∗

(0,i)(ν),Ri −ν + β ∑
j∈N

pi j ϑ∗
(1, j)(ν)

}

ϑ∗
(0,i)(ν) = max

{
βϑ∗

(0,i)(ν),−ci −
1−φi

1−β
ν + φi{Ri −ν + β ∑

j∈N

pi j ϑ∗
(1, j)(ν)}

}
.

(16)

Proposition 3.3 For every wageν ∈ R there exists an optimal active setŜ∈ F̂ for (9), i.e., if it is optimal

to rest the bandit in state(1, i) then it is optimal to rest it in(0, i).

Proof. Fix ν . Formulate the assumption that it is optimal to rest the bandit in (1, i) as

βϑ∗
(0,i)(ν) ≥ Ri −ν + β ∑

j∈N

pi j ϑ∗
(1, j)(ν). (17)

We want to show that this implies that it is optimal to rest it in state(0, i), i.e.,

βϑ∗
(0,i)(ν) ≥−ci −

1−φi

1−β
ν + φi

{
Ri −ν + β ∑

j∈N
pi j ϑ∗

(1, j)(ν)
}
.

Suppose first thatν < 0. In such a case, it suffices to draw on classic bandit theory,noting that once the

bandit is active it is optimal to keep it active in statesi for which ν ≤ ν∗
i , whereν∗

i is the bandit’s Gittins

index. Now, Assumption 3.1(ii) ensures thatν∗
i ≥ 0 for every statei, and hence it will never be optimal to

rest the bandit, once engaged, ifν < 0.

Consider now the caseν ≥ 0. In such case, we have the inequalities

βϑ∗
(0,i)(ν) ≥ Ri −ν + β ∑

j∈N

pi j ϑ∗
(1, j)(ν) ≥−ci −

1−φi

1−β
ν + φi

{
Ri −ν + β ∑

j∈N

pi j ϑ∗
(1, j)(ν)

}
,

where the second inequality follows immediately by reformulating it as

(1−φi)
{

Ri + β ∑
j∈N

pi j ϑ∗
(1, j)(ν)

}
≥−ci −β

1−φ
1−β

ν ,

and noting that Assumption 3.1(ii) ensures that the left-hand side in the latter inequality is nonnegative,

whereas Assumption 3.1(i) andν ≥ 0 ensure that its right-hand side is nonpositive.
�

Note that Proposition 3.3 establishes LP(F̂T)-indexability condition (iii) above. In order to further

establish the remaining conditions (i, ii) and to simplify the index algorithm we will have to draw on the

work-reward analysis carried out in the next section.
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4. Work-Reward Analysis and LP-Indexability Proof

We set out in this section to carry out a work-reward analysisof a single bandit with startup penalties as

above, in its semi-Markov restless bandit reformulation, and to establish its LP-indexability.

4.1. Work and Marginal Work Measures

We start by addressing calculation of work and marginal workmeasuresgS0⊕S1
(a−,i) andwS0⊕S1

(a−,i) . We will show

that they are closely related to their counterpartsgS
i andwS

i for the underlying nonrestless bandit, where

stationary deterministic policies are represented by their active setsS⊆ N.

For eachS⊆ N, work measuresgS
i are characterized by the evaluation equations

gS
i =





1+ β ∑
j∈S

pi j g
S
j if i ∈ S

0 otherwise.

(18)

Notice that the solution to (18) is unique, since matrixIS− βPSS is invertible, asPSS is a substochastic

matrix and 0< β < 1, whereIS is the identity matrix indexed bySandPSS, (pi j )i, j∈S.

Further, the marginal work measurewS
i is evaluated by

wS
i , g〈1,S〉

i −g〈0,S〉
i = 1+ β ∑

j∈N

pi j g
S
j −βgS

i =





(1−β )gS
i if i ∈ S

1+ β ∑
j∈S

pi j g
S
j otherwise.

(19)

Notice that (18) and (19) imply that

wS
i > 0, i ∈ N. (20)

We now return to the bandit’s semi-Markov restless reformulation. The following result gives the eval-

uation equations for work measuregS0⊕S1
(a−,i) , for a given active setS0⊕S1 ∈ F̂ .

Lemma 4.1

gS0⊕S1
(0,i) =





1−φi

1−β
+ φig

S0⊕S1
(1,i) if i ∈ S0

0 otherwise

and gS0⊕S1
(1,i) =





1+ β ∑
j∈N

pi j g
S0⊕S1
(1, j) if i ∈ S1

0 otherwise.

The next result represents work measuregS0⊕S1
(a−,i) in terms of thegS

i ’s.

Lemma 4.2 For S0⊕S1 ∈ F̂ :

(a) gS0⊕S1
(a−,i) = gS1

i = 0, for a− ∈ {0,1}, i ∈ Sc
1.
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(b) gS0⊕S1
(1,i) = gS1

i , for i ∈ S1.

(c) gS0⊕S1
(0,i) = (1−φi)/(1−β )+ φig

S1
i , for i ∈ S0.

(d) gS0⊕S1
(0,i) = 0, for i ∈ S1\S0.

Proof. (a) This part follows immediately from the definition of policy S0⊕S1.

(b) For i ∈ S1, we can write

gS0⊕S1
(1,i) = 1+ β ∑

j∈S1

pi j g
S0⊕S1
(1, j) + β ∑

j∈Sc
1

pi j g
S0⊕S1
(1, j) = 1+ β ∑

j∈S1

pi j g
S0⊕S1
(1, j) ,

where we have used Lemma 4.1 and part (a). Hence, thegS0⊕S1
(1,i) ’s satisfy the evaluation equations in (18)

characterizing thegS1
i ’s, for i ∈ S1, which yields the result.

(c) We have, fori ∈ S0, that

gS0⊕S1
(0,i) =

1−φi

1−β
+ φig

S0⊕S1
(1,i) =

1−φi

1−β
+ φig

S1
i ,

where we have used Lemma 4.1, the relationS0 ⊆ S1 and parts (a, b).

(d) This part follows immediately from the definition of policy S0⊕S1.
�

RegardingwS0⊕S1
(a−,i) , we readily obtain from (11) and Lemma 4.1 that

wS0⊕S1
(1,i) = 1+ β ∑

j∈N

pi j g
S0⊕S1
(1, j) −βgS0⊕S1

(0,i)

wS0⊕S1
(0,i) =

1−φi

1−β
+ φi

{
1+ β ∑

j∈N

pi j g
S0⊕S1
(1, j)

}
−βgS0⊕S1

(0,i) .
(21)

The following result represents marginal workloadswS0⊕S1
(a−,i) in terms of thewS

i ’s.

Lemma 4.3 For a− ∈ {0,1},S0 ⊕S1 ∈ F̂ :

(a) wS0⊕S1
(1,i) = wS1

i , for i ∈ Sc
1.

(b) wS0⊕S1
(0,i) =

1−φi

1−β
+wS1

i , for i ∈ Sc
1.

(c) wS0⊕S1
(1,i) =

1−βφi

1−β
{

wS1
i −β

1−φi

1−βφi

}
, for i ∈ S0.

(d) wS0⊕S1
(0,i) = 1−φi + φiw

S1
i , for i ∈ S0.

(e) wS0⊕S1
(1,i) =

wS1
i

1−β
, for i ∈ S1 \S0.

17



(f) wS0⊕S1
(0,i) =

1−φi

1−β
+

φi

1−β
wS1

i , for i ∈ S1 \S0.

Proof. (a) We can write, fori ∈ Sc
1,

wS0⊕S1
(1,i) = 1+ β ∑

j∈N
pi j g

S0⊕S1
(1, j) −βgS0⊕S1

(0,i) = 1+ β ∑
j∈S1

pi j g
S1
j = wS1

i ,

where we have used (21), Lemma 4.2(a, b), and (19).

(b) We have, fori ∈ Sc
1,

wS0⊕S1
(0,i) =

1−φi

1−β
+ φi

{
1+ β ∑

j∈N

pi j g
S0⊕S1
(1, j)

}
−βgS0⊕S1

(0, j)

=
1−φi

1−β
+ φi

{
1+ β ∑

j∈S1

pi j g
S1
j

}
=

1−φi

1−β
+ φiw

S1
i ,

where we have used (21), Lemma 4.2(a, b), and (19).

(c) We can write, fori ∈ S0,

wS0⊕S1
(1,i) = gS0⊕S1

(1,i) −βgS0⊕S1
(0,i) = gS1

i −β
{1−φi

1−β
+ φig

S1
i

}

= (1−βφi)g
S1
i −β

1−φi

1−β
=

1−βφi

1−β
{

wS1
i −β

1−φi

1−βφi

}
,

where we have used (21),S0 ⊆ S1, Lemma 4.1, Lemma 4.2(b, c), and (19).

(d) We have, fori ∈ S0,

wS0⊕S1
(0,i) =

1−φi

1−β
+ φig

S0⊕S1
(1,i) −βgS0⊕S1

(0,i) =
1−φi

1−β
+ φig

S1
i −β

{1−φi

1−β
+ φig

S1
i

}

= 1−φi + φi(1−β )gS1
i = 1−φi + φiw

S1
i ,

where we have used Lemma 4.1,S0 ⊆ S1, Lemma 4.2(b, c), and (19).

(e) We can write, fori ∈ S1\S0,

wS0⊕S1
(1,i) = gS0⊕S1

(1,i) −βgS0⊕S1
(0,i) = gS1

i =
wS1

i

1−β
,

where we have used (21), Lemma 4.1, Lemma 4.2(d), and (19).

(f) We can write, fori ∈ S1 \S0,

wS0⊕S1
(0,i) =

1−φi

1−β
+ φig

S0⊕S1
(1,i) =

1−φi

1−β
+ φig

S1
i =

1−φi

1−β
+

φi

1−β
wS1

i ,

where we have used (21), Lemma 4.1, Lemma 4.2(b), and (19).
�
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Note that, at this point in the corresponding analysis in Ni˜no-Mora (2006c) — for the no startup delay

caseφi ≡ 1 — we could immediately establish positivity of marginal workloads, i.e.,wŜ
(a−,i) > 0, for (a−, i)∈

N̂, Ŝ∈ F̂ , which is a prerequisite for PCL-indexability. In the present setting, however, it is clear from

Lemma 4.3(c) thatwS0⊕S1
(1,i) , for i ∈ S0, can become negative ifwS1

i < β andφi is close enough to zero. This is

why we cannot use here the same argument in that paper to establish indexability, and use instead the more

powerful LP-indexability conditions.

4.2. Reward and Marginal Reward Measures

We continue by addressing calculation of required reward and marginal reward measuresf S0⊕S1
(a−,i) andrS0⊕S1

(a−,i) .

Again, we will show that they are closely related to their counterpartsf S
i andrS

i for the underlying nonrestless

bandit wit no startup costs.

For each active setS⊆ N, the reward measuref S
i is characterized by the evaluation equations

f S
i =





Ri + β ∑
j∈S

pi j f S
j if i ∈ S

0 otherwise,

(22)

while the marginal reward measurerS
i is given by

rS
i , f 〈1,S〉

i − f 〈0,S〉
i = Ri + β ∑

j∈S

pi j f S
j −β f S

i =





(1−β ) f S
i if i ∈ S

Ri + β ∑
j∈S

pi j f S
j otherwise.

(23)

Returning to the semi-Markov restless formulation, the next result gives the evaluation equations for

reward measuresf S0⊕S1
(a−,i) , for a given active setS0⊕S1 ∈ F̂ .

Lemma 4.4

f S0⊕S1
(a−,i) =





Ri + β ∑ j∈N pi j f S0⊕S1
(1, j) if a− = 1, i ∈ S1

−ci + φi
{

Ri + β ∑ j∈N pi j f S0⊕S1
(1, j)

}
if a− = 0, i ∈ S0

β f S0⊕S1
(0,i) otherwise.

The next result represents reward measuref S0⊕S1
(a−,i) in terms of thef S

i ’s.

Lemma 4.5 For S0⊕S1 ∈ F̂ :

(a) f S0⊕S1
(a−,i) = 0 = f S1

i , for a− ∈ {0,1}, i ∈ Sc
1.

(b) f S0⊕S1
(1,i) = f S1

i , for i ∈ S1.
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(c) f S0⊕S1
(0,i) = −ci + φi f

S1
i , for i ∈ S0.

(d) f S0⊕S1
(0,i) = 0 = f S0

i , for i ∈ S1 \S0.

Proof. (a) This part follows immediately from the definition of policy S0⊕S1.

(b) We can write, fori ∈ S1,

f S0⊕S1
(1,i) = Ri + β ∑

j∈S1

pi j f S0⊕S1
(1, j) + β ∑

j∈Sc
1

pi j f S0⊕S1
(1, j) = Ri + β ∑

j∈S1

pi j f S0⊕S1
(1, j) ,

where we have used Lemma 4.4 and part (a). Hence, thef S0⊕S1
(1,i) ’s, for i ∈ S1, satisfy the evaluation equations

in (22) for corresponding termsf S1
i , which yields the result.

(c) We have, fori ∈ S0,

f S0⊕S1
(0,i) = −ci + φi

{
Ri + β ∑

j∈S1

pi j f S0⊕S1
(1, j)

}
= −ci + φi f S1

i ,

where we have used Lemma 4.4, (22), and parts (a, b).

(d) This part follows immediately from the definition of policy S0⊕S1.
�

Regarding marginal reward measurerS0⊕S1
(a−,i) , we obtain from (12) and Lemma 4.4 that

rS0⊕S1
(1,i) = Ri + β ∑

j∈N

pi j f S0⊕S1
(1, j) −β f S0⊕S1

(0,i)

rS0⊕S1
(0,i) = −ci + φi

{
Ri + β ∑

j∈N

pi j f S0⊕S1
(1, j)

}
−β f S0⊕S1

(0,i) .
(24)

The following result represents marginal rewardrS0⊕S1
(a−,i) in terms of therS

i ’s.

Lemma 4.6 For S0⊕S1 ∈ F̂ :

(a) rS0⊕S1
(1,i) = rS1

i , for i ∈ Sc
1.

(b) rS0⊕S1
(0,i) = −ci + rS1

i , for i ∈ Sc
1.

(c) rS0⊕S1
(1,i) = βci +

1−βφi

1−β
rS1
i , for i ∈ S0.

(d) rS0⊕S1
(0,i) = −(1−β )ci + φir

S1
i , for i ∈ S0.

(e) rS0⊕S1
(1,i) =

rS1
i

1−β
, for i ∈ S1\S0.

(f) rS0⊕S1
(0,i) = −ci + φi

rS1
i

1−β
, for i ∈ S1 \S0.

20



Proof. (a) We can write, fori ∈ Sc
1,

rS0⊕S1
(1,i) = Ri + β ∑

j∈N

pi j f S0⊕S1
(1, j) − f S0⊕S1

(1,i) = Ri + β ∑
j∈S1

pi j f S1
j = rS1

i ,

where we have used (24), Lemma 4.4, Lemma 4.5(a, b), (22) and (23).

(b) We have, fori ∈ Sc
1,

rS0⊕S1
(0,i) = −ci + φi

{
1+ β ∑

j∈N

pi j f S0⊕S1
(1, j)

}
−β f S0⊕S1

(0, j)

= −ci + φi
{

1+ β ∑
j∈S1

pi j f S1
j

}
= −ci + φir

S1
i ,

where we have used (24), Lemma 4.5(a, b) and (23).

(c) We can write, fori ∈ S0,

rS0⊕S1
(1,i) = f S0⊕S1

(1,i) −β f S0⊕S1
(0,i) = f S1

i −β
{
−ci + φi f S1

i

}

= βci +(1−βφi) f S1
i = βci +

1−βφi

1−β
rS1
i ,

here we have used (24),S0 ⊆ S1, Lemma 4.4, Lemma 4.5(b, c) and (23).

(d) We have, fori ∈ S0,

rS0⊕S1
(0,i) = −ci + φi f

S0⊕S1
(1,i) −β f S0⊕S1

(0,i) = −ci + φi f
S1
i −β

{
−ci + φi f

S1
i

}

= −(1−β )ci + φi(1−β ) f S1
i = −(1−β )ci + φir

S1
i ,

where we have used Lemma 4.4,S0 ⊆ S1, Lemma 4.5(b, c) and (23).

(e) We can write, fori ∈ S1\S0,

rS0⊕S1
(1,i) = f S0⊕S1

(1,i) −β f S0⊕S1
(0,i) = f S1

i =
rS1
i

1−β
,

where we have used (24), Lemma 4.4, Lemma 4.5(d) and (23).

(f) We have, fori ∈ S1 \S0,

rS0⊕S1
(0,i) = −ci + φi

{
Ri + β ∑

j∈N

pi j f S0⊕S1
(1, j)

}
−β f S0⊕S1

(0,i) = −ci + φi f
S1
i = −ci + φi

rS1
i

1−β
,

where we have used (24), Lemma 4.4, Lemma 4.5(b), and (23). This completes the proof.
�

4.3. Marginal Productivity Measures

We continue by addressing calculation of the marginal productivity measuresνS0⊕S1
(a−,i) in (13). Again, we

will show that they are closely related to their counterparts νS
i for the underlying nonrestless bandit without

startup costs, given by

νS
i ,

rS
i

wS
i

, i ∈ N,S⊆ N. (25)

The next result representsνS0⊕S1
(a−,i) in terms of theνS

i ’s.
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Lemma 4.7 For S0⊕S1 ∈ F̂ :

(a) νS0⊕S1
(1,i) = νS1

i , for i ∈ Sc
1.

(b) νS0⊕S1
(0,i) =

−ci + rS1
i

1−φi
1−β +wS1

i

=
wS1

i
1−φi
1−β +wS1

i

{
νS1

i −
ci

wS1
i

}
, for i ∈ Sc

1.

(c) νS0⊕S1
(1,i) =

βci +
1−βφi
1−β rS1

i

1−βφi
1−β

{
wS1

i −β 1−φi
1−βφi

} =
wS1

i

wS1
i −β 1−φi

1−βφi

{
νS1

i +
β (1−β )

1−βφi

ci

wS1
i

}
, for i ∈ S0 such that wS1

i 6=

β 1−φi
1−βφi

.

(d) νS0⊕S1
(0,i) =

−(1−β )ci + φir
S1
i

1−φi + φiw
S1
i

=
−(1−β )ci + φiw

S1
i νS1

i

1−φi + φiw
S1
i

, for i ∈ S0.

(e) νS0⊕S1
(1,i) = νS1

i , for i ∈ S1\S0.

(f) νS0⊕S1
(0,i) = νS1

i −

(
1−β

)
ci +

(
1−φi

)
νS1

i

1−φi + φiw
S1
i

, i ∈ S1 \S0.

Proof. All parts follow immediately from (13), (25), Lemma 4.3 andLemma 4.6.
�

4.4. Proof of LP(F̂ )-Indexability

We next draw on the above results to establish that the restless bandits of concern are LP(F̂ )-indexable,

which ensures the validity of index algorithm AĜ
F

via Theorem 3.2. See Section 3.3.

Theorem 4.8 Under Assumption3.1, the restless reformulation of a bandit with switching penalties is

LP(F̂ )-indexable. Hence, it is indexable, and algorithmAG
F̂

computes its MPI.

Proof. The defining LP(F̂ )-indexability condition (iii) in Section 3.3 was established in Proposition 3.3.

As for condition (i), it follows by noting that, fori ∈ N,

w/0⊕ /0
(1,i) = w/0

i = 1 > 0, w/0⊕ /0
(0,i) =

1−φi

1−β
+w/0

i =
1−φi

1−β
+1 > 0

wN⊕N
(1,i) =

1−βφi

1−β
{

wN
i −β

1−φi

1−βφi

}
= 1 > 0, wN⊕N

(0,i) = 1−φi + φiw
N
i = 1 > 0,

where we have usedw/0
i = wN

i = 1 along with emma 4.3(a)–(d), respectively.

Regarding condition (ii), consider an active setŜ= S0⊕S1 ∈ F̂ . Then, we have

wS0⊕S1
(a−,i) < 0 =⇒ a− = 1 andi ∈ S0 =⇒ (1, i) 6∈ ∂ in

F̂
Ŝand(1, i) 6∈ ∂ out

F̂
Ŝ,

where we have used Lemma 4.3, (15), (14) and (10). Hence condition (ii) holds.

The proof is now completed by invoking Theorem 3.2.
�
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4.5. Further Simplification of the Index Algorithm

The above results allow us to further simplify Version 2 of index algorithm AĜ
F

into theVersion 3shown

in Table 3. In the latter, we use Lemma 4.7(b, d) to represent required marginal productivity ratesνS0⊕S1
(a−,i) in

terms of theνS
i ’s. Notice that in Version 3 we useν(0,k1−1)

(0, j) (which denotesνS0⊕Sk1−1

(0, j) ) in place ofν(k0−1,k1−1)
(0, j) ,

drawing on Lemma 4.7(d). We do so for computational reasons,as storage of quantitiesν(0,k1−1)
(0, j) requires

one less dimension than storage of theν(k0−1,k1−1)
(0, j) ’s.

Table 3: Version 3 of Algorithmic Scheme AĜ
F

.

ALGORITHM AG
F̂

:
Output: {(0, ik0

0 ),ν∗

(0,i
k0
0 )
}n

k0=1,{(1, ik1
1 ),ν∗

(1,i
k1
1 )
}n

k1=1

S0
0 := /0; S0

1 := /0; k0 := 1; k1 := 1
while k0 +k1 ≤ 2n+2 do

if k1 ≤ n pick jmax
1 ∈ argmax

{
ν(k1−1)

j : j ∈ Sc,k1−1
1

}

ν(0,k1−1)
(0, j) := ν(k1−1)

j −

(
1−β

)
c j +

(
1−φ j

)
ν(k1−1)

j

1−φ j + φ jw
(k1−1)
j

, j ∈ Sk1−1
1 \Sk0−1

0

if k0 < k1 pick jmax
0 ∈ argmax

{
ν(0,k1−1)

(0, j) : j ∈ Sk1−1
1 \Sk0−1

0

}

if k1 = n+1 or
{

k0 < k1 ≤ n and ν(k1−1)
jmax
1

< ν(0,k1−1)
jmax
0

}

ik0
0 := jmax

0 ; ν∗

(0,i
k0
0 )

:= ν(0,k1−1)

(0,i
k0
0 )

; Sk0
0 := Sk0−1

0 ∪{(0, ik0
0 )}; k0 := k0 +1

else
ik1
1 := jmax

1 ; ν∗

(1,i
k1
1 )

:= ν(k1−1)

(1,i
k1
1 )

; Sk1
1 := Sk1−1

1 ∪{(1, ik1
1 )}; k1 := k1 +1

end { if }
end { while }

4.6. The MPI is the AT Index

We next establish the identity between the MPI and the AT index for the bandits of concern in this paper.

We will find it convenient to reformulate the expressions forthe AT index, given in (5)–(6) in terms of

stopping times, using instead active setsS⊆ N to represent the latter — as it suffices to consider stationary

deterministic policies. In the above notation, we can thus formulate the continuation and switching AT

indices as

νAT
(1,i) , max

i∈S⊆N

f S
i

gS
i

, (26)

and

νAT
(0,i) , max

i∈S⊆N

−ci + φi f S
i

1−φi

1−β
+ φig

S
i

. (27)
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Recall that we denote the MPI byν∗
(a−,i).

Proposition 4.9 Under Assumption3.1, ν∗
(1,i) = νAT

(1,i) andν∗
(0,i) = νAT

(0,i), for i ∈ N.

Proof. We first show thatν∗
(1,i) = νAT

(1,i), through the equivalences

ν ≥ ν∗
(1,i) ⇐⇒ it is optimal in (9) to rest the bandit at(1, i)

⇐⇒ 0≥ max
S0⊆S1⊆N : i∈S1

f S0⊕S1
(1,i) −νgS0⊕S1

(1,i)

⇐⇒ ν ≥ max
S0⊆S1⊆N : i∈S1

f S0⊕S1
(1,i)

gS0⊕S1
(1,i)

⇐⇒ ν ≥ max
i∈S1⊆N

f S1
i

gS1
i

= νAT
(1,i),

where we have used the result that the bandit isF̂ -indexable, and hence if it is optimal to rest it at(1, i) then

it is also optimal to rest it at(0, i), along with Lemma 4.2(b) and Lemma 4.5(b).

Now, we show thatν∗
(0,i) = νAT

(0,i), through the equivalences

ν ≥ ν∗
(0,i) ⇐⇒ it is optimal in (9) to rest the bandit at(0, i)

⇐⇒ 0≥ max
S0⊆S1⊆N : i∈S0

f S0⊕S1
(0,i) −νgS0⊕S1

(0,i)

⇐⇒ ν ≥ max
S0⊆S1⊆N : i∈S0

f S0⊕S1
(0,i)

gS0⊕S1
(0,i)

⇐⇒ ν ≥ max
S1⊆N : i∈S1

−ci + φi f
S1
i

1−φi

1−β
+ φig

S1
i

= νAT
(0,i),

where we have used that the bandit iŝF -indexable (cf. Proposition 4.8), along with Lemma 4.2(c) and

Lemma 4.5(c). This completes the proof.
�

5. Two-Stage Index Computation

In this section we further simplify Version 3 of the index algorithm, by decouplingcomputation of the

continuation and the switching index into a two-stage scheme.

5.1. First Stage: Computing the Continuation Index

We start with continuation indexν∗
(1,i), which is the Gittins indexν∗

i of the bandit. We will need further

quantities as input for the second-stage algorithm to be discussed later.

To compute such an index and extra quantities, we refer to thealgorithmic scheme AG1 in Table 4.

This is a variant of the algorithm of Varaiya et al. (1985), reformulated as in Niño-Mora (2006a). For actual
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Table 4: Gittins-Index Algorithmic Scheme AG1.

ALGORITHM AG1:
Output: {ik1

1 }n
k1=1, {ν∗

j : j ∈ N}, {(w(k1)
j ,ν(k1)

j ) : j ∈ Sk1
1 }n

k1=1

set S0
1 := /0; compute{(w(0)

i ,ν(0)
i ) : i ∈ N}

for k1 := 1 to n do

pick ik1
1 ∈ argmax

{
ν(k1−1)

i : i ∈ N\Sk1−1
1

}

ν∗

i
k1
1

:= ν(k1−1)

i
k1
1

; Sk1
1 := Sk1−1

1 ∪{ik1
1 }

compute{(w(k1)
i ,ν(k1)

i ) : i ∈ N}
end

implementations, one can use several algorithms in the latter paper, such as theFast-Pivotingalgorithm with

extended output FP(1), performing(4/3)n3 + O(n2) arithmetic operations; or theComplete-Pivoting(CP)

algorithm, performing 2n3 +O(n2) operations.

5.2. Second Stage: Computing the Switching Index

We next address computation of the switching index,after having computed the Gittins index and required

extra quantities. Consider the algorithm AG0
TD in Table 5, which is fed as input the output of AG1, and

produces a sequence of statesik0
0 spanningN, along with corresponding index valuesν∗

(0,i
k0
0 )

, computed in a

top down(TD) fashion, i.e., from highest to lowest. Table 5 shows itsbottom up(BU) version: algorithm

AG0
BU. Notice that we have formulated such algorithms in a form that applies to the case where the startup

delay is positive at every statej, so thatφ j < 1.

The following is the main result of this paper.

Theorem 5.1 AlgorithmsAG0
TD andAG0

BU compute the switching indexν∗
(0,i).

Proof. The result follows by noticing that algorithm AG0TD is obtained from Version 3 of index algorithm

AG
F̂

in Table 3 by decoupling the computation of theν∗
(0,i)’s and theν∗

i ’s.
�

We next assess the arithmetic operation count of the switching index algorithms.

Proposition 5.2 AlgorithmsAG0
TD andAG0

BU perform at most(5/2)n2 +O(n) operations each.

Proof. The operation count is dominated by the statement

ν(0,k1)
(0, j) := ν(k1−1)

j −
ĉ j + ν(k1−1)

j

1+zjw
(k1−1)
j

, j ∈ Sk1
1 \Sk0

0 ,
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Table 5: Switching-Index Algorithm AG0TD: Top-Down Version.

ALGORITHM AG0
TD:

Input: {ik1
1 }n

k1=1, {ν∗
j : j ∈ N}, {(w(k1)

j ,ν(k1)
j ) : j ∈ Sk1

1 }n
k1=1

Output: {ik0
0 }n

k0=1,{ν∗
(0, j) : j ∈ N}

ĉ j :=
1−β
1−φ j

c j , j ∈ N; zj = φ j/(1−φ j); S0
0 := /0; S0

1 := /0; k0 := 0

for k1 := 1 to n do
Sk1

1 := Sk1−1
1 ∪{ik1

1 }; AUGMENT1 := false

ν(0,k1)
(0, j) := ν(k1−1)

j −
ĉ j + ν(k1−1)

j

1+zjw
(k1−1)
j

, j ∈ Sk1
1 \Sk0

0

while k0 < k1 and not(AUGMENT1) do
pick jmax

0 ∈ argmax
{

ν(0,k1)
(0, j) : j ∈ Sk1

1 \Sk0
0

}

if k1 = n or ν∗

i
k1
1

< ν(0,k1)
(0, jmax

0 )

ik0+1
0 := jmax

0 ; ν∗

(0,i
k0+1
0 )

:= ν(0,k1)

(0,i
k0+1
0 )

Sk0+1
0 := Sk0

0 ∪{ik0+1
0 }; k0 := k0 +1

else
AUGMENT1 := true

end{ if }
end { while }

end { for }

in algorithm AG0
TD, and in the statement

ν(0,k1)
(0, j) := ν(k1−1)

j −
ĉ j + ν(k1−1)

j

1+zjw
(k1−1)
j

, j ∈ Sk0
0 ,

in algorithm AG0
BU, for 2 ≤ k1 ≤ n+ 1. In each such statement, at most 5k1 arithmetic operations are

performed, which yields the stated maximum total count.
�

6. Dependence of the Index on Switching Penalties

We next present and discuss some insightful properties on how the index depends on switching penalties,

focusing on the caseci ≡ c, di ≡ d andφi ≡ φ , for i ∈ N We will make explicit in the notation below the

prevailing switching costs, writing the continuation index asν∗
(1,i)(d,ψ) — as it does not depend onc nor

on φ , and the switching index asν∗
(1,i)(c,d,φ ,ψ).

We further denote byν∗
i ≥ 0 and by f S

i ≥ 0 the Gittins index and the reward measure of the underlying
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Table 6: Switching-Index Algorithm AG0BU: Bottom-Up Version.

ALGORITHM AG0
BU:

Input: {ik1
1 }n

k1=1, {ν∗
j : j ∈ N}, {(w(k1)

j ,ν(k1)
j ) : j ∈ Sk1

1 }n
k1=1

Output: {ik0
0 }n

k0=1,{ν∗
(0, j) : j ∈ N}

ĉ j :=
1−β
1−φ j

c j ; zj = φ j/(1−φ j); ν(0,n)
(0, j) := ν(n)

j −
ĉ j + ν(n)

j

1+zjw
(n)
j

, j ∈ N

Sn
0 := N; Sn

1 := N; k1 := n
for k0 := n down to 1 do

SHRINK0 := false

while k0 ≤ k1 and not(SHRINK0) do
pick jmin

0 ∈ argmin
{

ν(0,k1)
(0, j) : j ∈ Sk0

0

}

if k0 = k1 or ν(0,k1)

(0, jmin
0 )

≤ ν∗

i
k1
1

ik0
0 := jmin

0 ; ν∗

(0,i
k0
0 )

:= ν(0,k1)

(0,i
k0
0 )

Sk0−1
0 := Sk0

0 \{ik0
0 }; SHRINK0 := true

else
Sk1−1

1 := Sk1
1 \{ik1

1 }; k1 := k1−1

ν(0,k1)
(0, j) := ν(k1−1)

j −
ĉ j + ν(k1−1)

j

1+zjw
(k1−1)
j

, j ∈ Sk0
0

end{ if }
end { while }

end { for }

bandit with no switching penalties. We will use the switching-index expression

ν∗
(0,i)(c,d,φ ,ψ) = max

i∈S⊆N
H

(
c,d,φ ,ψ , f S

i ,gS
i

)
, (28)

where

H(c,d,φ ,ψ , f ,g) ,
−(c+ φd)+ φ

(
f +(1−β )dg

)

1−φψ
1−β

+ φψg
.

Notice that identity (28) draws on the transformation discussed in Section 2.2 along with the switching-

index representation in (27), where we have used that the bandit’s reward measure with modified rewards

R̃j =
{

Rj +(1−β )d
}
/ψ , for j ∈ N, is given by f̃ S

i =
{

f S
i +(1−β )dgS

i

}
/ψ .

We will use the following preliminary result.

Lemma 6.1

(a) If S⊂ S′ ⊆ N, then fSi ≤ f S′
i and gS

i ≤ gS′
i .
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(b) If d + ψc≥ φψ f N
i , then H(c,d,φ ,ψ , f ,g) is increasing in f and in g, for0≤ f ≤ f N

i and0≤ g≤

gN
i = 1/(1−β ).

Proof. (a) This part follows immediately from the interpretationof reward and work measures, using As-

sumption 3.1 for the former.

(b) The result follows immediately from the following expressions:

∂
∂ f

H(c,d,φ ,ψ , f ,g) =
φ

1−φψ
1−β + φψg

> 0 and
∂

∂g
H(c,d,φ ,ψ , f ,g) = φ

d+ ψc−φψ f
(1−φψ

1−β + φψg
)2 > 0.

�

Proposition 6.2

(a) ν∗
(1,i)(d,ψ) =

{
ν∗

i +(1−β )d}/ψ .

(b) If d + ψc≥ φψ f N
i , thenν∗

(0,i) = φνN
i − (1−β )c.

(c) ν∗
(0,i)(c,d,φ ,ψ) is piecewise linear convex in(c,d), decreasing in c and nonincreasing in d.

(d) For d + ψc≥ φψ f N
i , or for c,d ≥ 0 small enough and Ri > 0, or for c = d = 0, ν∗

(0,i)(c,d,φ ,ψ) is

nondecreasing convex inφ and inψ .

(e) limφ↘0ν∗
(0,i)(c,d,φ ,ψ) = −(1−β )c.

(f) ν∗
(0,i)(c,d,φ ,ψ) = φνN

i − (1−β )c+O(ψ2), asψ ↘ 0.

Proof. (a) This part follows immediately from the fact thatν∗
(1,i)(d,ψ) is the Gittins index of the bandit with

modified active rewards̃Rj = {Rj +(1−β )d}/ψ (cf. Section 2.2), which is related to the Gittins indexν∗
i

of the bandit with unmodified rewardsRj by the given expression.

(b) Use Lemma 6.1(b) andνN
i = (1−β ) f N

i to write

ν∗
(0,i)(c,d,φ ,ψ) = max

( f ,g)∈[0, f N
i ]×[0,gN

i ]
H(c,d,φ ,ψ , f ,g) = H

(
c,d,φ ,ψ , f N

i ,gN
i

)
= φνN

i − (1−β )c.

(c) This part follows by noting that (28) representsν∗
(0,i)(c,d,φ ,ψ) as the maximum of linear functions

in (c,d) that are decreasing inc and nonincreasing ind.

(d) Regarding dependence onφ , in the cased+ ψc≥ φψ f N
i the result follows by part (b). Further, we

can write

∂
∂φ

H
(
c,d,φ ,ψ , f S

i ,gS
i

)
=

(
1−β

) f S
i −

(
1− (1−β )gS

i

)
(d+ ψc)

{
1−φψ

(
1− (1−β )gS

i

)}2 ≥ 0

∂ 2

∂φ2 H
(
c,d,φ ,ψ , f S

i ,gS
i

)
=

2(1−β )
(
1− (1−β )gS

i

)
ψ

{
1−φψ

(
1− (1−β )gS

i

)}3

{
f S
i −

(
1− (1−β )gS

i

)
(d+ ψc)

}
≥ 0,
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where the inequalities are easily shown to hold forc,d small enough, using thatRi > 0 to ensure thatf S
i > 0,

and forc = d = 0. Thus,ν∗
(0,i)(c,d,φ ,ψ) is the maximum of nondecreasing convex functions, which is also

nondecreasing convex.

The same line of argument applies to the dependence onψ , noting that

∂
∂ψ

H
(
c,d,φ ,ψ , f S

i ,gS
i

)
=

(1−β )
(
1− (1−β )gS

i

)
φ

{
1−φψ

(
1− (1−β )gS

i

)}2

{
φ f S

i −c−
(
1−

(
1−β

)
gS

i

)
φd

}

∂ 2

∂ψ2 H
(
c,d,φ ,ψ , f S

i ,gS
i

)
=

2(1−β )
(
1− (1−β )gS

i

)2φ2

{
1−φψ

(
1− (1−β )gS

i

)
}3

{
φ f S

i −c−
(
1−

(
1−β

)
gS

i

)
φd

}
.

Parts (e) and (f) follow by straightforward algebra.
�

We conjecture that the Lemma 6.2(c) should hold without the stated qualifications.

We next give two examples to illustrate the above results. The first concerns the 3-state bandit instance

with no shutdown penalties nor startup costs, startup delaytransform’s valueφ , β = 0.95,

R =




0.7221
0.9685
0.1557


 and P =




0.8061 0.1574 0.0365
0.1957 0.0067 0.7976
0.1378 0.5959 0.2663


 .

Figure 3 plots the bandit’s switching index for each state vs. 1−φ . Notice that the plot is indeed consistent

with Proposition 6.2(d, e). It further illustrates that therelative state ordering induced by the switching index

can change asφ varies.

1−φ

ν∗ (0
,i)

0 1
0

1

Figure 3: Dependence of Switching Index on Startup Delay Transform.

The next example concerns the same base 3-state bandit, but with no startup delay and shutdown delay

transformψ . Figure 4 plots the continuation and switching indices for each state vs. 1−ψ . The plots are

consistent with Proposition 6.2(a, d, f). Notice that, in particular, the continuation indexν∗
(1,i)(d,ψ) grows

to infinity asψ approaches 0, reflecting that the incentive to stay in a bandit grows steeply as the shutdown

delay gets large. Further, the plot for the switching index shows that the relative state ordering induced by it

can change asψ varies.
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1−ψ

ν∗ (1
,i)

1−ψ

ν∗ (0
,i)

0 10 1
0.5

1

0

100

Figure 4: Dependence of Continuation and Switching Indiceson Shutdown Delay Transform.

7. Computational Experiments

This section reports the results of a computational study, based on the author’s MATLAB implementations

of the algorithms described herein.

The first experiment investigated the runtime performance of the decoupled index computation method.

We made MATLAB generate a random bandit instance with startup costs for each of the state-space sizes

n = 500,1000, . . . ,5000. For eachn, MATLAB recorded the time to compute the continuation indexand

required extra quantities with algorithm FP(1) in Niño-Mora (2006a), the time to compute the switching

MPI by algorithms AG0
TD and AG0

BU, and the time to jointly compute both indices using algorithm FPAG

in (Niño-Mora, 2006a, Sec. 6.3), which is a fast-pivoting implementation of the algorithmic scheme AĜ
F

discussed herein. This experiment was run under MATLAB R2006b 64-bit on Windows XP x64, on an HP

xw9300 2.8 GHz AMD Opteron workstation with 4GB of memory.

The results are displayed in Figure 5. The left pane shows total runtimes, in hours, for computing both

indices vs.n, along with curves obtained by cubic least-squares fit, which are consistent with the theoretical

O(n3) complexity. Squares correspond to the AG
F̂

scheme, while circles correspond to our two-stage

scheme. The results show that the two-stage method consistently achieved about a 4-fold speedup over the

single-stage method.

The right pane shows runtimes, inseconds, for the switching index algorithms vs.n, along with curves

obtained by quadratic least-squares fit, which are consistent with the theoreticalO(n2) complexity. Now,

squares (resp. circles) correspond to the top-down (resp. bottom-up) algorithm AG0TD (resp. AG0
BU). The

change of timescale from hours to seconds demonstrates the order-of-magnitude runtime improvement

achieved. Further, the bottom-up algorithm consistently outperformed the top-down one, though the dif-

ference is negligible, given the small runtimes.

We further investigated how the switching index algorithms’ relative performance depends on startup
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Figure 5: Exp. 1(a):Runtimes of Index Algorithms.

delays. Figure 6 plots the average arithmetic operation count (aoc) for each algorithm over 100 random

instances of sizesn = 500,1000, . . . ,5000, vs.φ . The top-down algorithm is better forφ small enough

(longer startup delays), while the bottom-up one is better for φ large enough (shorter delays), which agrees

with intuition. Remarkably, the criticalφ value remains invariant asn varies. The curves shown are obtained

by quadratic least-squares fit.

The following experiments assess the average relative performance of the MPI policy in random samples

of two- and three-bandit instances, both against the optimal policy, and against the benchmark Gittins index

policy. For each instance, the optimal performance was computed by solving the LP formulation of the

Bellman equations using the CPLEX LP solver, interfaced with MATLAB via TOMLAB. The MPI and

benchmark policies were evaluated by solving with MATLAB the corresponding linear evaluation equations.

The second experiment assessed how the relative performance of the MPI policy on two-bandit in-

stances depends on a common constant startup-delay transform’s value φ and discount factor — there

are no shutdown penalties. A sample of 100 instances (with 10-state bandits) was randomly generated

with MATLAB. In every instance, parameter values for each bandit were independently generated: tran-

sition probabilities (obtained by scaling a matrix with Uniform[0, 1] entries — dividing each row by its

sum) and active rewards (Uniform[0, 1]). For each instancek = 1, . . . ,100 and startup cost-discount fac-

tor combination in the range(φ ,β ) ∈ [0.5,0.99] × [0.5,0.95] — using a 0.1 grid — the optimal objec-

tive valueϑ (k),opt and the objective values of the MPI (ϑ (k),MPI) and the benchmark (ϑ (k),bench) policies
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Figure 6: Exp. 1(b): Arithmetic Operation Count of Switching-Index Algorithms vs.φ .

were computed, along with the corresponding relative suboptimality gap of the MPI policy∆(k),MPI ,

100(ϑ (k),opt −ϑ (k),MPI)/|ϑ (k),opt|, and the suboptimality-gap ratio of the MPI over the benchmark policy

ρ (k),MPI,bench, 100(ϑ (k),MPI −ϑ (k),opt)/(ϑ (k),bench−ϑ (k),opt) — scaled as percentages. The latter were then

averaged over the 100 instances for each(c,β ) pair, to obtain the average values∆MPI andρMPI,bench.

Ojective valuesϑ (k),opt, ϑ (k),MPI andϑ (k),benchwere evaluated as follows. First, the correspondingvalue

functionsϑ (k),opt
((a−1 ,i1),(a

−
2 ,i2))

, ϑ (k),MPI
((a−1 ,i1),(a

−
2 ,i2))

andϑ (k),bench
((a−1 ,i1),(a

−
2 ,i2))

were computed as mentioned above. Then, the

objective values were evaluated as

ϑ (k),π ,
1
n2 ∑

i1,i2∈N

ϑ (k),π
((0,i1),(0,i2))

, π ∈ {opt,MPI,bench}, (29)

where each bandit has state spaceN = {1, . . . ,n}, with n = 10. Notice that (29) corresponds to assuming

that both bandits are initially passive.

Figure 7 plots∆MPI vs. theφ — notice the invertedφ -axis we use throughout — for multiple discount

factorsβ , using cubic interpolation for smoothing. Such a gap startsat 0 asφ approaches 1 (as the opti-

mal policy is then recovered), then increases up to a maximumvalue, which is less than 0.18%, and then

decreases to 0 asφ gets smaller. Such a pattern is consistent with intuition: for small enoughφ , both the

optimal and the MPI policies will initially pick a bandit andstay on it thereafter. Since the best bandit can

be determined through single-bandit evaluations, the MPI policy will identify it. Notice also that∆MPI is not

32



monotonic inβ .

Figure 8 shows corresponding plots for the suboptimality-gap ratioρMPI,benchof the MPI over the bench-

mark policy. They show that the average suboptimality gap for the MPI policy is in each case less than 45%

of that for the benchmark policy. Such a ratio takes the value0 for φ small enough, as the MPI policy is

then optimal. Finally, the ratio increases withβ .
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Figure 7: Exp. 2: Average Relative Suboptimality Gap of MPI Policy.
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Figure 8: Exp. 2: Average Suboptimality-Gap Ratio of MPI over Benchmark Policy.

The third experiment was setup as the previous one, but considering a constant startup delayT for each

bandit, so thatφ = β T . Figures 9 and 10 display the results, showing that the MPI policy was optimal

for T ≥ 2, had a relative suboptimality gap of no more than 0.06%, and improved substantially on the

benchmark Gittins-index policy, as the suboptimality-gapratio remains below 2%.

The fourth experiment investigated the effect of asymmetric constant startup delay transform values, as

these vary over the range(φ1,φ2) ∈ [0.8,0.99]2, in two-bandit instances withβ = 0.9. The left contour plot

in Figure 11 shows that the average relative suboptimality gap of the MPI policy,∆MPI, reaches a maximum

value of about 0.14%, vanishing as bothφ1 andφ2 approach unity, and as either gets small enough. The right

33



T

∆M
P

I
Dependence onT for Multiple β ’s

β

∆M
P

I

Dependence onβ for T = 1

0.5 0.951 2 3
0%

0.06%

0%

0.06%

Figure 9: Exp. 3: Average Suboptimality Gap of MPI Policy.

T

ρM
P

I,b
en

ch

Dependence onT for Multiple βs

β

ρM
P

I,b
en

ch

Dependence onβ for T = 1

0.5 0.951 2 3

0.8

0%

2%

0%

2%

Figure 10: Exp. 3: Average Suboptimality-Gap Ratio of MPI over Benchmark Policy.

contour plot shows that the suboptimality-gap ratioρMPI reaches maximum values of about 50%, vanishing

as eitherφ1 or φ2 gets small enough.

The fifth experiment evaluated the effect of state-dependent startup delay parametersφi , as the discount

factor varies. Uniform[0.9, 1] i.i.d. state-dependent startup costs were randomly generated for each in-

stance. The left pane in Figure 12 plots the average relativesuboptimality gap vs. the discount factor, which

shows that such a gap remains below 0.14%. The right pane shows that the average suboptimality-gap ratio

ρMPI,benchremains below 20%.

The sixth and last experiment evaluated the relative performance of the MPI policy on three-bandit

instances as a function of a common startup delay parameterφ and discount factor, based on a random

sample of 100 instances of three 8-state bandits each. For each instance, the startup cost-discount factor

combination was varied over the range(φ ,β ) ∈ [0.5,0.99]× [0.5,0.95]. The results are shown in Figures

13 and 14, which are the counterparts of experiment 2’s Figure 7 and 8. Comparison of Figures 7 and 13

reveals a slight performance degradation of the MPI policy’s performance in the latter, though the average

gap∆MPI remains quite small, below 0.25%. Comparison of Figures 8 and 14 reveals similar values for the
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Figure 12: Exp. 5: Average Performance of MPI Policy for State-Dependent Startup Delays.

ratio ρMPI,bench.

8. Concluding Remarks

We have addressed the important extension of the classic multi-armed bandit problem that incorporates

both costs and delays for switching bandits. The paper has demonstrated the practical applicability of the

index policy based on the index introduced by Asawa and Teneketzis (1996), by introducing an efficient

index algorithm and providing experimental evidence of thenear optimality of such a policy. The mode

of analysis has been based on deploying the powerful indexation theory for restless bandits introduced by

Whittle (1988) and developed by the author in recent work. Thus, the Asawa and Teneketzis index has been

shown to be precisely the Whittle index of the bandits of concern in their natural restless reformulation.

To establish indexability and compute the index we have deployed the LP-indexability approach recently

introduced in Niño-Mora (2007), which extends the earlierPCL-indexability approach in the author’s earlier

work. This paper demonstrates the relevance of such an extension, since the restless bandits analyzed herein
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Figure 14: Exp. 6: Counterpart of Figure 8 for Three-Bandit Instances.

have been proven to be LP-indexable, yet are not PCL-indexable.
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