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Abstract 

 

 

The aim of this paper is to understand the interactions between productive effort and the 

creation of synergies that are the sources of technological collaboration agreements, 

agglomeration, social stratification, etc. We model this interaction in a way that allows 

us to characterize how agents devote resources to both activities. This permits a full-

fledged equilibrium/welfare analysis of network formation with endogenous investment 

efforts and to derive unambiguous comparative statics results. In spite of its parsimony 

that ensures tractability, the model retains enough richness to replicate a (relatively) 

broad range of empirical regularities displayed by social and economic networks, and is 

directly estimable to recover is structural parameters. 
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1 Introduction

External effects (spillovers) pervade economies and societies in general. Both inter- and intra-

industry cross interaction between firms have been the object of studies, since at least the work of

Marshall (1890), for the former, and Jacobs (1969), for the latter.1 Social interactions also have

a crucial importance in the determination of individuals’ well-being, as pointed early by Becker

(1974) and recently emphasized by the literature on social capital.2

Given the importance and pervasiveness of these external effects, it is natural that individuals

and firms may want to control and manipulate the size and scope of those external benefits to

their advantage. For example, regional economists have convincingly shown that economic agents

agglomerate in few locations in the economic landscape, precisely in order to reap these localization

externalities (Ciccone and Hall 1996, Guiso and Schivardi 2007).3 In a similar vein, it is difficult

to understand technological collaboration agreement between firms (“joint ventures” and other

similar contracts) without thinking that these are done to control external effects (d’Aspremont

and Jacquemin 1988).4 Finally, the persistent stratification of social groups among many dimensions

(such as income, race, education) is prima facie evidence of the desire of social groups to arrange

themselves so as to internalize spillovers (Tiebout 1956, Benabou 1993).

In this paper, we endeavour to fathom the interactions between productive effort and the cre-

ation of synergies. We model this interaction in a way that allows us to characterize how agents

devote resources to both activities optimally. In turn, this permits a full-fledged equilibrium/welfare

analysis of individual decisions and to derive unambiguous comparative statics results. The model

is also flexible enough to be brought to the data.

The environment Our model has two main ingredients.

First, given a structure of synergies, the model has a simple linear quadratic structure. More

precisely, payoffs are linear quadratic in own productive effort, while spillovers are generated by

paired agents and are multiplicative in own’s and other’s productive effort. We allow for two

different sources of heterogeneity. On the one hand, agents can differ in their marginal returns to

own productive effort. One the other hand, for identical levels of productive efforts, spillovers can

vary with the strength of the synergistic linkage across different pairs of agents. It turns out that

this payoff structure allows to pin down exactly how the level of productive effort varies with the

pattern of external effects exerted on each individual, and with the idiosyncratic characteristics of

the agents.5

1See Duranton and Puga (2004) for a review of this literature.
2Coleman (1990) and Putnam (2000) are standard references. Sobel (2002) and Durlauf (2002) offer critical

surveys of this literature.
3See Rosenthal and Strange (2004) for a survey.
4See also Suzumura (1992).
5As in Ballester, Calvó-Armengol and Zenou (2006). See also Ballester and Calvó-Armengol (2006).
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Second, we assume that agents devote a (joint) amount of resources to building synergies with

others, whomever these others are. Socialization is thus captured by a scalar, rather than by

a vector of decisions telling how much to interact with every other agent. This socialization or

synergistic effort determines the strength of the synergistic linkage across different pairs of agents.

More precisely, agents control the total level of synergies they are involved in. How this aggregate

synergy value is distributed across different pair-wise interactions depends on the distribution of

socialization efforts of the other agents. Finally, recall that the spillover between two given agents

is equal to the product of their respective productive efforts weighted by the synergy value of their

interaction.

The main innovation of our study is, precisely, that the synergistic effort is generic −a scalar
decision. Socializing is not equivalent, in our approach, to elaborating a nominal list of intended

relationships, as in the literature on network formation surveyed by Jackson (2005). This is re-

alistic in many applications,6 particularly when networks are so large that keeping track of every

participant becomes a burdensome task. As a matter of fact, most of our results are established

for large networks. In addition, this shortcut greatly improves the tractability of the model. Un-

like with richer models of link formation, we can resort to off-the-shelf Nash equilibrium analysis

without being burdened by the extreme (combinatorial) multiplicity problems of the other models.7

As a result, we can perform a standard type of equilibrium analysis that equates marginal costs

and benefits of both production and socialization. Of course, this equilibrium characterization also

greatly simplifies welfare and comparative statics analyses.

In some cases, our model with synergies of varying strengths across different pairs of players8

can also be understood as a (multinomial) model of a random graph, where independent link

probabilities correspond to the synergistic values. Albeit simple, this random graph model is

flexible enough to encompass many (if not all) of the topological properties of real life networks.

Our equilibrium analysis naturally inherits all the descriptive topological features of this random

graph model (as well as its limitations, of course). At the same time, our analysis permits to draw

a close connection between topological features and welfare and economic implications. We believe

6Researchers go to fairs, or congresses to listen, to be listened to, and to meet other investigators in general. More

generally, face-to-face meetings among agents that share a common location often result from random encounters

among these agents, as the early literature on segregation indexes already points out (Bell 1954).
7 In a typical game of network formation, players simultaneously announce all the links they wish to form with. The

links that form are those that are mutually announced by both partners. The cost of creating and maintaining links

are then payed. As a consequence of the large multi-dimensional strategy space, and because link creation requires

the mutual consent of the two involved parties, a severe coordination problem arises. As such, the game often displays

a multiplicity of Nash equilibria, and very different network geometries can arise endogenously. A partial solution to

this problem can be found by allowing pair-wise or coalitional deviations, or by restricting to cooperative-like network

stability notions (Jackson and Wolinsky, 1996). Jackson (2005) surveys this literature, while Calvó-Armengol and

Ilkiliç (2006) derive the connections between this approach and standard game-theoretic refinements.
8See Bloch and Dutta (2005) for a model with endogenous link strength but in a standard framework of non-random

network formation.
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that this link between topology, equilibrium and welfare is the main value added of the model.

In spite of its parsimony that ensures tractability, the model retains enough richness to replicate

a (relatively) broad range of empirical regularities displayed by social and economic networks, and

is directly estimable to recover is structural parameters.9

Results We first characterize the equilibria of the model, when agents take their decision

about their productive effort and their socialization effort simultaneously. We show that there are

two interior equilibria and one (partially) corner equilibrium, when a sufficiently large number of

individuals is implicated. The (partially) corner equilibrium where agents do not invest at all in

building synergies is unstable. Instead, the two interior equilibria are stable. Existence and stability

of interior equilibria are obtained when the level of cross synergies as well as the heterogeneity in

individual traits are not too high, which amounts to bounding from above a compound index of

both payoff parameters.

For large enough populations, equilibrium actions take a particularly simple form. Recall that

agents can display different marginal returns to own productive effort. We label “individual type”

the value of this marginal return at the origin. We first show that the ratios of productive as well

as socialization efforts across different pairs of agents are all equal to the ratio of their individual

types. In other words, at equilibrium, the productive and socialization efforts for a given agent are

the product of his individual type with some baseline values for the productive and socialization

efforts. These baseline values, in turn, are obtained from a system of two equations with two

unknowns that admits exactly two positive solutions −hence the two interior equilibria.
This simple equilibrium characterization has a number of interesting implications. In particular,

we can show that one of the interior equilibria displays both higher socialization and productive

effort than the other, so that we can talk of high-action and low-action equilibrium. It also turns

out that the high-actions equilibrium is Pareto superior.

An important question is then how an exogenous change in the returns to production and

socialization affect the relative production and socialization efforts at equilibrium. In turns out

that, when the returns increase, all equilibrium actions decrease at the Pareto-superior equilibrium,

while they increase at the Pareto-inferior equilibrium. In both cases, the percentage change in

socialization effort is higher (in absolute value) than that of the productive effort. We think this

may provide an explanation, for example, of the large increase in agreements of collaboration in

R&D in the recent past (Caloghirou, Ioannides, Vonortas 2003). It could also explain the decline

in social capital documented by Putnam (2000).

We then turn to the implications of the model for the topology of networks. When synergy

values are all between zero and one, our equilibrium socialization efforts can be interpreted as a

(multinomial) random graph with independent link probabilities, where the expected number of

9See Ioannides and Soetevent (2006) for an interesting application of random networks to the labor market.
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links accruing to each agent (also known as the degree of the corresponding network node), is equal

to the socialization effort of this agent.

Models of random graph with given expected degree sequence (here, the equilibrium profile of

socialization efforts) have been analyzed by Chung and Lu (2002). They can replicate some (if

not all) of the observed features of real-life networks, and our equilibrium model inherits all the

descriptive possibilities as well as limitations of this random graph model. For instance, random

graph models with given expected degree sequence can replicate any distribution of the number of

relationships per person in a population (also known as the degree distribution). In our case, the

distribution of network degrees has a one-to-one relationship with the distribution of individual

traits in the population, the latter shaping the former. So, one can potentially replicate any degree

distribution by fine-tuning the distribution of individual types adequately. However, this also

implies that heavy-tailed degree distributions, which are sometimes (but not always) encountered in

real-life networks,10 call for a fat-tailed distribution of individual traits. Note, however, that fat tails

have a close connection with lognormal distributions, which call for multiplicative (dynamic growth)

processes (Mitzenmacher 2004, Jackson and Rogers 2007), whereas our analysis concentrates on a

static (one-shot Nash) equilibrium concept.

Random graphs models with given expected degree sequence can also give a good account of

the low average network distance usually observed in real-life networks, and so does our equilibrium

model. At the same time, it cannot account for the typically high observed clustering (the friends

of my friends are typically my friends as well), as links are created independently. However, we

discuss how a small modification of our model could deliver moderately high values for this clustering

coefficient as well.

It turns out that a close examination of equilibrium payoffs demonstrates that individuals of the

same type are better off if they are matched only with others of the same type or higher. This should

generate a tendency to observe at least some homogeneous groups, as long as segregating institutions

or mechanisms are available. For this reason, and also to check the robustness of previous results,

we also examine the model with homogeneous groups, but also with a more general cost structure.

We show that only two stable interior equilibria still exist. And, as in the heterogeneous case, the

increase in the returns to socialization induce a larger percentage change in socialization effort than

in productive effort. Finally, in the homogeneous case we can also characterize the conditions for the

emergence of giant components. That is, we can show the parameters for which completely intra-

connected subgroups comprising a large majority of the population exist. These giant components

are a feature of many real life networks.

To summarize, we propose a methodology that can usefully relate network topology to economic

features of the model (and vice versa), which is an advantage with respect to other models that

replicate well observed network topology.11 This, however, is achieved at the cost of losing the

10See Table 1 and Figure 2 in Jackson and Rogers (2007).
11Kirman (1983), Kirman, Oddou and Weber (1986) and Ioannides (1990) propose and analyze early models relating
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ability to describe some observed features.

Another virtue of our approach is that the model is suitable for estimation with readily available

data. By recovering the deep parameters of the model, we can make a welfare assessment and com-

parison of real life networks, and ponder the impact of potential interventions. With an illustrative

purpose, we perform one such exercise. Using data from a network of high school friendships, and

using the education outcomes of members of the said network, we recover the parameters which

would generate the observations (if our model is correct). We then compare the results of the fitted

model with the observed network topology and perform comparative statics exercises. We also

do some policy experiments by constructing artificial societies with restricted (more homogeneous)

subgroups, and we observe the effect of a mean preserving spreads on the distribution of types.

Our model with link intensities and heterogeneous types has also been used to recover network

structure from survey questionnaire data asking how many people of a set of types the responders

know (Zheng, Salganik, Gelman 2006).

The paper is organized as follows. Section 2 describes the model, and introduces the baseline

game as well as the replica game. Section 3 contains the equilibrium and welfare analysis. The

comparative statics results are gathered in Section 4. Section 5 discuss the equilibrium and welfare

implications for (and from) the network topology. Section 6 analysis the particular case of homoge-

neous populations with general cost structures, and the emergence of giant components. All proofs

are gathered in the appendix.

2 The game

The replica game N = {1, ..., n} is a finite set of players, and T = {1, . . . , t} is a finite set
of types for these players. We let n be a multiple of t, that is, n = mt for some integer m ≥ 1, so
that there is the same number of players of each type.

More precisely, we refer to the case n = t as the baseline game, and to the general case n = mt

as the m−replica of this baseline game. In an m−replica game, there are exactly m players of each

type τ ∈ T .

For each player i ∈ N , we denote by τ (i) ∈ T his type.

We consider a simultaneous move game of network formation and investment. The returns

to the investment are the sum of a private component and a synergistic component. The private

returns are heterogeneous across players and depend on their type. We denote by b = (b1, ..., bt)

the profile of these private returns, where 0 < b1 ≤ b2 ≤ ... ≤ bt. Even though each type in the

replica game has the same number of individuals, we can match any finite distribution of types in

a population by adding multiple copies of an individual type.

The synergistic returns depend on the network formed on account of individual choices, as

random networks of interaction with economic outcomes.

6



described below.

Network formation Consider some m−replica game, m ≥ 1. Let n = mt.

Each player i selects a number si ≥ 0 which corresponds to a level of socialization effort. Let
s = (s1, ..., sn) be a profile of socialization efforts. Then, i and j interact with a link intensity given

by:

gij(s) = ρ (s) sisj (1)

By definition, links are symmetric, that is, gij = gji. We also allow for self-loops (when i = j).

The total intensity of the links accruing from a given player i is:

gi(s) =
nX

j=1

gij(s) = ρ (s) si

nX
j=1

sj .

We set

ρ (s) =

(
1/
Pn

j=1 sj , if s 6= 0
0, if s = 0

(2)

so that gi(s) = si, that is, players decide upon their total interaction intensity. In this model, the

exact identity of the interacting partner is not an object of choice. Rather, players choose their

total socialization intensity that they devote to each and every possible bilateral interaction in

proportion to the socialization effort of these partners.

As a matter of fact, the functional form in (1) and (2) can be tied back to simple properties of

the link intensity gij (s), as established below.

Lemma 1 Suppose that, for all s 6= 0, the link intensity satisfies:

(A1) symmetry: gij (s) = gji (s), for all i, j;

(A2) aggregate constant returns to scale:
Pn

j=1 gij (s) = si;

(A3) multiplicative separability: gij (s) = siψj (s), where ψj : Rn
+ → R+;

then, the link intensity is given by the functional form (1) and (2).

Notice that (A2) and (A3) reflect the fact that i controls his total number of contacts si, but

the actual composition depends on the others’ investments.

When maxi s2i < 1/ρ (s), all link intensities are between 0 and 1. In this case, we can view

the network as a random graph where gij(s) is the probability of having an edge between i and j,

and links are independent across different pairs of players. This is the random graph model with

given expected degrees s = (s1, ..., sn) described, e.g., in Chung and Lu (2002) that can replicate

many of the degree distributions encountered in real-life networks, such as power laws, Poisson

distributions, etc.12

12See Ioannides (2006), Jackson (2007) and Vega-Redondo (2007) for more on random graphs and their connections

to economics.
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Investment Each player i selects a number ki ≥ 0 that corresponds to an investment level.
The choices of si and ki are simultaneous. Let k = (k1, ..., kn) be a profile of investments. The

individual investment yields both a private and a synergistic return.

The private returns to player i depend only on his investment level ki and his individual traits,

summarized by bτ(i). They are captured by a simple quadratic expression bτ(i) ki − k2i /2.

The synergistic returns depend on both (k, s). They correspond to a collection of cross effects

kikj weighted by a factor reflecting the link intensity between i and j shaped by s. More precisely,

we assume that:
∂2ui(k, s)

∂ki∂kj
= agij(s), for all i 6= j, (3)

for some parameter a ≥ 0 capturing the size of the synergistic returns.
Notice that the symmetry (A1) in Lemma 1 is tantamount to payoffs being twice continuously

differentiable in the productive effort k.

Payoffs Player i’s utility is given by:

ui(k, s) = bτ(i) ki + a
nX

j=1,j 6=i
gij (s) kjki −

1

2
k2i −

1

2
s2i (4)

Payoffs are a linear-quadratic function of kis with non-negative cross effects (3) reflecting strate-

gic complementarities in investment levels. The size agij(s) ≥ 0 of these complementarities depends
on the profile of socialization efforts, and varies across different pairs of players.

3 Equilibrium analysis and Pareto ranking of equilibria

3.1 Equilibrium analysis

We solve for the interior Nash equilibria in pure strategies (k∗; s∗) = (k∗1, ..., k
∗
n; s

∗
1, ..., s

∗
n) of the

m−replica game with heterogeneous types b = (b1, ..., bt), and for m large enough.

Under some conditions that we provide, there are exactly three such equilibria. In one (partially

corner) equilibrium, the level of socialization effort is null for all players. The two other equilibria

are interior. We characterize these interior equilibria when the population gets large.

We first identify the (partially) corner equilibrium of the game.

Lemma 2 For all m−replica game, (k∗i , s∗i ) =
¡
bτ(i), 0

¢
for all i = 1, ...,mt is a pure strategy Nash

equilibrium with corresponding equilibrium payoffs b2τ(i)/2.

This is a strict equilibrium, thus it cannot be discarded on the basis of standard refinements.

However, this equilibrium is not stable for sufficiently large populations, as we will show later. For

this reason, we concentrate on the interior equilibria, which we now characterize.
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Define:

a(b) = a

Pt
τ=1 b

2
τPt

τ=1 bτ
. (5)

Holding the average type
Pt

τ=1 bτ/t constant, the parameter a(b) increases with the hetero-

geneity in types. More generally, a(b) increases with the ratio
Pt

τ=1 b
2
τ/
Pt

τ=1 bτ , which many

authors refer to as the second-order average type (e.g., Vega-Redondo 2007). When types are all

homogeneous, that is, b1 = ... = bt = b, we have a(b) = ab.

Theorem 1 Suppose that 2/3
√
3 > a(b) > 0. Then, there exists an m∗ such that for all m−replica

games with m ≥ m∗, there are exactly two interior pure strategy Nash equilibria. These pure strategy

Nash equilibria are such that, for all players i of type τ , the strategies (ki, si) converge to (k∗τ(i), s
∗
τ(i))

as m goes to infinity, where k∗τ(i) = bτ(i)k, s∗τ(i) = bτ(i)s, and (k, s) are positive solutions to:(
s = a(b)k2

k [1− a(b)s] = 1
. (6)

Under the conditions on a(b) stated in Theorem 1, the system of two equations (6) with two

unknowns has exactly two positive solutions. We also show that both solutions get arbitrarily

close to an interior pure strategy Nash equilibrium of the m−replica game as m gets large. But

the equilibrium correspondence is locally continuous at an interior equilibrium. Thus these two

positive solutions of (6) are approximate pure strategy Nash equilibria of the m−replica game.
Finally, Theorem 1 establishes that all interior pure strategy Nash equilibria of the m−replica
game are in the neighborhood of a positive solution to (6) when m gets larger.

Table 1 shows population size versus accuracy for the homogenous case where all individuals

are of type 1.

Table 1: Simulations on Theorem 1 with a = 2, t = 1 and b1 = 0.1.13

m 2 5 10 20 50 100 500 ∞
Low equilibrium

k∗ 1,898 1,195 1,101 1,065 1,049 1,046 1,046 1,046

s∗ 2,366 815 458 303 234 222 218 219

High equilibrium

k∗ 3,346 4,643 4,591 4,508 4,444 4,420 4,400 4,394

s∗ 3,506 3,923 3,911 3,891 3,875 3,869 3,864 3,862

13Numbers are multiplied by 104.
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For the case of an homogeneous population with common trait b, one can verify that the exact

equilibrium equations are: (
s = abk2

¡
1− 1

m

¢2
k
£
1− abs

¡
1− 1

m

¢¤
= 1

If one then expresses this system as a single equation with a third order polynomial in s, it can

easily checked that the approximation error is of the order of m−3/2. In particular, when m = 100,

the approximation error is 10−3.

The two equations (6) equalize marginal costs with marginal benefits at equilibrium for each ac-

tion available to the players. Consider some player i with type bτ(i). At an approximate equilibrium

(k∗i , s
∗
i ) = bτ(i) (k

∗, s∗), where (k∗, s∗) are solutions to (6).

The marginal cost corresponding to an investment level k∗i is equal to k
∗
i itself. Given that at

equilibrium marginal cost equals marginal benefit, the marginal benefit from this investment is

bτ(i)/(1− a(b)s∗)

which we obtain from the second equation in (6).14 When a = 0, this marginal benefit boils down

to bτ(i), which coincides with the private return in (4). When a 6= 0, the private return is scaled up
by a synergistic multiplier 1/(1− a(b)s∗), which is homogeneous across players. It is an increasing

function of the second order average type a(b), a measure of population heterogeneity.

Similarly, the marginal cost corresponding to a socialization level s∗i is equal to s∗i itself. The

marginal benefit now is a complicated expression in si’s and ki’s, but as the population size gets

large, it approximately boils down to

aρ (s)
nX

j=1,j 6=i
kikj

The approximate equilibrium solution equates this marginal benefit to the marginal cost s∗i for all i.

Theorem 1 gives a closed form expression for this fixed point. It is already apparent, nevertheless,

that the equilibrium value of s∗i is of the order of k
2.

Figure 1 plots equations (6).

[Insert F igure 1 here]

From the graph, it is clear that the system (6) needs not always to have a non-negative solution.

The condition 2/3
√
3 > a(b) is necessary and sufficient so that the two graphs of the two equations

cross in the positive orthant of the space (k, s). To understand this, notice that when a(b) is too

large, the synergistic multiplier operates too intensively and both s and k increase without bound.

Remark 1 When 0 < a(b) < 2/3
√
3, the system of equations (6) has two different non-negative

solutions. When a(b) = 2/3
√
3, there is a unique non-negative solution (k, s) =

¡
3/2,
√
3/2
¢
.

When a(b) > 2/3
√
3, there is no non-negative solution.

14This is obtained by multiplying the second equation in (6) by bτ(i).
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The socialization effort at equilibrium varies across players in a way that reflects their relative

types bτ(i). Formally,
s∗i
s∗j
=

bτ(i)

bτ(j)
.

Therefore, the intensity of a particular link at an approximate equilibrium is:

gij (s
∗) = s∗

bτ(i)bτ(j)

m
Pt

τ=1 bτ
, (7)

which decreases linearly with 1/m, inversely proportional to the population sizemt. For this reason,

the overall socialization effort gi (s∗) = s∗bτ(i) is independent of the population size. This kind of

population invariance allows us to work with large populations, where we can discard effects of

second-order magnitude without being burdened with population size effects.

Since there are two interior equilibria, plus one partially corner equilibrium, it is legitimate to

wonder about the stability of these equilibria.

Proposition 1 For m sufficiently large, the two interior equilibria are stable while the equilibrium

with (k∗i , s
∗
i ) =

¡
bτ(i), 0

¢
for all i = 1, ...,mt is not stable.

3.2 Pareto ranking of equilibria

Given an approximate equilibrium (k∗, s∗), we denote by u (k∗, s∗) = (u1 (k
∗, s∗) , ..., um (k∗, s∗))

the corresponding equilibrium payoffs.

The previous result shows that, under some conditions on the exogenous parameters of the

game, there are exactly two approximate equilibria as the population gets larger. The next result

compares equilibrium actions and payoffs across these two approximate equilibria.

Proposition 2 Let (k∗, s∗) and (k∗∗, s∗∗) be the two different approximate equilibria of anm−replica
game. Then, without loss of generality, (k∗, s∗) ≥ (k∗∗, s∗∗) and u (k∗, s∗) ≥ u (k∗∗, s∗∗), where ≥
is the component-wise ordering.

In words, the equilibrium actions are ranked component-wisely and the equilibrium payoffs

are Pareto-ranked accordingly. So, the equilibrium multiplicity identified in Theorem 1 reflects

a coordination problem. In one equilibrium, all players exert a high socialization effort, thereby

contributing to building high cross synergies (3) across them. In turn, this induces them to incur

high private investments so that they can all reap these high synergistic returns. This is the

high-action and Pareto-superior equilibrium. In the other equilibrium, socialization efforts and

the resulting cross synergies are low, which hampers the level of private investments. This is the

low-action and Pareto-inferior equilibrium.
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4 Comparative statics

4.1 Socialization and investment

We enquire how the equilibrium actions respond to changes in exogenous parameters. More precisely

we keep track of changes in socialization and investment as a(b) changes. Recall that a(b) is a

compound index of the parameter for the synergistic return a, and the second order average type,

a measure of population heterogeneity.

Proposition 3 Suppose that a(b) increases. Then, in both approximate equilibria of the replica
game, the percentage change in socialization effort is higher than that of productive effort (in ab-

solute values), for all agents.

Note that the statement of the proposition boils down to showing that the elasticity of si with

respect to ki for changes in a(b) is smaller than one, at all equilibria. However, in equilibrium, the

ratio si/ki is constant across all agents. So, if we can establish that socialization is more responsive

than productive effort for changes in a synergistic multiplier equal to a(b) in an homogeneous

population with types normalized to 1, the result follows. Inspecting the expression for the payoffs

in a homogeneous population

ui(k, s) = ki + a(b)
nX

j=1,j 6=i
gij (s) kjki −

1

2
k2i −

1

2
s2i

it is now clear that a(b) affects directly the marginal benefit of si through the synergistic multiplier.

There are various ways in which a(b) can increase.

First, through an increase in a, that captures the size of synergistic returns.

Second, through an increase in the second-order average type
Pt

τ=1 b
2
τ/
Pt

τ=1 bτ , a measure of

the variability in private returns, which is a source of idiosyncratic heterogeneity in our model.

For instance, a mean-preserving spread in private returns (where
Pt

τ=1 bτ is held constant whilePt
τ=1 b

2
τ increases) shifts upwards the second-order average type.

Third, through an upward simultaneous shift in all the bτ ’s, and the a. These upward shifts can

all be of different intensities for different parameters. Else, it can be an homothetic shift, where

all parameters are scaled up by the same factor. In particular, consider the following variation of

payoffs (4)

ui(k, s) = bτ(i) ki + a
nX

j=1,j 6=i
gij (s) kjki −

α

2
k2i −

α

2
s2i , (8)

with α > 0. The equilibria of the game with these payoffs (8) is equivalent to the game analyzed so

far where the exogenous parameters bτ(i) and a, and thus the compound index a(b), are all scaled

by 1/α.
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Proposition 3 encompasses all those cases and many others, and pins down the absolute and

relative variation of the si’s and ki’s for all these multifarious changes in parameters. We now turn

to the absolute variations or comparative statics of the equilibrium actions.

Proposition 4 Suppose that a(b) increases while keeping bτ constant, for one arbitrary given type
τ . Then, at the Pareto-superior approximate equilibrium the equilibrium actions of all player i such

that τ (i) = τ decrease, while at the Pareto-inferior approximate equilibrium all the equilibrium

actions of all player i such that τ (i) = τ increase.

Remark 2 Recall that at an approximate equilibrium (k∗i , s
∗
i ) = bτ(i) (k

∗, s∗), where (k∗, s∗) are

solutions to (6). As a matter of fact, we prove a stronger result establishing that any general

arbitrary increase of a(b) results in a co-movement of both s∗ and k∗ (increasing in the Pareto-

inferior equilibrium, and decreasing in the Pareto-superior one). As long as the change in a(b)

keeps bτ(i) constant or moves it in the right direction, the comparative statics of (k∗i , s
∗
i ) coincide

with those of (k∗, s∗) .

To understand the comparative statics of (k∗, s∗), we can think, again, about the homogeneous

case. Then, in Figure 2, at the low equilibrium, strengthening the marginal returns to productive

efforts leads to an increase in both socialization and investment. At the high action equilibrium,

instead, this increase in synergistic returns allows players to save on costs, thus reducing both

socialization and investment.

[Insert F igure 2 here]

4.2 Equilibrium payoffs

The next result documents the comparative statics of individual and aggregate equilibrium payoffs.

When m gets large, these are given by the following expression:

u∗i =
b2τ(i)

2a(b)

s

k
+ o (1) , for all i = 1, ...,mt. (9)

=
b2τ(i)

2
k + o (1) , for all i = 1, ...,mt. (10)

Note that (10) is deduced from (9) through the first equation of (6).

When only a increases, while all the bt’s remain constant, the comparative statics of equilibrium

payoffs are those of productive actions, as can be deduced from (10).

When the exogenous payoff parameters (a; b1, ..., bt) are scaled up by some common factor λ ≥ 1,
this induces an upward shift from a(b) to λ2a(b). In a similar vein, b2τ(i) increases to λ

2b2τ(i). The

multiplicative factor λ2 thus appears both in the numerator and in the denominator of (9), and

the change in equilibrium payoffs is driven solely by the change in the ratio s/k, where (k, s) are

13



solutions to (20). It turns out that the monotonicity of s/k is tied to the elasticity of s∗i with

respect to k∗i and to the monotonicity properties of s
∗
i and k∗i , whose behavior is characterized in

Proposition 3.

Finally, adding up equilibrium payoffs in (9) we get the following:

mtX
i=1

u∗i =
m
Pt

τ=1 bτ
2a

s

k
.

Changes in aggregate payoffs following a change in parameters are thus related to changes in s/k

and the sum of the productivity parameters divided by a.

These considerations lead to the following result.

Proposition 5 Let (k∗, s∗) ≥ (k∗∗, s∗∗) be the two ranked approximated equilibria of an m−replica
game.

1. Suppose that either only a increases, or (a; b1, ..., bt) are all scaled up by a common multiplica-

tive factor. Then, at the Pareto-superior approximated equilibrium all the payoffs ui (k∗, s∗)

decrease, while at the Pareto-inferior approximated equilibrium all payoffs ui (k
∗∗, s∗∗) in-

crease, for all i = 1, ...,mt.

2. Suppose that the vector (b1, ..., bt) changes via a mean preserving spread (i.e. a change that

holds
Pt

τ=1 bτ constant but increases
Pt

τ=1 b
2
τ ). Then, at the Pareto-superior approximated

equilibrium the sum of payoffs
Pmt

i=1 ui (k
∗, s∗) decreases, as well as payoffs for types below the

average. At the Pareto-inferior approximated equilibrium the sum of payoffs
Pmt

i=1 ui (k
∗∗, s∗∗)

increases.

The next result characterizes the preferences of each type with respect to the composition mix

of the population in individual traits.

Remark 3 Fix i and let b0−τ(i) and b−τ(i) be two different population types (excluding i). If

a(bτ(i),b−τ(i)) ≥ a(bτ(i),b
0
−τ(i)), then player i gets a lower (resp. higher) utility at the Pareto

superior approximated equilibrium (resp. at the Pareto inferior approximated equilibrium) under

(a, bτ(i),b−τ(i)) that under (a, bτ(i),b0−τ(i)).

The individual preferences over group composition documented in Proposition 3 allow for group

comparisons across populations with different number of types as well as different number of indi-

viduals for each type, as long as Theorem 1 holds.

Recall that types are ordered as follows: 0 < b1 ≤ b2 ≤ · · · ≤ bt. Then, it is readily checked

that:

a (b1) ≤ a (b1, b2) ≤ · · · ≤ a (b−t) ≤ a (b) ≤ a (b−1) ≤ a (b−1−2) ≤ · · · ≤ a (bt−1, bt) ≤ a (bt) .

14



So, invoking Remark 3 that characterizes individual preferences over group composition, we can

conclude that at the Pareto superior equilibrium, low types prefer to segregate themselves from the

rest of the group, while high types prefer to wander around with types lower than themselves. This

is because the overinvestment in socialization hits harder the low types, who reap a lower value

from this socialization.

Inversely, high types wish to segregate from lower types at the Pareto inferior equilibrium.

Again, this is because the underinvestment hits hard higher types.

So, if extreme types have a means to separate themselves from the rest of the group, simple

unravelling dynamics induces full segregation by types, and thus homogeneous subpopulations.

5 Topology

5.1 Theory

Large social networks display a number of key empirical regularities, as reported by many studies

analyzing an ever increasing number of available data on social networks.15

First, the distribution of network connectivities tends to be fat tailed for some networks (see

Jackson and Rogers 2007 for amendments to this claim). That is, there is in some networks a much

higher proportion of network nodes with a high number of network links than if the network links

were created uniformly and independently at random.

Second, the average distance (or shortest path) between two network nodes is very small com-

pared to the network size, and grows very slowly with this size. For instance, the network of actors

who have acted together in at least one Hollywood movie comprises 225,226 individuals and has

an average path length of 3.65.16

Third, the tendency of two given linked nodes to be linked to a common third-party, which is

called the clustering coefficient, is much higher than in a purely random network. For instance, the

actual clustering coefficient displayed by the movie actor network is almost 3,000 times higher that

of a purely random network with identical average connectivity.

Beyond these key empirical features, social networks tend to exhibit an internal community

structure, sometimes arranged hierarchically. Also, highly connected nodes tend to be connected

with highly connected nodes like themselves, and poorly connected nodes with poorly connected

nodes, a feature often referred to as positive assortativity. Etc.

There are a number of mechanisms for network formation that replicate these topological fea-

tures. The basic ingredients are a population growth process, and a link formation device for new-

15See, for instance, Albert and Barábasi (2002), who describe evidence on the topology of the world-wide web,

science collaboration graphs, the web of human sexual contacts, and movie actor collaboration. More recent studies

include, e.g., the network of email communication (Guimerà et al. 2007). Jackson and Rogers (2007) contains detailed

references to a number of social networks displaying rich and disparate features.
16See Albert and Barábasi (2002).
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comers that combines random meetings with network (local) search for the partner. The growth

process together with the network search generate preferential attachment dynamics. That is, pos-

itive feed-back loops whereby newcomers tend to connect with a handful of super-connectors, that

become even more connected, and so on. This leads to a fat tailed connectivity distribution17 and

to a highly clustered network. The random meetings decrease average distance by creating bridges,

but mitigate the fat tailed connectivity distribution.

Our model of network formation is static −a simultaneous move game. As such, it cannot be
expected to replicate genuinely dynamic features observed in the data, e.g., the high clustering.

Yet, it can still deliver some interesting implications for the topology of network links and, more

importantly, relate topology to individual incentives.

Recall that the network formed on account of player’s socialization decisions defines the syner-

gistic technology available to everyone. This, in turn, determines the returns to private investments,

whose levels are also left at the discretion of those who form the network. Our equilibrium analysis

thus sheds light on the interplay between network formation and the private economic use of this

jointly created device, and connects topological features of the network to individual behavior and

payoffs.

For all x ∈ Rt
+, define x =

Pt
τ=1 xτ/t, and v (x) =

Pt
τ=1 x

2
τ/t − x. These are, respectively,

the average and the empirical variance of the coordinates of x. We extend this definition to any

non-negative vector in an Euclidean space of finite arbitrary size.18

Consider an approximate equilibrium (k∗, s∗) of the m−replica game, that corresponds to some
solution (k∗, s∗) to (6).

Theorem 1 and (7) imply that the distribution of socialization efforts gi (s∗) = s∗i = s∗bτ(i) is

related, at equilibrium, to the distribution of types b = (b1, ..., bt). When all such link intensities

are smaller than one, we can interpret our weighted network as a random graph, where each link

ij is formed with independent probability gij (s∗). This random graph has an expected connectiv-

ity sequence (s∗1, ..., s
∗
n). We can map the population ex ante heterogeneity into the connectivity

distribution for the equilibrium random graph.

More precisely, the average connectivity is s∗ = s∗b, proportional to the average type.

Also, the empirical variance of connectivities is v (s∗) = s2∗v (b). Therefore,p
v (s∗)

s∗
=

p
v (b)

b
. (11)

The heterogeneity in connectivities in the resulting equilibrium network is thus solely driven

17Preferential attachment breeds a multiplicative growth process for connectivities. The log of the connectivity

distribution is thus additive through time. By the Central Limit Theorem, we conclude that the log of the connectivity

distribution follows a normal distribution. The degree distribution is thus lognormal, a fat tail distribution barely

distinguishable from a Pareto distribution. Mitzenmacher (2004) gives an excellent historical overview of generative

models for heavy-tailed distributions.
18For all x ∈ Rn+, we set x = n

i=1 xi/n, and v (x) = n
i=1 x

2
i /n− x, for all n ≥ 1.
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by the heterogeneity in private returns, and is thus the same for both equilibria. Increasing the

latter increases the former, and by varying b adequately we can cover a broad range of random

graph topologies, including the heavy tailed connectivity distributions identified in the data.19

For instance, a mean-preserving spread in b increases
p
v (s∗)/s∗, and leads to a connectivity

distribution with a fatter tail.

Beyond this comparative statics about ratios (11), Proposition 3 allows to conduct comparative

statics directly about the average connectivity s∗ and the variance v (s∗).

More precisely, a mean-preserving spread in private returns b has an indirect effect on the

average connectivity (through the change in s∗, the solution to (6)), and both a direct and an

indirect effect on the variance of connectivities (through both the change in s∗ and the change in

v (b). At the low-action equilibrium, both the variance and the average connectivity increase. At

the high-action equilibrium, instead, the average connectivity decreases while the impact on the

variance remains ambiguous. Invoking Proposition 5, we can conclude that an increase in both

the variance and the average connectivity is concomitant to a decrease in total welfare. Instead, a

decrease in average connectivity together with an increase in the variance of connectivities comes

together with an increase in total welfare (provided, of course, that the variations in the network

topology result from a mean-preserving spread in private returns).

Note that an increase in a alone also affects the variance and the average connectivity through

the resulting impact on s.

More generally, an increase in a (b) increases the variance and the average connectivity at the

low-equilibrium, and decreases the average connectivity at the high-equilibrium, although it may

have an ambiguous impact on
p
v (s∗)/s∗.

Our static model also allows to draw conclusions on the average distance in the equilibrium

random network. Following Chung and Lu (2002) the average distance in a random graph with

given expected connectivity (s∗1, ..., s
∗
n) = s∗

¡
bτ(1), ...., bτ(n)

¢
is given by:20

(1 + o (1))
log (mt)

log
¡
s∗b

¢ .
This average distance increases slowly with the population size mt.

When the level of synergistic returns a increases while private returns b = (b1, ..., bn) remain

constant, the average distance decreases at the low equilibrium while equilibrium payoffs increase.

Instead, the average distance increases at the high equilibrium together with a decrease of equilib-

rium payoffs.

Suppose now that a and b change homothetically, and are all scaled up by a common para-

meter. We still have a decrease of the average distance coupled with increasing payoffs at the low

equilibrium. The impact of this exogenous change of parameters at the high equilibrium is now

19Notice, however, that a fat tailed degree distribution requires a fat tailed distribution of population traits.
20Provided that link intensities are all smaller than one, and under some additional technical conditions.
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ambiguous. However, an increase of the average distance can only happen at this high equilibrium,

and is then concomitant with a decrease in payoffs for all agents.

The impact of a mean-preserving spread in private returns on the average distance is similar

to a change in the level a of synergies. That is, the average distance goes down and the average

payoffs go up at the low equilibrium, and reciprocally at the high equilibrium (average distance up

and average payoffs down).

The next table summarizes this discussion.

Table 2. Comparative statics in the low and high equilibrium

Low equilibrium High equilibrium

s v (s) Clust. dist. payoffs s v (s) Clust. dist. payoffs

a up + + + − + − − − + −
(a,b) all up + + + − + · · · · −
b spread + + + − +

(total payoffs)
− · · + −

(total payoffs)

Our static model of network formation does not generate networks with a high clustering level.

Indeed, suppose that link intensities are smaller than one so that we have a random graph. Take

three nodes i, j, l such that i and j are linked, and so are j and l. Then, the probability that i

and l are linked when m is high is roughly gil (s
∗), independent of the links ij and jl and of the

order of the inverse of population size. More precisely, an approximate expression for the size of

the clustering is:21

1

mt

s∗

b

µ
1 +

v (b)

b

¶2
.

The previous expression suggests how a small variation of the model can deliver moderate levels

of clustering. Split the population into (even numbered) subpopulations of finite size (smaller

replica of the game). Let f be the number of such subpopulations. Consider now f different

meeting rooms, and an (f + 1) th meta-meeting room that encompasses them all. Assign each

subpopulation into one meeting room (a one-to-one assignment). Suppose now that a fraction 1−ε
of the socialization effort of each player is invested in-home, in the meeting room of the player,

while a residual fraction ε is invested in the meta-meeting room that encompasses them all. We get

an equilibrium network that consists on small communities of players (formed within each meeting

room) with some bridges across communities. When ε is small enough, the equilibrium actions

are approximately those characterized in Theorem 1. The smaller the size of each community,

the bigger the clustering level (for identical average connectivity). However, this goes against our

21This clustering coefficient is computed averaging over all players, the percentage of triangles they are involved

in, out of the total potential triangles.
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characterization of equilibrium actions in terms of approximate equilibria which are closer to the

true Nash equilibria the bigger the population size.

Finally, empirically observed social networks sometimes display a giant component, that is,

they contain a subnetwork including a huge share of the population and for which there is a path

inside it connecting any two players in this population share.22 In the section 6.2 below, we provide

conditions on the exogenous parameters of the model for the emergence of a giant component for

the case of an homogeneous populations, b1 = ... = bt, and general costs.

5.2 An empirical illustration

Our model is well suited to learn about the driving economic forces behind the observed structure of

networks and outcomes. Using data from an acquaintanceship network and the related education

outcomes of a set of individuals, we can recover the parameters that generate the observations

according to our model. We can then compare the results of our fitted model with existing topology

and even perform comparative statics exercises as well as seeing the outcome of relevant policy

experiments by recombining types and operating mean spreads on the distribution of types.

Four our analysis, we use data from the National Longitudinal Survey of Adolescent Health (Ad-

dHealth). The AddHealth database has been designed to study the impact of the social environment

(i.e. friends, family, neighborhood and school) on adolescents’ behavior in the United States by

collecting data on students in grades 7-12 from a nationally representative sample of roughly 130

private and public schools in years 1994-95. AddHealth contains unique detailed information on

friendship relationships, based upon actual friends nominations.23

The in-home questionnaire contains detailed information on the grade achieved by each student

in mathematics, history and social studies and science, ranging from D or lower to A, the highest

grade (re-coded 1 to 4). We calculate a school performance index for each respondent.24

By merging the in-home data to the in-school friendship nominations data and by excluding

the individuals that report a non-valid answer to the target questions, we obtain a final sample of

11,964 pupils distributed over 199 networks. For our exercise, we take the network comprising the

largest number of individuals that has 107 nodes.

For this network, we focus on the following two columns of information:

• the degree connectivity of each node in the network, that we denote si, i = 1, ..., 107

• the student achievement for each node in the network, that we denote ei, i = 1, ..., 107
22However, giant components are not always the rule. For instance, the biggest component of a network of scientific

collaborations among academic economists analyzed by Goyal, Moraga-González and van der Leij (2005) comprises

33,027 authors out of a total of 81,217 authors, that is, 40.7 percent of the total population.
23Pupils were asked to identify their best friends from a school roster (up to five males and five females).
24We then use the Crombach-α measure is to assess the quality of the derived variable. We obtain an α equal to

0.86 (0 ≤ α ≤ 1) indicating that the different items incorporated in the index have considerable internal consistency.

19



The data, thus, provides a measure of si for each individual, and a perhaps imperfect measure

of ki for each one, ei. We first perform a transformation of the performance measure. We write ei =

kβi exp(εi). Equilibrium conditions in Theorem 1 imply that si/ki = s/k (a constant). Therefore,

ei =

µ
k

s
si

¶β

exp(εi).

We then run the following OLS regression:

log(ei) = δ + β log(si) + εi.

We find bδ = −2.5126 and bβ = 1.3264, both significant at 1% level. We perform the following

change in variable: ki = e
1/β
i , which can be rewritten as log ki = (log ei) /bβ, and thus log (ki/si) =

log
hbδ/bβi. Given that si/ki = s/k, we use exp[−bδ/bβ] as an estimator for the ratio k/s.
The first equation in (6), s = a(b)k2, together with the fact that ki = bτ(i)k, implies that

ki =
bτ(i)

a(b)

s

k
.

We do a Maximum Likelihood fit of the following equation:

ki =
bτ(i)

a(b)
exp[−bδ/bβ] + νi, i = 1, ..., 107,

conditional on a(b) < 2/3
√
3.

To conduct this empirical fit, we assign players to types in the following way. In the first

estimation we allow only for four different types (b1, ..., b4) and we assign each agent to the type

corresponding to his place in the distribution of ki by quartiles. In the second specification with

ten heterogeneous parameters (b1, ..., b10), we divide agents in deciles.

We obtain the following parameter fits:

(a; b1, b2, b3, b4) = (0.15; 1.22, 1.43, 1.59, 1.78) (12)

(a; b1, ..., b10) = (0.19; 1.12, 1.17, 1.25, 1.34, 1.46, 1.57, 1.62, 1.75, 1.88, 1.96) (13)

Once we have the types, it becomes possible to think about segmentations of the population

according to types, and to establish the impact on the welfare of the affected individuals.

For example, suppose we have a population like the one resulting from the quartile estimation

(12). Suppose the individuals from such population are recombined in groups with only two types.

Then it is easy to check, invoking Remark 3, that individual preferences rank partners in decreasing

value of their type for the high equilibrium, and they are ranked in the opposite order for the low

equilibrium.

For instance, at the high equilibrium, type 1 players prefer a group with type 2 partners, to

one with type 3 partners, themselves preferred to type 4 partners. In this particular case, at both
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equilibria the only stable pair-wise matching groups types 1 with types 2, and types 3 with types

4. Notice, however, that this stable matching is not the one that maximizes social welfare at the

high equilibrium.

Continuing with the same example, and now allowing for groups with more than two types, the

(decreasing) order of preference for type 1 player at the high equilibrium is the following: groups

only types (1), then with types (1, 2) , (1, 3) , (1, 2, 3) , (1, 2, 4) , (1, 2, 3, 4) , (1, 4) and finally (1, 3, 4).25

6 The case of homogeneous populations

Remark 3 implies that individuals of the either extreme type prefer a society composed only of

individuals such as themselves to any other mixture. Provided that the institutional environment

allows them to segregate themselves, they will form a separate society. One should thus expect that

at least some homogeneous groups would exist in a given society. However, given that at least some

of the types within a subgroup would lose from the segregation of the opposite types, it should not

be excluded that the society would not leave complete freedom for segregation at all levels, and

heterogeneous group may anyway form.26

In what follows, we concentrate our attention on homogeneous groups, for which we can conduct

some robustness checks on the technology and for which further insights on the topology are possible.

6.1 Equilibrium analysis and comparative statics

We now consider an homogeneous population of players with a single type corresponding to private

returns b, but allow for non-linear marginal costs of both socialization and investment. Player i’s

utility is:

ui(k, s) = bki + a
nX

j=1,j 6=i
gij (s) kjki −

1

c+ 1
kc+1i − 1

c+ 1
sc+1i , (14)

where a, b ≥ 0 and c ≥ 1. The case c = 1 corresponds to quadratic costs. As c increases, the cost
function becomes steeper.

We focus on symmetric equilibria, where all (homogeneous) players choose the same socialization

effort and invest the same amount. Such symmetric equilibria give rise to random graphs where the
25We can also use the estimated types to illustrate the comparative statics of a mean preserving spread in the

population composition. We divide the 107 nodes into (roughly) 27 agents of each type. Then, we compute the

equilibrium payoffs for a population composed of x individuals for each extreme type 1 and 4, and 54−x individuals

for each central type 2 and 3, and we vary x from 1 to 53. Each increase in x corresponds (roughly) to a mean-

preserving spread in population heterogeneity. Consistently with Proposition 5, we find that the utility of types 1

and 2 decrease as well the total utility of the group at the high equilibrium. The monotonicity is reversed at the low

equilibrium. Also, for this particular parametrization the utility of types 3 and 4 (not covered in the Proposition 5)

changes monotonically in the same direction as that of the other types.
26Of course, it is also possible that there are technological restrictions, such as increasing returns at certain levels,

which would make very small groups inefficient.
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probability of link creation is independent and identical across all links. This Bernoulli process of

link formation was first analyzed by Erdös and Rényi (1959) who establish a number of interesting

topological properties for large Bernoulli networks, that is, as the number of the nodes tends to

infinity (see Jackson (2007), Section 3.1.1 for details). In particular, when the population gets large,

the Erdös and Rényi random graph induces a Poisson distribution over network connectivities.

We analyze the topology and welfare properties of Poisson Nash networks for the richer class

of cost functions (beyond the quadratic set up) defined in (14).

We first start by noticing that this game always admits a corner equilibrium.

Lemma 3 There always exists a pure strategy Nash equilibrium where no player invests in social-

ization effort, with symmetric equilibrium strategies
¡
b1/c, 0

¢
and payoffs cb1+1/c/ (c+ 1).

Notice that this equilibrium corresponds to the partially corner equilibrium identified in Lemma

2 for the case of quadratic costs, c = 1.

We now introduce some notations. For all α < β, define:

1(α,β] (x) =

(
1, if α < x < β

0, otherwise
.

We introduce also the following function φ : R→ R given by:

φ (x) = c
1

c+1

h
xc+1 − b1+

1
c

i 1
c+1

.

We are now ready to state the main characterization result.

Theorem 2 Suppose that c2

2+c2

³
2

2+c2

´ 2
c2 > a1+

1
c b

2
c2 . Then, there exists an n∗ such that for all

games with n ≥ n∗ players, the pure strategy Nash equilibrium strategies converge as n goes to

infinity to the solutions to: (
sc = 1(−∞,φ(k)] (s) ak

2

kc [1− as] = b
, (15)

which has one, two or three different non-negative solutions.

It is readily checked that
¡
b1/c, 0

¢
is always a solution to (15), consistent with Lemma 3. At

this equilibrium, the network of synergies is empty.

For large enough populations, we can also have up to two interior symmetric equilibria. In-

specting (15), these interior equilibria (k∗, s∗) solve:(
sc = ak2

kc [1− as] = b
, (16)
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which generalizes (6) for arbitrary c, with the added condition that s∗ ≤ φ (k∗). After some algebra,

this last inequality is equivalent to:

ui (k
∗, s∗) =

1

c+ 1

£
ck∗c+1 − s∗c+1

¤
≥ c

c+ 1
b1+

1
c = ui

³
b1/c, 0

´
. (17)

In words, the condition s∗ < φ (k∗) guarantees that
¡
b1/c, 0

¢
is not a strict best-response by some

arbitrary player i to the rest of the players playing (k∗, s∗). On top of that, the conditions on

the exogenous parameter values imposed in Theorem 2 guarantee that the first-order conditions

for interior equilibria (16) have at least one solution, and that the second-order conditions hold at

these points.

The fact that the inequality (17) holds for any interior Nash equilibrium implies that any interior

equilibrium Pareto dominates the partially corner equilibrium where players do not socialize and

invest the optimum level b1/c that corresponds to their private costs and returns.

Suppose now that the exogenous parameter values are such that two interior equilibria exist.

It turns out that their corresponding actions can also be ranked. As in Proposition 2, we can

thus speak of a low-action (interior) equilibrium and a high-action (interior) equilibrium for large

enough populations. The response to these equilibrium actions to incentives is identical to that

documented in Proposition 3.

Proposition 6 Let (k∗, s∗) ≥ (k∗∗, s∗∗) be the two ranked interior symmetric approximate equilib-
ria for a large enough population. When a increases, k∗∗ and s∗∗ increase, while k∗ and s∗ decrease.

In both cases, the percentage change in s is higher than that of k (in absolute values).

Notice that the previous result implies that s/k is an increasing function of a at equilibrium.

Factorizing by kc+1 in the expression for equilibrium payoffs given by (17), one can then readily

conclude that individual payoffs decrease with a at the high equilibrium.

6.2 The topology of Erdös-Rényi equilibrium networks

In the Erdös-Rényi (Bernoulli) random networks that correspond to the interior and symmetric

Nash equilibria of Theorem 2,27 the expected number of links to each player is s∗, and each po-

tential link in the network is created (approximately) with independent probability s∗/n when the

population gets large. The fact that link creation is i.i.d. implies, in particular, that the network

connectivity (or degree) is not correlated across different nodes.

Beyond this vanishing degree-degree correlation across nodes as the population gets larger,

large Erdös-Rényi networks display a number of interesting topological features. For instance,

when s∗ < 1, the networks is composed of a huge number of disjoint small trees. Instead, when

s∗ > 1, a single giant component that encompasses a high fraction of all the network nodes emerges.
27Note that the interpretation of our equilibrium network as a random graph requires that all link intensities are

smaller than one, which is equivalent to a < 1.
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The next result ties down the existence of a giant component to conditions on the exogenous

parameter values of the model.

Proposition 7 Let a < 1, so that equilibrium networks can be interpreted as random graphs.

Suppose that there are two non-empty equilibrium networks. Then, the two equilibrium networks

display different topological characteristics (one network with a giant component, one without) if

and only if ab2/c < (1− a)2/c. If, instead, ab2/c > ( c
a+c)

2, then both equilibrium networks have a

giant component.28

In some cases, both the low-action and the high-action equilibrium networks have a giant

component. In some other cases, the low-action equilibrium network is fragmented whereas the

high-action equilibrium network contains a connected component encompassing a nontrivial frac-

tion of players. In principle, Proposition 7 does not exclude the possibility of coexistence of two

fragmented equilibrium networks (for high and low actions). We conjecture, however, that the only

two possibilities are those described in Proposition 7.

Holding b = 1, Figure 3 displays for values of c ranging from 1 to 10, amin and amax, respectively

the minimum and maximum values of a for which the equilibrium exists.

[Insert F igure 3 here]

The line in between amin and amax represents a phase transition separating two parameter regions

for a and c. For values of a above this line, the two equilibrium networks have a giant component.

Instead, for values of a below this line, only the equilibrium network with low actions is fragmented.

Notice that this transition is sharp, that is, the low action equilibrium changes discontinuously

the topological properties as a function of the synergistic parameter a.

7 Discussion

We have provided a simple operational model of network formation with welfare and topology

predictions, and clear-cut comparative statics. In substance, we identify a “too cold” and a “too

hot” equilibrium. We show that socialization is more responsive than production to exogenous

shocks in the parameters and that individual preferences over group composition hint towards

assortative matching. A variation of the model with several groups allows for partially directed

socialization within groups more in line with some empirical evidence on clustering and community

structure within networks.

We show and state our results with a class of payoffs corresponding to the functional form given

in equation (4). However, the thrust of our analysis carries over to some generalizations of this

setup.

28Notice that ( c
a+c

)2 ≥ (1− a)2/c. See the proof for details.
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The three main characteristics of this functional form are: the linear-quadratic expression in

production efforts, the genericity of socialization decisions (condition (A3) of Lemma 1), and ag-

gregate constant returns to scale in socialization (condition (A2) of lemma 1). The linear-quadratic

form plays an important role in the analysis, as it allows to express existence and interiority of the

production equilibrium decisions (for a given socialization profile s) as a a function of the spectral

radius of G(s). Combined with conditions (A2) and (A3), this leads to first-order conditions that

take relatively manageable closed-form matrix expression. In turn, when population gets large,

and because we are able to control the population size effect in our matrix closed-form expression,

approximate equilibrium conditions boil down to a simple system of equations (6). On top of its

operational virtues, condition (A3) is hard to dispense with as it embodies the central assumption

of our approach, the genericity of socialization. Condition (A2), instead, is chosen mainly for its

operationally virtues. We could accommodate variations of this condition, and thus alternative

expressions for gij(s) that allow for some aggregate scale effects in socialization, as long as we can

still control for population size effects. Essentially, we need that both the spectral radius of G(s)

and the diagonal cells of the matrix [I−G(s)]−1 are of finite order, while the off-diagonal terms of
the same matrix be of order inverse of the population size.

One slightly artificial feature of the model is the fact that the effort variables are unbounded.

This creates existence problems and generates the need for the assumption 2/3
√
3 > a(b). In

addition, this generates a failure of upper-hemicontinuity in the equilibrium correspondence as the

high-action equilibrium diverges to infinity as a(b) goes to zero. A simple way to deal with this

problem is to assume that the effort of each individual is bounded. That is, si + ki ≤ T. This

is natural when one interprets the sum of efforts of an individual as related to the time at his

disposal, or, more generally as activities that consume resources of this sort. It is relatively easy to

characterize the equilibria and their topological and welfare properties under this modification. In

particular, the Pareto superior equilibrium disappears for a(b)T low enough. A bounded strategy

space can introduce upper corner equilibria that may be stable.

Another economically compelling modification of the original setup is to introduce a market for

effort resources that are limited in supply. For example, suppose that there is a fixed amount of

productive effort
Pn

i=1 ki = k sold in a competitive market. If one interprets (4) as the amount of

numeraire produced by agent i, the total profit for an agent is:⎛⎝bτ(i) ki + a
nX

j=1

pij (s) kjki −
1

2
k2i −

1

2
s2i

⎞⎠− pkki (18)

which is equivalent to: ¡
bτ(i) − pk

¢
ki + a

nX
j=1

pij (s) kjki −
1

2
k2i −

1

2
s2i (19)

This corresponds to our standard model, where the types are now bτ(i) − pk. An equilibrium
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(p∗k,k
∗, s∗) is now simply a solution to (6) with the modified types and the market clearing condi-

tions, for large populations.

It should be clear that, for a fixed (low enough) pk, the new system (6) has a solution. For the

low equilibrium, lowering types makes the k∗ smaller coordinatewise (this is Proposition 4). This

yields, in fact, a (downward sloping) demand function for k. Supply is a vertical line, so there is

always an equilibrium (potentially at a price of zero and excess supply). The shape of the demand

function for the high equilibrium is less straightforward because the comparative statics of the high

equilibrium as pk changes are now ambiguous (see again Proposition 4). In some cases, this demand

function will actually be upward sloping at the high equilibrium. Because upward sloping demands

give rise to unstable market dynamics, the low equilibrium is then uniquely selected.
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Appendix

Proof of Lemma 1: Fix s. From (A3) we have gij(s) = siψj(s), where ψj : Rn
+ → R+,

for all i, j. From (A2) we have
Pn

j=1 ψj(s) = 1. Multiplying the previous expression by si givesPn
j=1 siψj(s) = si. By (A1) we have siψj(s) = sjψi(s), and thus

Pn
j=1 sjψi(s) = ψi(s)

Pn
j=1 sj =

si, and the result follows.

Proof of Theorem 1: It follows from the following Lemmata 4, 5, 6 and 7.

Consider an m−replica game involving n = mt players, where m ≥ 1 is fixed for the time being.
Let G(s) = [gij(s)]i,j∈N be the n−symmetric adjacency matrix for the network with link inten-

sities in (1).

For all x ∈ Rt
+, define x =

Pt
τ=1 xτ/t, x

2 =
Pt

τ=1 x
2
τ/t, and:

λ(x) =
ax

x− ax2
.

We extend this definition to any non-negative vector in an Euclidean space of arbitrary size.

Lemma 4 Let s∈ Rn
+, s 6= 0 such that 1 > a s2/s. Then,M(s)= [I−aG(s)]−1 is a well-defined and

non-negative n−square matrix, equal to M(s)= I+ λ(s)G(s).

Proof. WhenM(s) ∈ Rn2 is well-defined, we haveM(s) =
P+∞

p=0 a
pG(s)p.We compute G(s)p.

First, note that (we omit s when there is no confusion):

g
[2]
ij =

nX
l=1

gilglj =
sisj
ns

nX
h=1

s2h
ns
=
s2

s
gij , for all i, j = 1, ..., n

By a trivial induction on p = 1, 2, ..., we deduce that g[p]ij = (s2/s)
p
gij , for all i, j and all p ≥ 1.

Therefore:

M(s) = I+
+∞X
p=1

Ã
a
s2

s

!p

G = I+ λ(s)G(s).

We know from Debreu and Herstein (1953) that M(s) is well-defined and non-negative if and

only if 1 > aρ(G(s)), where ρ(G(s)) is the modulus of the largest eigenvalue of G(s) (see also

Theorem 1 in Ballester, Calvó-Armengol and Zenou 2006). Let us show that ρ(G(s)) = s2/s.

First, note that s2/s is an eigenvalue of G for the eigenvector s. Indeed, G · s= (s2/s) s.
Second, let x such that kxk = 1. We have:

G · x =s · x
ns

s,

where s · x =
Pn

i=1 sixi is the scalar product, with |s · x| ≤ ksk × kxk ≤ ksk. Therefore, kG · xk ≤
ksk2 /ns = s2/s. Note that, by definition, ρ(G) = sup {kG · xk / kxk : kxk = 1}. Altogether, we
can conclude that ρ(G) = s2/s.
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Let now m1,m2,m3, ... be an increasing sequence of integers such that mh → +∞ as h→ +∞.
Each h ∈ N defines a mh−replica game involving nh = mht players. In the mh−replica game,
there are mh players of each type (b1, ..., bt). In each such game, a profile of strategies is

¡
kh, sh

¢
∈

Rnh
+ ×Rnh

+ . Given a player i = 1, ..., n
h, recall that bτ(i) denotes his type, where τ (i) ∈ T .

Lemma 5 Let
©¡
kh, sh

¢ ª
h∈N be a sequence of Nash equilibria of the m

h−replica games such that
1 > ash2/sh, for all h ∈ N. Suppose that the system of equations:(

[1− a(b)s] k = 1

s = a(b)k2
(20)

has a solution (k, s) ∈ R2+ such that 1 > a(b)s. Then, for all ε > 0, there exists some hε ∈ N such
that, for all h ≥ hε, we have max{

¯̄
khi − bτ(i)k

¯̄
,
¯̄
shi − bτ(i)s

¯̄
} < ε, for all i = 1, ..., nh, where (k, s)

is a solution to (20).

Proof. Let
©¡
kh, sh

¢ ª
h∈N be a sequence of Nash equilibria such that 1 > a(sh), for all h.

Let diag
¡
G
¡
sh
¢¢
be the diagonal matrix with diagonal terms gii

¡
sh
¢
and zero off-diagonal terms.

For each h, using the expression for [I − aG(sh)]−1 ∈ Rnh
2

in Lemma 4, we write the first-order

necessary equilibrium conditions for kh as:

kh + a
h
I+ λ(sh)G

³
sh
´i
·diag

³
G
³
sh
´´
·kh =

h
I+ λ(sh)G

³
sh
´i
·bh, (21)

where bh ∈ Rnh
+ is defined by bhi = bτ(i), for all i = 1, ..., nh. In words, the ith coordinate of bh

corresponds to the private returns of player i’s type. Note that the nh coordinates of bh take t

different possible values, b1, ..., bt, each repeated mh times.

The first-order conditions for shi are:

shi = akhi
sh·kh

nhsh
− ashi k

h
i

sh·kh

(nhsh)2
− a

shi k
h2
i

nhsh
+ a

sh2i kh2i
(nhsh)2

. (22)

Given that 1 > ash2/sh, for all h and that nh → +∞ as h → +∞, necessarily, shi ∈ O (1), for

all i = 1, ..., nh and for all h. Indeed, suppose that shi ∈ O
¡
nh

p¢
, p > 0, for some j. Let then q > 0

such that shi ∈ O
¡
nh

q¢
, q > 0, for all i. Then, ash2/sh ∈ O(nh

q
), and the inequality 1 > ash2/sh

is violated for large enough h. Given that shi ∈ O (1), we have gij
¡
sh
¢
= shi s

h
j /
³Pnh

l=1 s
h
l

´
∈ o (1)

when h→ +∞, for all i, j = 1, ..., nh

The first-order conditions (21) imply that khi ∈ O (1), for all i = 1, ..., nh and for all h.

Then, using (22), we deduce that for h high enough, we have

shi = akhi
sh·kh

nhsh
+ o (1) , for all i = 1, ..., nh and for all h.

31



By (21), khi is a continuous function of s
h. Therefore, shi = κhi + o (1) and khi = σhi + o (1), for

all i = 1, ..., nh and for all h, where
¡
σh,κh

¢
are such that:

σh =
h
I+ λ(κh)G

³
κh
´i
·bh, (23)

and

κhi = aσhi
κh·σh

nhκh
, i = 1, ..., nh. (24)

We solve (23) and (24).

Note, first, that (24) implies that σhi /κ
h
i = σhj /κ

h
j , for all i, j. Without any loss of generality, we

can thus write κhi = θhi s and σhi = θhi k, for all i = 1, ..., n
h and for some k, s. Then, (24) rewrites

as:

s = ak2
θh2

θh
, (25)

Noting that gij
¡
κh
¢
= θhi θ

h
j s/n

hθh, we rewrite (23) as:

θhi k = bhi +
as

nh
θhi

θh − aθh2s

nhX
j=1

θhj b
h
j , (26)

for all i = 1, ..., nh.

Let θhi = bhi . Then, (26) becomes:

k = 1 +
ab2s

b− ab2s
=

1

1− a(b)s
,

while (25) becomes s = a(b)k2.

Note that the condition 1 > ash2/sh is then equivalent to 1 > a(b)s.

Lemma 6 If 2/3
√
3 > a(b), then the system of equations (20) has exactly two solutions (k, s) ∈ R2+

such that 1 > a(b)s.

Proof. Plugging the expression for k into the expression for s in (20), one concludes that every
solution (k∗, s∗) of (20) is such that g (s∗) = s∗, where;

g(s) =
a(b)

(1− a(b)s)2
. (27)

We establish conditions such that the graph of g(s) crosses (twice) the 45 degree line for some

s such that 1 > a(b)s. Note that g (0) = a(b) and lims↑1/a(b) g (s) = +∞, so that the function
g (·) maps [0, 1/a(b)) into [a(b),+∞), while g0 (0) = a(b)2 and lims↑1/a(b) g

0 (s) = +∞. If there
exists a tangent to the graph of g (·) on [0, 1/a(b)) parallel to the 45 degree line, and if this tangent
is strictly below (resp. tangent to) the 45 degree line, the system (20) has exactly two solutions
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(resp. one solution) on [0, 1/a(b)). Such a tangent exists if a(b) ≤ 1, which we assume from now

on. Next, we solve

g0(x∗) = 1⇔ a(b)x∗ = 1−
¡
2a(b)2

¢1/3
(28)

Thus, (20) has two solutions (resp. one solution) if and only if a(b) ≤ 1 and g(x∗) < x∗ (resp.

g(x∗) = x∗), where x∗ is defined by (28). The last inequality is equivalent to a(b) < 2/3
√
3 ≤ 1.

When a(b) < 2/3
√
3 (resp. a(b) = 2/3

√
3), the graph of g (·) thus crosses the 45 degree line twice

(resp. once) on [0, 1/a(b)).

Lemma 7 Let
©¡
kh∗, sh∗

¢ ª
h∈N be such that k

h∗
i = kbτ(i) and sh∗i = sbτ(i), for all i = 1, ..., nh,

where (k, s) is some given solution to (20). If 2/3
√
3 > a(b), then there exists some h ∈ N such

that, for all h ≥ h, the second-order equilibrium conditions for u = (u1, ..., unh) hold at
¡
k∗h, s∗h

¢
.

Proof. First note that Lemma 6 implies that (20) has a solution such that 1 > a(b)s. Consider

this solution. We also know from Lemma 5 that both shi , k
h
i ∈ O (1), for all i = 1, ..., nh. We now

compute the cross partial derivatives of u at
¡
kh∗, sh∗

¢
.

First, we have:

∂ui
∂si

³
kh∗, sh∗

´
=

a

nhsh∗

nhX
j=1,j 6=i

³
kh∗i kh∗j sh∗j − gij

³
sh∗
´
kh∗i kh∗j

´
− sh∗i (29)

∂ui
∂ki

³
kh∗, sh∗

´
= bτ(i) + a

nhX
j=1,j 6=i

gij

³
sh∗
´
kh∗j − kh∗i (30)

Thus

∂2ui
∂s2i

³
kh∗, sh∗

´
=

2a

(nhsh∗)2

nhX
j=1,j 6=i

³
−kh∗i kh∗j sh∗j + gij

³
sh∗
´
kh∗i kh∗j

´
− 1

∂2ui
∂si∂ki

³
kh∗, sh∗

´
=

a

nhsh∗

nhX
j=1,j 6=i

³
kh∗j sh∗j − gij

³
sh∗
´
kh∗j

´
∂2ui
∂k2i

³
kh∗, sh∗

´
= −1

So, for h large enough, we get:

∂2ui
∂s2i

³
kh∗, sh∗

´
= o (1)− 1 (31)

∂2ui
∂si∂ki

³
kh∗, sh∗

´
= o (1) + ak

b2

b
= o (1) + a(b)k (32)

∂2ui
∂k2i

³
kh∗, sh∗

´
= −1 (33)
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The second-order conditions amount to checking that the principal minors of the Hessian have

alternating signs. But the determinant of a matrix is a continuous (polynomial) function of the

matrix entries. Given that (31) and (33), are negative, when h → +∞, we are thus left to check
that the sign of the determinant is positive. This amounts to checking:

1− a(b)2k2 > 0

and by the second equation in (20) this is equivalent to checking:

1− a(b)s > 0

But Lemma 6 shows that this necessarily holds when 2/3
√
3 > a(b).

Proof of Proposition 1: Let � > 0. Take h large enough such that Theorem 1 holds for this

�. We check stability by looking at the behavior of the gradient system

∂si(t)

∂t
=

∂ui(s(t),k(t))

∂si(t)
(34)

∂ki(t)

∂t
=

∂ui(s(t),k(t))

∂ki(t)
(35)

around the equilibrium points.

Let us first look at the partially corner equilibrium. By (29) we have that the first derivative

with respect to si when h is large is

o (1) +
a

nhsh∗

nhX
j=1

kh∗i kh∗j sh∗j − sh∗i

Let a perturbation around the equilibrium sε = (ε1, ..., εn), with b = min{b1, ..., bn}. Then, the first
derivative with respect to si is approximately

abi

Pn
j=1 εjbjPn
j=1 εj

− εi > abib− εi > 0,

for εi small enough. For any small enough perturbation, si would tend to increase for all i, thus

negating stability.

If we linearize the dynamic system (34)−(35) around the equilibria we get, for all i = 1, ..., nh:

∂si(t)

∂t
=

nhX
j=1

∂2ui
∂si∂sj

³
kh∗, sh∗

´¡
sj(t)− s∗j

¢
+

nhX
j=1

∂2ui
∂si∂kj

³
kh∗, sh∗

´ ¡
kj(t)− k∗j

¢
(36)

∂ki(t)

∂t
=

nhX
j=1

∂2ui
∂ki∂kj

³
kh∗, sh∗

´ ¡
kj(t)− k∗j

¢
+

nhX
j=1

∂2ui
∂ki∂sj

³
kh∗, sh∗

´ ¡
sj(t)− s∗j

¢
34



For i 6= j we have:

∂2ui
∂si∂sj

³
kh∗, sh∗

´
=

a

nhsh∗
kh∗i kh∗j −

a

(nhsh∗)2
kh∗i kh∗j sh∗i

+
a

(nhsh∗)2

nhX
r=1,r 6=i

³
2gir

³
sh∗
´
kh∗i kh∗r − kh∗i kh∗r sh∗r

´
∂2ui
∂si∂kj

³
kh∗, sh∗

´
=

a

nhsh∗

³
kh∗i sh∗j − gij

³
sh∗
´
kh∗i

´
∂2ui
∂ki∂sj

³
kh∗, sh∗

´
=

a

nhsh∗
(kh∗j sh∗i −

nhX
r=1,r 6=i

gir

³
sh∗
´
kh∗r )

∂2ui
∂ki∂kj

³
kh∗, sh∗

´
= agij

³
sh∗
´

Thus, we have when h gets large and for i 6= j:

∂2ui
∂si∂sj

³
kh∗, sh∗

´
= o (1) (37)

∂2ui
∂si∂kj

³
kh∗, sh∗

´
= o (1) (38)

∂2ui
∂ki∂sj

³
kh∗, sh∗

´
= o (1) (39)

∂2ui
∂ki∂kj

³
kh∗, sh∗

´
= o (1) (40)

The coefficients of the linearized gradient system (36) correspond to the cells of a 2nh × 2nh

matrix Πh
¡¡
kh∗, sh∗

¢¢
which, when h is large enough, gets arbitrarily close to the following matrix

Πh:

Πh =

"
A,B

B,A

#
where A,B are the following nh × nh matrices

A =

"
−1, ..., 0
0, ...,−1

#
,B =

"
a(b)k, ..., 0

0, ..., a(b)k

#
,

Now the matrix Πh has the following eigenvalues:

1. λ1i = −1+a(b)k, for i = 1, 2, ..., nh, corresponding to the eigenvector νi = [ih, ih], i = 2, ..., nh

where ih is an nh × 1 vector containing a 1 in position i = 1, 2, ..., nh and 0’s in the other

nh − 1 positions.

2. λ2i = −1 − a(b)k, for i = 1, 2, ..., nh, corresponding to the eigenvector νi = [ih,−ih], i =
2, ..., nh where ih is an nh × 1 vector containing a 1 in position i = 1, 2, ..., nh and 0’s in the

other nh − 1 positions.
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The eigenvalues λ2i are necessarily negative. The eigenvalues λ
1
i are negative if 1− a(b)k > 0.

But this is true provided that:

1− a(b)2k2 > 0

and by the second equation in (20) this is equivalent to checking

1− a(b)s > 0

But Lemma 6 shows that this necessarily holds when 2/3
√
3 > a(b).

Proof of Proposition 2: Let � > 0. Take h large enough such that Theorem 1 holds for

this �. We denote by
¡
kh∗, sh∗

¢
and

¡
kh∗∗, sh∗∗

¢
the corresponding �−equilibria, where kh∗i =

k∗bτ(i), s
h∗
i = s∗bτ(i), and kh∗∗i = k∗∗bτ(i), s

h∗∗
i = s∗∗bτ(i), for all i = 1, ..., nh, and (k∗, s∗) , (k∗∗, s∗∗)

are the two different solutions to (20). Suppose that kh∗i ≥ kh∗∗i , for some i. Then, necessarily,

k∗ ≥ k∗∗. By (20), we deduce that s∗ ≥ s∗∗. Therefore, both kh∗i ≥ kh∗∗i and sh∗i ≥ sh∗∗i , for all

i = 1, ..., nh.

To show the welfare ranking of the �−equilibria, we first use the expression for payoffs in (4)
and the first-order conditions for khi , to obtain the following expression for �−equilibrium payoffs

for
¡
kh∗, sh∗

¢
:

uh∗i =
b2τ(i)

2

¡
k∗2 − s∗2

¢
+ o (1) , for all i = 1, ..., nh.

Next, using the fact that (k∗, s∗) are solutions to (6), we write:

k∗2 − s∗2 =
s∗

a(b)
− s∗2 =

s∗

a(b)
(1− a(b)s∗) =

1

a(b)

s∗

k∗
= k∗, (41)

and thus:

uh∗i =
b2τ(i)
2

k∗ + o (1) , for all i = 1, ..., nh,

and similarly for the �−equilibrium payoffs uh∗∗i corresponding to
¡
kh∗∗, sh∗∗

¢
. Since, by definition

k∗ ≥ k∗∗ the welfare at the equilibrium
¡
kh∗, sh∗

¢
is higher than at the equilibrium

¡
kh∗, sh∗∗

¢
.

Proof of Propositions 3 and 4: Let � > 0. Take h large enough such that Theorem 1

holds for this �. We denote by
¡
kh∗, sh∗

¢
and

¡
kh∗∗, sh∗∗

¢
the corresponding �−equilibria, where¡

kh∗, sh∗
¢
≥
¡
kh∗∗, sh∗∗

¢
are computed with two different solutions (k∗, s∗) ≥ (k∗∗, s∗∗) of (20). On

the (k, s) plane, an increase in a(b) results in a downward shift of the graph of:

k =
1

1− a(b)s
, (42)

and an upward shift of the graph of:

s = a(b)k2. (43)
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Therefore, the equilibrium actions of the Pareto-inferior equilibrium
¡
kh∗∗, sh∗∗

¢
all increase,

while those of the Pareto-superior equilibrium
¡
kh∗∗, sh∗∗

¢
all decrease. The elasticity η that keeps

track of the relative changes on s and k when a(b) varies is:

η =
s

k

∂k
∂a(b)

∂s
∂a(b)

.

Differentiating (42) and (43) with respect to a(b) gives:

∂k

∂a(b)
= sk2 + ak2

∂s

∂a(b)

∂s

∂a(b)
= k2 + 2

s

k

∂k

∂a(b)

Solving for the two partial derivatives gives:

∂k

∂a(b)
=

2sk2

1− 2ask (44)

∂s

∂a(b)
=

k2

1− 2ask

µ
2
s2

k
+ 1

¶
(45)

and thus:

η =
s

k

∂k
∂a(b)

∂s
∂a(b)

=
2s2

k + 2s2
< 1.

Proof of Proposition 5: Let � > 0. Take h large enough such that Theorem 1 holds for this

�. We denote by
¡
kh∗, sh∗

¢
and

¡
kh∗∗, sh∗∗

¢
the corresponding �−equilibria, where

¡
kh∗, sh∗

¢
≥¡

kh∗∗, sh∗∗
¢
are computed with two different solutions (k∗, s∗) ≥ (k∗∗, s∗∗) of (20).

1. From equation (41) in the proof of Proposition 2, we have

k∗2 − s∗2 =
s∗

a(b)
− s∗2 =

s∗

a(b)
(1− a(b)s∗) =

1

a(b)

s∗

k∗
= k∗,

and thus:

uh∗i =
b2τ(i)

2
k∗ + o (1) =

b2τ(i)

2a(b)

s∗

k∗
+ o (1) , for all i = 1, ..., nh,

and similarly for the �−equilibrium payoffs uh∗∗i corresponding to
¡
kh∗∗, sh∗∗

¢
.

When only a increases, while all the bt’s remain constant, the comparative statics of equi-

librium payoffs are those of productive actions. Since we know from equation (44) that
∂k

∂a(b) =
2sk2

1−2ask , the result follows in that case.
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Let us then turn to the case when we multiply a and each bτ ,τ ∈ T by a common factor δ ≥ 1.
Then, a(b) increases to δ2a(b), while 2a(b)/b2τ remains unchanged. Therefore, individual

�−equilibrium payoffs move in the same direction than s∗/k∗ and s∗∗/k∗∗. We know from the
proof of Proposition 3 that, following an increase in a(b), the equilibrium actions increase at

the Pareto-inferior equilibrium
¡
kh∗∗, sh∗∗

¢
and decrease at the Pareto-superior equilibrium.

Graphically, one can immediately conclude that s∗/k∗ decreases while s∗∗/k∗∗ increases, and

the result follows in that case. A more formal argument is the following. It is readily checked

that
∂s/k

∂δ

¯̄̄̄
δ=1

> 0⇔ k
∂s

∂δ

¯̄̄̄
δ=1

> s
∂s

∂δ

¯̄̄̄
δ=1

. (46)

We know that, at the Pareto-inferior equilibrium, both ∂k∗∗

∂δ

¯̄
δ=1

> 0 and ∂s∗∗

∂δ

¯̄
δ=1

> 0.

Therefore, ∂s∗∗/k∗∗

∂δ

¯̄̄
δ=1

> 0 is equivalent to η < 1, which is true from Proposition 3. Instead,

at the Pareto-superior equilibrium we have both ∂k∗

∂δ

¯̄
δ=1

> 0 and ∂s∗

∂δ

¯̄
δ=1

> 0, so that
∂s∗/k∗

∂δ

¯̄̄
δ=1

< 0 is equivalent to η < 1 which, again, follows from Proposition 3.

2. From equation (9) we have that

mtX
i=1

ui '
mtX
i=1

b2τ(i)

2a(b)

s

k

=
m

a

s

k

tX
τ=1

bτ

Now notice that a(b) increases by assumption in our case. Thus
mtP
i=1

ui decreases for the

high equilibrium since s∗/k∗ increases and
tP

τ=1
bτ is constant. And

mtP
i=1

ui increases for the low

equilibrium since s∗∗/k∗∗ increases and
tP

τ=1
bτ is constant. Now let and individual i with lower

than average bτ(i). We know that at the low equilibrium s/k decreases. Also, 1
2a(b) decreases

(since .
tP

τ=1
bτ and .

tP
τ=1

b2τ increases). And, since his type is lower than average, b
2
τ(i) must also

decrease. Thus,.
³
b2τ(i)/2a(b)

´
(s/k) decreases and the result follows.

Proof of Remark 3: The result is immediate from equation (10) and from equation (44) in

the proof of Proposition 3.

Proof of Theorem 2: The proof follows ceteris paribus from that of Theorem 1.

First, we rewrite Lemma 5 by simply taking to the power of c the left-hand side terms in the

first-order conditions (21) and (22), and the approximated first-order conditions (23) and (24).

Then, (25) and (26) yields (15).
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Second, rewriting equation (27) in Lemma 6 we get:

gc (s) =
a
1
c b

2
c2

(1− as)
2
c2

,

so that the solution to (28) is such that (1− ax∗)
2
c2
+1 = 2

c2
a1+

1
c b

2
c2 , that is, ax∗ = 1−

³
2
c2
a1+

1
c b

2
c2

´ c2

2+c2 .

The equilibrium conditions gc (x∗) < x∗ then boils down to a1+
1
c b

2
c2 < c2

2+c2

³
2

2+c2

´ 2
c2 after some

simple algebra.

Proof of Proposition 6: Let’s multiply both a and b by a common factor δ ≥ 1. Equations
(15) become: (

sc = δak2

kc [1− δas] = δb
.

Differentiating with respect to δ and letting δ = 1 gives:

csc−1
∂s

∂δ

¯̄̄̄
δ=1

= ak2 + 2ak
∂k

∂δ

¯̄̄̄
δ=1

ckc−1
∂k

∂δ

¯̄̄̄
δ=1

(1− as) = b+ kc
∙
as+ a

∂s

∂δ

¯̄̄̄
δ=1

¸
Simplifying gives:

c
∂s

∂δ

¯̄̄̄
δ=1

− 2 s
k

∂k

∂δ

¯̄̄̄
δ=1

= s

−ak ∂s

∂δ

¯̄̄̄
δ=1

+ c (1− as)
∂k

∂δ

¯̄̄̄
δ=1

= k

Finally, solving for the two partial derivatives yields to

∂s

∂δ

¯̄̄̄
δ=1

=
2 + c

c2 (1− as)− 2ass (47)

∂k

∂δ

¯̄̄̄
δ=1

=
as+ c (1− as)

c2 (1− as)− 2ask

Therefore, both partial derivatives are of the same sign, which is positive if and only if as <

c2/
¡
2 + c2

¢
. In the same spirit of the proof of Proposition 5, one can check graphically that the

equilibrium actions of the low-actions equilibrium increase with δ whereas the equilibrium actions

of the high-actions equilibrium decrease with δ. Then, noting from (46) that the elasticity is smaller

than one whenever the slope s/k increases, s and k either all increase or all decrease, the result

follows.

Proof of Proposition 7: At an interior equilibrium, the strategies (k, s) solve:(
sc = ak2

kc [1− as] = b
,
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The first equation is:

s = f (k) = a1/ck2/c.

It is readily checked that f (·) is increasing, strictly concave (resp. convex) when c < 2 (resp. c > 2)
and a straight line when c = 2 on [0,+∞). Also, f (0) = 0 and limx↑+∞ f (x) = +∞. Finally, note
that:

k = f−1 (s) =
³ s

a1/c

´c/2
.

The second equation is:

k = g (s) = b1/c (1− as)−1/c .

It is readily checked that g (·) is increasing and strictly convex on [0, 1/a), with g (0) = b1/c and

limx↑1/ab g (x) = +∞.
Suppose that the equilibrium existence conditions hold. Let (k, s) and

¡
s, k
¢
be the two different

equilibria, where s > k (and, thus, k > s). The two corresponding equilibrium networks are such

that only one has a giant component if and only if s > 1 > k.

Let a < 1, so that we have a random graph.

Note that the graph of g (·) lies below the graph of f−1 (·) only when s ∈ [k, s]. Therefore,
s > 1 > k is equivalent to g (1) < f−1 (1). After some algebra, this is equivalent to:

ab2/c < (1− a)2/c . (48)

Notice that the right-hand side of this inequality is well-defined given our assumption that

a < 1.

When (48) holds, we can conclude that the two equilibrium networks display two different

topological characteristics: the densely connected network has a giant component whereas the

sparsely connected network doesn’t.

Reciprocally, when (48) does not hold, we can conclude that either both equilibrium networks

have a giant component, or none does. We now provide an additional sufficient condition such that

both have giant component when both a < 1 and ab2/c > (1− a)2/c.

Consider the line tangent to the graph of g (·) at the point (0, g (0)) with equation:

h (s) = g0 (0) s+ g (0) = b1/c
ha
c
s+ 1

i
.

The graph of g (·) lies above that of h (·) on [0, 1/a) (recall that g (·) is strictly convex on that
half-segment). Consider the region on the (s, k) space delimited to the left by the vertical axis, from

above by the graph of g (·), from below by the graph of f−1 (·) and to the right by the point (k, s)
at the intersection of these two graphs. If the point (1, h (1)) lies in this region, then necessarily

1 < k. Analytically, (1, h (1)) lies in this region if and only if h (1) > f−1 (1). After some algebra,

this is equivalent to:

ab2/c > (
c

a+ c
)2.
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When a < 1, we can thus conclude that both networks have a giant component when:

ab2/c > max{(1− a)2/c , (
c

a+ c
)2}.

We now compare the two terms on the right-hand side of the inequality. Let:

ξ (x) =
1

1 + ax
and ζ (x) = (1− a)x , where x ∈ [0, 1].

Then,
³

c
a+c

´2
> (1− a)2/c for some c ≥ 1 if and only if ξ (1/c) > ζ (1/c).

Note that ξ (0) = ζ (0) = 1, ξ (1) = 1/ (1 + a) ≥ ζ (1) = 1 − a (with a strict inequality when

a 6= 0), and ξ0 (0) = −a > ζ 0 (0) = log (1− a). Given the strict convexity of both functions on [0, 1],

we can conclude that ξ (x) > ζ (x) on 0 < x < 1.
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k (production)
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