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1 Introduction

The existence of pricing rules, discount factors or state prices is crucial in the literature on capital
markets. It is closely related to the concepts of arbitrage and equilibrium (see, for instance, Cham-
berlain and Rothschild (1983)). Harrison and Kreps (1979) showed the link between pricing rules
and martingale measures.

Since Harrison and Kreps (1979) established the existence of martingale probability measures for
some arbitrage-free pricing models their result has been extended in multiple directions, generating
the Fundamental Theorem of Asset Pricing (henceforth FTAP ). For instance, Dalang et al. (1990),
Schachermayer (1992), Delbaen and Schachermayer (1998) or Jacod and Shiryaev (1998) provide
deep characterizations of the existence of martingale measures in different settings.

Nevertheless, a simple version of the FTAP cannot be proved, in the sense that the arbitrage
absence is not sufficient to construct martingale measures if the set of trading dates is not finite. It
was pointed out in Back and Pliska (1991), where a simple dynamic discrete time counter-example
is provided. To overcome this problem Clark (1993) introduced the concept of “free lunch”, far
weaker than the concept of arbitrage. The absence of free lunch has been the key to yield further
extensions of the FTAP , even in the imperfect market case (see for instance Jouini and Kallal
(1995)).

Any free lunch can be understood as an “approximated arbitrage” in the sense that it is “quite
close” to an arbitrage portfolio. However, it is almost an arbitrage but it is not an arbitrage, it is
not so intuitive and its economic interpretation is not so clear. On the contrary it is introduced
in mathematical terms and solves a mathematical problem, but classical pricing models (binomial
model, Black and Scholes model, etc.) usually deal with the concept of arbitrage. Recent studies of
efficiency in imperfect markets avoid the use of free lunches and retrieve the concept of arbitrage,
but they have to deal with models containing a finite number of states of nature, case in which
arbitrage strategies and free lunches coincide (see for instance Jouini and Kallal (2001)).

If possible, it may be worth to provide risk-neutral probabilities and pricing rules (martingale
measures) under simple and meaningful assumptions, as the arbitrage absence. This is in the line of
many other Representation Theorems of Mathematical Finance. For instance, the representation of
coherent, convex or some concrete risk measures (Artzner et al. (1999), Fölmer and Schied (2002)
or Rockafellar and Uryasev (2000) and (2002)) and pricing rules in one-period imperfect markets
(Chateauneuf et al. (1996)) is addressed by using intuitive hypotheses.

Balbás et al. (2002) have shown that it is possible to solve the counter-example of Back and
Pliska (1991) without drawing on free lunches. They characterize the arbitrage absence in dynamic
discrete time pricing models. They build an appropriate projective system of perfect probability
measures (see Musial (1980)) that are risk-neutral for each finite subset of trading dates. Then they
show that the projective limit is risk-neutral for the whole set of trading dates, in the sense that
the set of states of the world and the price process may be extended to a “new price process” which
is a martingale under this projective limit. The initial probability measure and the risk-neutral
one cannot be equivalent, as illustrated by using the counter-example of Back and Pliska (1991).
However, for any finite subset of trading dates one can find projections of both measures that are
equivalent, and there are Radon-Nikodym derivatives in both directions. Balbás et al. (2002) use
this property to introduce the concept of “projective equivalence” of probability measures.

Another caveat appears when characterizing the arbitrage absence for (even static) models with
infinite number of securities. This is clearly pointed out in Schachermayer (1992), where a simple
counter-example with a countable number of assets is provided. Once again it makes it impossible
to give pricing rules and extend the FTAP for significant models. Indeed, consider for instance a
derivative market where call options with infinitely many strikes may be available. Moreover, as
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will be illustrated in Remark 7 (Section 6), every dynamic pricing model could be adapted in such
a way that it becomes a model with infinitely many assets, since one can interpret that each couple
composed of one security and one trading date defines a new asset. Thus, it seems that the analysis
of arbitrage-free models with infinite cardinal of securities should be addressed in Mathematical
Finance.

The approach of Balbás et al. (2002) could be useful to analyze new problems related to the
FTAP . For instance, imperfect markets, that are becoming more and more important in finance
(see for example Schachermayer (2004)) or markets with infinitely many assets. This paper follows
this approach and addresses one-period perfect models with infinitely many securities. The study
seems to be general enough since there are no assumptions on the properties of the set of securities.

The existence of risk-neutral probabilities will be stated by means of projective limits of projec-
tive systems of Radon probability measures (see Schwartz (1973)), rather than projective systems
of perfect measures. These projective systems will permit us to extend the concept of projective
equivalence and to broaden the set of states of nature. In some sense the new set of states of nature
may be identified with the set of paths of real prices and, therefore, it better captures the price
behavior. We could interpret that the failure of the FTAP partially obeys to the “insufficiency”
of the set of states to explain the whole price process.

The outline of the article is as follows. Section 2 will introduce the basic concepts and notations.
Section 3 will present two counter-examples illustrating the FTAP failure. The first one is adapted
from the counter-example of Back and Pliska (1991), although we consider only two trading dates
(instead of an infinite number of them) and infinitely many securities (instead of two ones). The
second one is that introduced by Schachermayer (1992). Section 4 will transform the problem in
order to introduce the “projective system approach” and will define the concept of projectively
equivalent martingale measure. Complete markets will be analyzed in Section 5. We will show
that completeness is sufficient to establish the equivalence between the absence of arbitrage and
the existence of a (unique) projectively equivalent martingale measure, which enables us to price
new securities introduced in the market. This will solve the counter-example adapted from Back
and Pliska (1991). Section 6 will provide a deep study on the existence of projectively equivalent
martingale measures, that may hold for markets such that some kind of new assets may be priced
without losing the arbitrage absence. Complete markets are particular cases and so are those
markets that we will call finitely generated (these markets also illustrate that one-period models
with a countable cardinal of assets in some sense may be considered “more general” than discrete
time dynamic models). The counter-example of Schachermayer (1992) will prove that there are
(incomplete) markets for which it is not feasible to yield any price of some new securities.

The last section concludes the paper and the appendix presents some technical results and
complex proofs.

2 Preliminaries and notations

Let (Ω,F , µ) be a probability space composed of the set Ω, the σ−algebra F and the probability
measure µ.

Consider a set (Si)i∈I of available securities and a second set (fi)i∈I ⊂ L2 (µ) of random variables
providing the pay-off at a future date T of Si, for every i ∈ I. Denote by (pi)i∈I ⊂ IR the family
of current prices. Let us assume that 0 ∈ I and S0 is a numeraire, in the sense that p0 = 1 and
f0 = 1, µ− a.s.

The set of feasible portfolios will be the vector space

E∞ = {(xi)i∈I ⊂ IR; there exists J ⊂ I with J finite and xi = 0 whenever i /∈ J}.
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It is well known that E∞ is dense in the space of sequences lq(I) (1 ≤ q <∞). The current price
and the future pay-off of x = (xi)i∈I ∈ E∞ will be given by

λ(x) =
X
i∈I
xipi ∈ IR

and
Λ(x) =

X
i∈I
xifi ∈ L2 (µ)

respectively. As usual, an arbitrage portfolio allows traders to get “money without risk”. A risk-
neutral measure makes prices be mean values of each pay-off. We have:

Definition 1 A portfolio x ∈ E∞ is said to be an arbitrage if
a) λ(x) ≤ 0
b) Λ(x) ≥ 0, µ− a.s.
c) µ (ω ∈ Ω : Λ(x)(ω)− λ(x) > 0) > 0. ¤

Notice that those arbitrage profits obtained at the current date may by invested in the riskless
asset S0. Whence the existence of arbitrage is equivalent to the existence of self-financing arbitrage
for which a) holds in terms of equality.

Definition 2 The σ−additive measure ν : F 7−→ [0, 1] is said to be a risk-neutral probability (or a
risk-neutral probability measure, or a martingale measure) if

a) µ and ν are equivalent, i.e., µ (A) = 0⇐⇒ ν (A) = 0.
b)

pi =

Z
Ω
fidν (0.1)

for every i ∈ I. ¤

The absence of arbitrage and the FTAP guarantee the existence of risk-neutral probability
measures for any finite sets of securities (see for instance Dalang et al. (1990), Schachermayer
(1992) or Jacod and Shiryaev (1998)).

Henceforth PF (I) will denote the set of finite subsets of I containing 0.

Theorem 1 The model is arbitrage-free if and only if there exists a net (ν̃J)J∈PF (I) of σ−additive
probability measures on F such that µ and ν̃J are equivalent for every J ∈ PF (I) and

pi =

Z
Ω
fidν̃J (1.2)

whenever J ∈ PF (I) and i ∈ J. ¤

Despite the previous result, several counter-examples point out that the risk-neutral measure
ν̃J depends on J , i.e., in general, it is not possible to find ν : F 7−→ [0, 1] verifying the conditions
of Definition 2.
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3 Two counter-examples with different solutions

Let us introduce two counter-examples pointing out the lack of risk—neutral probabilities for many
arbitrage-free markets. The first counter-example is a minor modification adapted from Back
and Pliska (1991), where a dynamic discrete time arbitrage-free pricing model with no martingale
measure is given. The second example is provided in Schachermayer (1992). As will be shown both
counter-examples are significant since their properties are essentially different.

Example 1 Consider I = {0, 1, 2, ...} = IN, Ω = {1, 2, ...} = IN \ {0}, F the discrete σ−algebra of
Ω and suppose that µ (ω) > 0 for every ω ∈ Ω. Let be pi = 1, i = 0, 1, 2, ...and

fi (ω) =

½
ω2+2ω+2

2ω ω ≤ i
1
2i

ω > i

i,ω = 1, 2, ...To make it easy, let us provide the infinite matrix below whose ith−column reflects the
pay-off of Si, i = 0, 1, 2, ...

.M1 =


1 5/2 5/2 5/2 5/2 ...
1 1/2 10/4 10/4 10/4 ...
1 1/2 1/4 17/8 17/8 ...
1 1/2 1/4 1/8 26/16 ...
... ... ... ... ... ...


Consider i,ω ∈ Ω such that ω > i and define νi,ω > 0 so that

∞X
ω=i+1

νi,ω = 1−
iX

ω=1

1

2ω(ω + 1)
=
i+ 2

2i+ 2
(1.3)

holds. Clearly, the existence of (νn,ω)∞ω=n+1 is guaranteed for every n ∈ Ω = IN \ {0}. Take n ∈ Ω,
Jn = {0, 1, ..., n}, and define

ν̃n (ω) =

½ 1
2ω(ω+1) ω ≤ n
νn,ω ω > n

It can be easily proved that µ and ν̃n are equivalent for n = 1, 2, ...and condition (1.2) is satisfied

whenever i ∈ Jn. Therefore Theorem 1 ensures that the market is arbitrage-free. However, it can
be observed that a risk-neutral probability measure ν as in Definition 2 does not exist. Indeed, if it
existed we would obtain by induction

ν(ω) =
1

2ω(ω + 1)
(1.4)

but then
P∞

ω=1 ν(ω) =
1
2 and

P∞
ω=1 fi(ω)ν(ω) < 1 for all i = 0, 1, ... ¤

Remark 1 If we extend the space Ω by adding an event corresponding to the point of ∞, define
ν(∞) = 1

2 and consider the extended price process such that fi(∞) = limω→∞ fi(ω) for all i ∈ IN
then ν satisfies (0.1) but since ν assigns positive probability to the µ−null event ∞, µ and ν are
not equivalent probability measures. However, following the approach of Balbás et al. (2002) we
will introduce the concept of projective equivalence and will show that projections of ν and µ have
positive Radon-Nikodym derivatives in both directions. ¤
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Example 2 Consider I = IN, Ω = IN \ {0}, F the discrete σ−algebra of Ω and suppose that
µ (ω) > 0 for every ω ∈ Ω. Let be pi = 0, i = 1, 2, ...and fi (i) = 1, fi (i+ 1) = −1 and fi (ω) = 0
for every i,ω = 1, 2, ...with ω 6= i and ω 6= i+ 1.

As in Example 1, it may be convenient to provide the pay-off matrix

M2 =


1 1 0 0 0 ...
1 −1 1 0 0 ...
1 0 −1 1 0 ...
1 0 0 −1 1 ...
... ... ... ... ... ...


If we define

ν̃n(ω) =
1

2 (n+ 1)

for n = 1, 2, ...and ω = 1, 2, ..., n, n+ 1, and

ν̃n(ω) =
µ(ω)

2
P∞

ω∗=n+2 µ(ω
∗)

for n = 1, 2, ...and ω = n+2, n+3, ..., then it may be easily proved that Theorem 1 holds and therefore
the market is arbitrage-free. Besides, according to (0.1), a risk-neutral probability ν should satisfy

0 < ν(1) = ν(2) = ν(3) = ...

which makes it impossible to verify

ν(1) + ν(2) + ν(3) + ... = 1.

¤

Remark 2 Notice that the solution proposed for Example 1 does not apply here. Indeed, if one
extends the set of states to Ω ∪ {∞} and the price process in such a way that f0(∞) = 1 and

f1(∞) = f2(∞) = f3(∞) = ... = 0
then straightforward manipulations show that (0.1) would lead to

ν(Ω) = 0

and
ν(∞) = 1

and therefore it is impossible to establish any type of equivalence between µ and ν. ¤

4 Projective system approach

For every set C we will denote by IRC the set of IR−valued functions on C endowed with the usual
product topology and the Borel σ−algebra BC .

Let J ∈ PF (I). Consider the probability space
(IRJ ,BJ , µJ) (1.5)
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where µJ is the probability measure fJ(µ) given by

µJ(B) = µ
£
f−1J (B)

¤
for every B ∈ BJ , fJ being the measurable function

Ω 3 ω 7−→ fJ(ω) = (fi(ω))i∈J ∈ IRJ . (1.6)

Then (µJ)J∈PF (I) is a projective system of Radon probability measures (see Schwartz (1973)), in
the sense that, denoting the natural projection by

πJ,K : IR
K 7−→ IRJ

we have that
µJ = πJ,K(µK)

whenever J,K ∈ PF (I) and J ⊂ K.
For every J ∈ PF (I) one can consider the one-period pricing model defined on the probability

space (1.5) and generated by the finite family of securities whose current prices are (pi)i∈J and
whose pay-off are given by the natural projections

π{i},J : IRJ 7−→ IR

i ∈ J . This new model will be called J th−market.

Proposition 2 The initial model is arbitrage-free if and only if the J th−market is arbitrage-free
for every J ∈ PF (I).

Proof. The J th−market is not arbitrage-free if and only if there exists a self-financing portfolio
(xi)i∈J such that

µJ

"
(αi)i∈J :

X
i∈J

xiαi ≥ 0
#
= 1

and

µJ

"
(αi)i∈J :

X
i∈J

xiαi > 0

#
> 0.

This is equivalent to

µ

"
ω ∈ Ω :

X
i∈J

xifi(ω) ≥ 0
#
= 1

and

µ

"
ω ∈ Ω :

X
i∈J

xifi(ω) > 0

#
> 0

which means that the initial model is not arbitrage free. ¤

Assumption 1. From now on we will assume that (fi)i∈I ⊂ L∞(µ). 1 ¤
1 This assumption significantly simplifies the exposition. Anyway, most of the theory would still hold if the

assumption failed, though the the role of the Prokhorov Theorem (see Schwartz (1979)) should be replaced by the
Daniel-Kolmogorov Theorem (see Kopp (1984)).
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Assumption 1 implies that µJ has a compact support included in the compact set
2

Πi∈J [−kfik∞, kfik∞] ⊂ IRJ (2.7)

for every J ∈ PF (I). Hence the Prokhorov Theorem (see Schwartz (1973)) guarantees the existence
of a unique Radon probability measure µI on the measurable space (IR

I ,BI) that is the projective
limit of the system (µJ)J∈PF (I), i.e.,

µJ = πJ,I(µI)

holds for every J ∈ PF (I). Moreover, µI has a compact support included in the compact set

Πi∈I [−kfik∞, kfik∞] ⊂ IRI . (2.8)

Now we can introduce a key concept for this paper.

Definition 3 A Radon probability measure νI on the measurable space (IRI ,BI) is a projectively
equivalent martingale measure (or a projectively equivalent risk-neutral probability) if:

a) µI and νI are projectively equivalent, i.e., µJ and νJ = πJ,I(νI) are equivalent for every
J ∈ PF (I).

b) Given J ∈ PF (I) we have that νJ is a martingale measure for the J th−market . 3 ¤

Despite µI and νI do not have to be equivalent notice that Condition a) above guarantees
the existence of positive densities between their projections. This also implies that the compact
supports of νI and its projections are included in (2.8) and (2.7) respectively.

Notice that Ω may be interpreted as a subset of IRI owing to “the immersion” (1.6) where J is
replaced by I. 4 Thus, in some sense the projective system approach allows us to enlarge the set
of states of nature and to identify this set and the set of real prices.

5 Existence of projectively equivalent martingale measures for
complete markets

First of all let us organize and summarize those findings already treated or commented.

Proposition 3 Statements below satisfy the implications 3.1⇒ 3.2⇔ 3.3⇒ 3.4.
3.1) There exists a martingale measure ν.
3.2) There exists a projective system [νJ ]J∈PF (I) of Radon measures such that νJ is a martingale

measure for the J th−market.
3.3) There exists a projectively equivalent martingale measure νI .
3.4) The initial model is arbitrage-free.

Proof. 3.1 ⇒ 3.2. Given J ∈ PF (I) take νJ = fJ(ν), where fJ is represented in (1.6). Then the
equivalence between µ and ν trivially leads to the equivalence between µJ and νJ , and the equality

pi =

Z
IRJ

π{i},JdνJ ,

2 [−kf0k∞, kf0k∞] = [−1, 1] may be replaced by {1}. An analogous comment applies for (2.8).
3 i.e., pi =

R
IRJ

π{i},JdνJ =
R
IRI

π{i},IdνI holds for every J ∈ PF (I) and every i ∈ J .
4 This immersion is not necessarily measurable, although this problem is solved if we consider the cylindrical

σ−algebra of IRI instead of the Borel one (see Kopp (1984)).
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for i ∈ J , trivially follows from (0.1). Finally, if J,K ∈ PF (I) and J ⊂ K, then νJ = fJ(ν) =
πJ,KfK(ν) = πJ,K(νK).

3.2 ⇒ 3.3. Since any νJ is equivalent to µJ their supports are included in the compact sets
(2.7). Thus the Prokhorov Theorem ensures the existence of the projective limit νI .

3.3⇒ 3.2. Just define νJ = πJ,I(νI) for every J ∈ PF (I).
3.2⇒ 3.4. Theorem 1 ensures that the J th−market is arbitrage-free so 3.4 trivially follows from

Proposition 2. ¤

Examples 1 and 2 will be clear counter-examples showing that, in general, 3.2 ; 3.1 and
3.4 ; 3.2. For both cases one can consider the countable set (Jn)∞n=1, where Jn = {0, 1, ..., n},
rather than the directed set PF (IN). 5

Remark 3 Let us focus on Example 1. We already showed that there are no martingale measures.
In order to build the projectively equivalent martingale measure notice that the rows ofM1 provide
the measure µJn associated with the J

th
n −market. Indeed, it is easy to see that

µJn (1, 5/2, 5/2, ..., 5/2)) = µ (1)

µJn (1, 1/2, 10/4, ...10/4) = µ (2)

µJn (1, 1/2, 1/4, 17/8, ...17/8) = µ (3)

........................................

µJn (1, f1(n), f2(n), ......, fn(n)) = µ (n)

µJn (1, f1(n+ 1), f2(n+ 1), ......, fn(n+ 1)) =
∞X

r=n+1

µ (r)

It is important to point out that the J thn −market is complete, in the sense that it involves n+ 1
independent securities and the support of µJn contains n + 1 points of IR

Jn . Therefore the risk-
neutral probability of this market is unique and it is easy to see that it is given by

νJn (1, 5/2, 5/2, ..., 5/2)) = ν(1)

νJn (1, 1/2, 10/4, ...10/4) = ν(2)

νJn (1, 1/2, 1/4, 17/8, ...17/8) = ν(3)

...............................

νJn (1, f1(n), f2(n), ......, fn(n)) = ν(n)

νJn (1, f1(n+ 1), f2(n+ 1), ......, fn(n+ 1)) =
∞X

ω=n+1

νn,ω

where ν and
P∞

ω=n+1 νn,ω are given in (1.4) and (1.3) respectively. In order to see that 3.2 or 3.3
are fulfilled it is sufficient to prove that

πJn,Jn+1(νJn+1) = νJn

n = 1, 2, ..., but this trivially follows from equalities above.

5 In general, PF (I) may be substituted by its cofinal subsets.
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Finally, the previous projective system clearly converges to the measure νIN whose support is
concentrated in the rows ofM1 plus the additional sequenceµ

1,
1

2
,
1

4
, ...

¶
=

µ
1

2n

¶∞
n=0

. (3.9)

Furthermore, ν(ω) coincides with νIN on the ωth−row ofM1, ω = 1, 2, ..., and

νIN

µ
1

2n

¶∞
n=0

=
1

2
.

Clearly, this measure can be identified with the one presented in Remark 1. Overall, as already
said at the end of Section 4, the projective system approach allows us to enlarge the set of states of
nature and to identify this set and the set of paths of real prices, since (3.9) is reflecting “the only
trajectory of prices not contained in the columns ofM1”. ¤

Remark 4 Next let us prove that Example 2 illustrates that 3.4; 3.2 or 3.3. We already proved
that the market is arbitrage-free. Furthermore, as in the previous case the rows of M2 yield the
measure µJn , in the sense that

µJn (1, 1, 0, ..., 0) = µ (1)

µJn (1,−1, 1, 0, ..., 0) = µ (2)
µJn (1, 0,−1, 1, 0, ..., 0) = µ (3)
µJn (1, 0, 0,−1, 1, 0, ..., 0) = µ (4)

.............................

µJn (1, 0, ..., 0,−1) = µ (n+ 1)

µJn (1, 0, ..., 0) =
∞X

r=n+2

µ (r)

Note that there is an important difference between both examples since the J thn −market is not
complete. In fact, the number of states equals n + 2 while the number of securities equals n + 1.
Accordingly, the number of risk-neutral measures for this market is infinite. So, if Λn denotes
the set of risk-neutral measures then each element of Λn is characterized by two strictly positive
parameters λ and λ∗ such that

(n+ 1)λ+ λ∗ = 1. (3.10)

Thus the corresponding risk-neutral measure verifies

νλJn (1, 1, 0, ..., 0) = νλJn (1,−1, 1, 0, ..., 0) = νλJn (1, 0, 0,−1, 1, 0, ..., 0) ... = νλJn (1, 0, ..., 0,−1) = λ

and
νλJn (1, 0, ..., 0) = λ∗.

In order to show that 3.2 fails suppose that
³
νλnJn

´∞
n=1

is a projective system verifying the con-

ditions of 3.2. Fix n ∈ IN \ {0}. One has that

πJn,Jn+m(ν
λn+m
Jn+m

) = νλnJn
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for every m ∈ IN, from where

λn = νλnJn (1, 1, 0, ..., 0) = ν
λn+m
Jn+m

(1, 1, 0, ..., 0) = λn+m.

From (3.10) one has that

λn = λn+m <
1

n+m+ 1

and therefore, taking m 7−→ ∞, we have λn = 0. But this contradicts the equivalence between µJn
and νλnJn . ¤

Next let us introduce a first result justifying the success of the Projective System Approach in
Example 1. In addition it will illustrate the utility of projectively equivalent martingale measures
when pricing new assets.

Theorem 4 Suppose that there exists a cofinal subset C ⊂ PF (I) such that the J th−market is
complete for every J ∈ C. Then Assertions 3.2, 3.3 and 3.4 are equivalent. Furthermore, in the
affirmative case the following properties hold:

4.1) The projectively equivalent martingale measure νI is unique.
4.2) Consider J ∈ PF (I), νJ = πJ,I (νI), ϕ ∈ L∞

¡
IRJ ,BJ , µJ

¢
and the new security Sϕ whose

pay-off at T is given by
fϕ = ϕ ◦ fJ ∈ L∞ (µ) . (4.11)

One has that

pϕ =

Z
IRI
(ϕ ◦ πJ,I) dνI (4.12)

is the only price of Sϕ making the market (Si)i∈I ∪ (Sϕ) arbitrage-free.

Proof. Suppose that 3.4 holds. Take K ∈ C. Proposition 2 and the completeness of the
Kth−market ensure the existence of νK , unique martingale measure for the Kth−market. If J /∈ C
consider K ∈ C with J ⊂ K and set

νJ = πJ,K(νK). (4.13)

It is clear that νJ does not depend on K. Indeed, if K0 ∈ C and J ⊂ K 0 then take K∗ ⊃ K ∪K0

such that K∗ ∈ C and we have that
νK = πK,K∗(νK∗) (4.14)

holds due to the uniqueness of the martingale measure for the Kth−market. Analogously

νK0 = πK0,K∗(νK∗),

from where

πJ,K(νK) = πJ,KπK,K∗(νK∗) = πJ,K∗(νK∗) = πJ,K0πK0,K∗(νK∗) = πJ,K0(νK0).

In order to see that (νJ)J∈PF (I) is a projective system it is sufficient to bear in mind (4.13) and
(4.14). Thus, 3.2 holds.

In order to prove 4.1 it is sufficient to realize that the projections of νI are unique on a cofinal
subset C. Consequently the projections are unique on the whole set PF (I) and the uniqueness
of νI trivially follows from the uniqueness of the projective limit of projective systems of Radon
measures (see Schwartz (1973)).
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Finally, to prove 4.2, consider the security above Sϕ. As in the proof of Proposition 2 one can
establish that the market (Si)i∈I ∪ (Sϕ) is arbitrage-free if and only if for every K ∈ PF (I) with
K ⊃ J the market ¡

π{i},K
¢
i∈K ∪ (ϕ ◦ πJ,K) (4.15)

is arbitrage-free. In particular if this holds and K ∈ C the uniqueness of πK,I(νI) leads to (4.12).
Conversely (4.12) guarantees that (4.15) is arbitrage-free for every K ∈ C and, therefore, for every
K ∈ PF (I). ¤

6 Incomplete markets and the valuation of new assets

The latter theorem and Expression (4.12) point out that projectively equivalent risk-neutral prob-
abilities may yield pricing rules that enable us to value new securities of complete markets. So
it is worth to illustrate that the valuation of new securities is not always feasible for incomplete
markets. Additionally this also anticipates some intuitions about the reasons of the Projective
System Approach failure when dealing with Example 2.

Remark 5 Consider the market of Example 2 plus a new asset Sϕ whose pay-off at T is given by

fϕ = (2f1 − 1)+ =
½
1, ω = 1
0, ω 6= 1.

Obviously Sϕ may be understood as a call option with expiration at T , strike equal to one monetary
unit and underlying asset composed of two units of S1. It is also easy to check that

fϕ = ϕ ◦ f{0,1}
if

ϕ : IR{0,1} −→ IR

is given by
ϕ(x, y) = (2y − 1)+ ,

so Sϕ has the general form proposed in (4.11). 6

Next let us prove that it is impossible to provide Sϕ with a price pϕ ∈ IR unless we accept the
existence of arbitrage. First, µ(fϕ ≥ 0) = 1 and µ(fϕ > 0) > 0, along with the arbitrage absence,
will imply that pϕ > 0. Second, if the market

(Sn)n∈IN ∪ (Sϕ)
is arbitrage-free then (see Definition 1) the market

{S0, S1, ..., Sm, Sϕ} (4.16)

is arbitrage-free for every m ∈ IN. Choose m such that

1

m+ 1
< pϕ.

Then it is easy to show that every risk-neutral measure ν̃m for the market {S0, S1, ..., Sm} will verify

ν̃m(1) ≤ 1

m+ 1

from where the price pϕ does not prevent the existence of arbitrage in (4.16). ¤

6 Notice that ϕ is bounded out of a µ{0,1}−null set.
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Theorem 5 and Remark 7 below will present some general models for which the implication
3.4 ⇒ 3.3 holds. Moreover it shows that projectively equivalent risk-neutral probabilities, if they
exist, provide us with pricing rules for incomplete markets as well. Before presenting their state-
ments we need some additional concepts.

Definition 4 Suppose that the initial model is arbitrage-free. We will say that the P−property
holds if for every J ∈ PF (I) and every ϕ ∈ L∞

¡
IRJ ,BJ , µJ

¢
, the new security Sϕ whose pay-off at

T is given by fϕ = ϕ ◦ fJ ∈ L∞ (µ) has at least one price pϕ ∈ IR making the market (Si)i∈I ∪ (Sϕ)
arbitrage-free. ¤

Definition 5 Suppose that the initial model is arbitrage-free, and for every J ∈ PF (I) consider
the set RJ of martingale measures for the J th−market. Proposition 2 guarantees that each RJ is
non-empty. We will say that the ∗−property holds if there exists a cofinal subset C ⊂ PF (I) such
that RJ is uniformly µJ−continuous for every J ∈ C, i.e., for every J ∈ C and every ε > 0 there
exists δ > 0 such that the implication

BJ ∈ BJ and µJ(BJ) ≤ δ =⇒ θJ(BJ) ≤ ε, for every θJ ∈ RJ
holds. ¤

Definition 6 We will say that the initial model verifies the ∗∗−property if there exists a cofinal
subset C ⊂ PF (I) such that for every J ∈ C and every compact set XJ ⊂ IRJ with void interior and
positive probability (µJ(XJ) > 0) there exists a µJ− atom YJ with positive probability and such that
YJ ⊂ XJ . ¤

Remark 6 The ∗−property holds for many interesting cases. For instance it is obviously fulfilled
for complete markets since RJ is a singleton. It is easy to see that it is also fulfilled if for any µJ
(or a cofinal family) there exists a finite and disjoint collection of µJ−atoms

B1
J , B

2
J , ...B

r
J

(r depending on J) such that
rX
s=1

µJ(B
s
J) = 1.

In particular, the model of Example 2 verifies the ∗−property.
Analogously, The ∗∗−property also holds for many interesting cases like complete markets or

Example 2. More generally, it is easy to prove that the property holds if any IRJ (or a cofinal family)
may be divided into a countable and disjoint collection of µJ−atoms. ¤

Theorem 5 5.1) If there exists νI , projectively equivalent martingale measure, then the initial
model is arbitrage-free and verifies the P−property. Furthermore, (4.12) is a price of (4.11) making
the market (Si)i∈I ∪ (Sϕ) arbitrage-free.

5.2) Suppose that I is countable. If the initial model is arbitrage-free verifies the P−property,
the ∗−property and the ∗∗−property, then there exists a projectively equivalent martingale measure.

Proof. See Appendix. ¤
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Remark 7 Theorem 4 points out that completeness is a sufficient condition to guarantee the ex-
istence of projectively equivalent risk-neutral measures and that new securities can be priced in
arbitrage-free models. Nevertheless it is worthwhile to illustrate that completeness is far from nec-
essary. Indeed, many alternatives may be given in order to ensure the fulfillment of the implication
3.4⇒ 3.3.

A significant alternative arises if one applies those findings of Balbás et al. (2002). So we can
consider a discrete-time dynamic price process

S(ω, t) = (S0(ω, t), S1(ω, t), ..., Sm(ω, t)) : Ω× {0 < t1 < t2 < ...} −→ IRm+1

with a finite number m + 1 ∈ IN of assets and an infinite number {0 < t1 < t2 < ...} of trading
dates. As usual the price process must be adapted to the arrival of new information. Under this
framework the arbitrage absence does not imply the existence of martingale measures, as established
in Back and Pliska (1991). But the study of Balbás et al. (2002) proves the existence of projectively
equivalent martingale measures, regardless the completeness of the model. Thus if we consider the
one-period model with infinite securities such that

I = {0, 1, ...,m} × {t1 < t2 < ...},
p(a,b) = Sa(ω, 0)

for every (a, b) ∈ I and
f(a,b)(ω) = Sa(ω, b)

for every (a, b) ∈ I and almost every ω ∈ Ω, then the equivalence between 3.3 and 3.4 will hold for
incomplete markets too. This kind of models may be called “finitely generated” and, as already said
at the introduction and the beginning of Section 3, our Example 1 is a particular case that arises from
the counter-example of Back and Pliska (1991) (for which m = 1). In some sense, the existence of
Example 2 illustrates that one-period models with infinite and countable cardinal of securities are
“more general” than dynamic-discrete-time models with a finite collection of securities. ¤

7 Conclusions

Representation Theorems have shown to be crucial in Mathematical Finance. Regarding markets
with infinite number of securities the characterization of the absence of arbitrage by the existence
of equivalent martingale measures fails in general.

This paper draws on the projective system approach in order to establish the equivalence be-
tween the absence of arbitrage and the existence of projectively equivalent martingale measures,
which provides pricing rules allowing for the valuation of new assets. The analysis seems to be
quite general since there are no conditions on the set of assets or on the properties of future prices.

The equivalence holds for many significant cases like complete or finitely generated markets.
Moreover, since finitely generated markets can in some sense extend many dynamic pricing models,
it seems that the analysis of markets with infinitely many securities may deserve important attention
in Mathematical Finance.

Projectively equivalent pricing rules have been also found for more complex markets. Under
some regularity properties, only the possibility of pricing new securities is necessary and sufficient.

The projective system approach allows us to enlarge the set of states of nature and to identify
this set and the set of real prices. Thus a complete equivalence between the initial probability
measure and the martingale measure does not hold in general. However, the existence of densities
between “real” probabilities and “risk-neutral” ones is guaranteed by introducing the concept of
“projective equivalence”, which implies that both the martingale measure and the initial probability
measure generate equivalent projections.
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8 Appendix. Proof of Theorem 5

Lemma 6 Suppose that the market is arbitrage-free. Then there exists a projective system (λJ)J∈PF (I)
of Radon probability measures such that

6.1) The support of λJ is contained in (2.7) for every J ∈ PF (I).
6.2) If J ∈ PF (I) then pi =

R
IRJ π{i},JdλJ for every i ∈ J.

6.3) If the market satisfies the P−property, J ∈ PF (I) and BJ ⊂ IRJ is a Borel set such
that µJ(BJ) 6= 0, then the projective system (λK)K∈PF (I) may be constructed in such a way that
λJ(BJ) 6= 0.

6.4) If the market satisfies the ∗−property then λJ is µJ−continuous for every J ∈ PF (I).

Proof. For J ∈ PF (I) we will consider the compact set CJ given by (2.7). In addition R∗J
will denote the set of Radon probability measures on the Borel σ−algebra of CJ , and RJ will be
composed of those ρJ ∈ R∗J such that ρJ and µJ are equivalent and

pi =

Z
CJ

π{i},JdρJ (6.17)

for every i ∈ J . The absence of arbitrage and Proposition 2 imply that RJ is non-void.
On the other hand, the Riesz Representation Theorem allows us to identify the space C∗(CJ)

of Radon (non necessarily positive) measures on CJ with the dual of C(CJ), space of continuous
functions on CJ , and the Alaoglu Theorem guarantees that R∗J is weak∗−compact since this set is
obviously weak∗−closed in the unit ball of C∗(CJ). Consequently, the Tijonov Theorem leads to
the compactness of

R∗ = ΠJ∈PF (I)R∗J .
Fix the element

(ρJ)J∈PF (I) ∈ R∗ (6.18)

in such a way that
ρJ ∈ RJ (6.19)

for every J ∈ PF (I). Given J,H ∈ PF (I) denote Jc = I \ J and consider

λHJ = πJ∩H,J (ρJ)⊗ µJc∩H ,

where ⊗ is used to denote the usual tensor product of Radon measures (see Schwartz (1973)). 7

Then it is easy to see that λHJ and µH are equivalent.
For every J ∈ PF (I) consider the element

ΛJ =
¡
λHJ
¢
H∈PF (I) ∈ R

∗

The compactness of R∗ implies the existence of

(λJ)J∈PF (I) ∈ R∗

agglomeration point of the net (ΛJ)J∈PF (I) ⊂ R∗.
In order to see that (λJ)J∈PF (I) is a projective system, let us consider J,K ∈ PF (I) with J ⊂ K.

Clearly
(λJ ,λK) ∈ R∗J ×R∗K (6.20)

7 Obviously λHJ = πH,J (ρJ) whenever H ⊂ J and λHJ = µH if H ⊂ Jc.
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is an agglomeration point of the net¡
λJH ,λ

K
H

¢
H⊃K = (πJ,H (ρH) ,πK,H (ρH))H⊃K ⊂ R∗J ×R∗K

Therefore, (6.20) is agglomeration point of

(πJ,KπK,H (ρH) ,πK,H (ρH))H⊃K

and the continuity of
R∗K 3 α −→ πJ,K (α) ∈ R∗J

(when both spaces are endowed with the weak∗−topology) leads to

λJ = πJ,K (λK) . (6.21)

Let us prove 6.2. Consider J ∈ PF (I) and i ∈ J . It is clear that λJ is an agglomeration point
of ¡

λJH
¢
H⊃J = (πJ,H (ρH))H⊃J

from where the continuity of π{i},J : IRJ −→ IR implies thatZ
IRJ

π{i},JdλJ =
Z
CJ

π{i},JdλJ

is an agglomeration point ofµZ
CJ

π{i},Jd (πJ,H (ρH))
¶
H⊃J

=

µZ
CH

π{i},HdρH

¶
H⊃J

= (pi)H⊃J

due to (6.17) and (6.19).
Let us prove 6.3. Take J ∈ PF (I) and the Borel set BJ ⊂ IRJ such that µJ(BJ) > 0. Since µJ

is a Radon measure with support in CJ there exists a compact set C̃J ⊂ BJ ∩CJ with µJ(C̃J) > 0.
We will prove that λJ(C̃J) > 0. Add the new security Sϕ whose final pay-off is fJ ◦ 1C̃J ,

1C̃J =

½
1 if ω ∈ C̃J
0 if ω /∈ C̃J

being the characteristic function of C̃J . The P−property implies the existence of one (maybe non-
unique) price pϕ > 0 making the new market arbitrage-free. Thus, as in the proof of Proposition
2, for every H ⊃ J the Hth−market is still arbitrage-free if we add the pay-off

1π−1J,H(C̃J)∩CH

with price pϕ. Consequently, there are martingale measures for this new market, i.e., (6.18) may
be chosen in such a way that (6.19) and ρH(π

−1
J,H(C̃J) ∩ CH) = pϕ, for every H ⊃ J . Then

λJH(C̃J) = pϕ

for every H ⊃ J . Take ε > 0 such that pϕ − ε > 0. Since λJ is a Radon measure there exists an
open set GJ such that

GJ ∩ CJ ⊃ C̃J
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and
λJ((GJ ∩CJ) \ C̃J) ≤ ε.

The Uryson Lemma guarantees the existence of a continuous function h : CJ −→ [0, 1] that equals
one on C̃J and vanishes on CJ \GJ . If H ⊃ J ,Z

CJ

hdλJH ≥ λJH(C̃J) = pϕ

Hence,
R
CJ
hdλJ , agglomeration point of

³R
CJ
hdλJH

´
H⊃J

, verifiesZ
CJ

hdλJ ≥ pϕ

Thus,

λJ(C̃J) =

Z
C̃J

hdλJ =

Z
CJ

hdλJ −
Z
CJ\GJ

hdλJ −
Z
(GJ∩CJ )\C̃J)

hdλJ ≥ pϕ − ε > 0.

Finally, to prove 6.4, denote by C the cofinal subset of PF (I) whose existence follows from the
∗−property. Suppose that J ∈ PF (I) and BJ ⊂ IRJ is a Borel set such that µJ (BJ) = 0. We must
prove that λJ vanishes on BJ but, being λJ a Radon measure, we can assume that BJ is closed.
Furthermore, (6.21) allows us to assume that J ∈ C.

Fix ε > 0. Since πJ,H (ρH) , H ⊃ J, are uniformly regular owing to (6.19) and the ∗−property,
one can take a compact set C̃J ⊂ CJ \BJ such that

πJ,H (ρH)
³
(CJ \BJ) \ C̃J

´
≤ ε

for every H ⊃ J . If CJ ∩ BJ is non void then the Uryson Lemma guarantees the existence of
h : CJ −→ [0, 1] continuous and such that h vanishes on C̃J and equals one on CJ ∩BJ . For every
H ⊃ J one has that

πJ,H (ρH) (CJ ∩BJ) = 0.
Hence

0 ≤
Z
CJ

hdλJH =

Z
(CJ\BJ)\C̃J

hdλJH +

Z
CJ∩BJ

hdλJH ≤ ε+

Z
CJ∩BJ

hd (πJ,H (ρH)) = ε.

Whence

0 ≤ λJ (CJ ∩BJ) ≤
Z
CJ

hdλJ ≤ ε

because
R
CJ
hdλJ is agglomeration point of

³R
CJ
hdλJH

´
H⊃J

. Consequently, λJ (CJ ∩BJ) = 0

because ε can take any positive value. 8 ¤

Lemma 7 Suppose that the market is arbitrage-free and verifies the P−property and the ∗−property.
Take K ∈ PF (I) and a countable collection (Bn)n∈IN ⊂ BK such that µK(Bn) 6= 0 for every
n ∈ IN. Then the projective system (λJ)J∈PF (I) of Lemma 6 may be constructed in such a way that
λK(Bn) 6= 0 for every n ∈ IN.
8 It may be worthwhile to remark that Assumption 1 is not necessarily crucial when proving the lemma above. In-

deed, if it fails then the role of C(CJ) and C∗(CJ)may be substituted by L∞
¡
IRJ ,BJ , µJ

¢
and its dual L∗∞

¡
IRJ ,BJ , µJ

¢
,

space of finitely additive real valued measures on BJ with finite variation and vanishing on every µJ−null set.
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Proof. We will use the same notation as in the proof of Lemma 6. Bearing in mind 6.3 consider
the projective system (λnJ)J∈PF (I) such that

λnK(Bn) > 0 (7.22)

for every n ∈ IN. Let (²n)n∈IN. be a decreasing sequence of positive real numbers such that
∞X
n=0

²n = 1.

Take finally

λJ =
∞X
n=0

²nλ
n
J

for every J ∈ PF (I). The convergence in both the norm topology and the weak∗−topology of
C∗(CJ) is guaranteed by the Weierstrass criterion. Thus, it is easy to see that (λJ)J∈PF (I) is a
projective system that verifies 6.1 and 6.2 and such that λJ is µJ−continuous for every J ∈ PF (I).
Moreover, λK(Bn) 6= 0 trivially follows from (7.22) and λK ≥ ²nλnK for every n ∈ IN. ¤

Remark 8 Consider an arbitrary positive measure space (W,
P
, θ). It is worth to recall the

Saks Lemma (see Saks (1933))) guaranteeing that for every ε > 0 there exists a disjoint par-
tition W1,W2, ...,Ws,Ws+1, ...Wr of W such that W1,W2, ...,Ws are θ−atoms and θ(Wi) ≤ ε,
i = s + 1, ..., r. Obviously, one can apply again this lemma on each Wi, i = s + 1, ..., r, and for
ε/2. By induction, it is easy to prove the existence of a disjoint sequence (Wn)n∈IN such that the
restriction of θ to W0 is non-atomic and Wn is an atom for n = 1, 2, .... ¤

Lemma 8 Suppose that the market is arbitrage-free and verifies the P−property and the ∗−property.
Take K ∈ PF (I). Then the projective system (λJ)J∈PF (I) of Lemma 6 may be constructed in such
a way that λK(BK) 6= 0 for every Borel set BK ⊂ IRK such that µK(BK) > 0 and BK is an open
set or a µK−atom.

Proof. According to Remark 8, consider a partition (Wn)n∈IN of IR
K such that µK is non-atomic

on W0 and (Wn)
∞
n=1 are µK−atoms. Besides, take a countable basis (Gn)∞n=1 of the usual topology

of IRK . Then Lemma 7 ensures that the projective system may be constructed in such a way that
λK does not vanish on those elements of

(Wn)
∞
n=1 ∪ (Gn)∞n=1

with measure µK positive. Thus, the lemma trivially follows. ¤

Proof of Theorem 5. Suppose that there exists the projectively equivalent risk-neutral mea-
sure νI and consider the model (Si)i∈I ∪ (Sϕ) where the price pϕ of Sϕ is given by (4.12). Then the
model (Sj)j∈H ∪ (Sϕ) is trivially arbitrage-free for every H ∈ PF (I) with H ⊃ J . Now, one can
prove that (Sj)j∈I ∪ (Sϕ) is arbitrage-free by proceeding as in the proof of Proposition 2.

In order to prove 5.2, proceed as in Remarks 3 and 4 and consider the cofinal subset (Jn)
∞
n=1.

According to the latter lemma, for every natural m = 1, 2, ...take the projective system

(λmJn)
∞
n=1
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such that λmJm(Bm) > 0 if µJm(Bm) > 0 and Bm is open or µJm−atom. Take finally a sequence
(²m)

∞
m=1 ⊂ IR as in the proof of Lemma 7, i.e., positive, decreasing and verifying

P∞
m=1 ²m = 1.

Set

νJn =
∞X
m=1

²mλ
m
Jn

n = 1, 2, ...Once again, as in the proof of Lemma 7, the Weierstrass criterion guarantees the
convergence in the norm topology. It only remains to show the implication

µJm(Bm) > 0 =⇒ νJm(Bm) > 0.

Since we are dealing with Radon measures one can assume that Bm is compact and included in CJm .
If Bom denotes the interior of Bm and µJm(B

o
m) > 0 then νJm(B

o
m) > 0. Otherwise we have that

Bm \Bom is a compact set with void interior and positive µJm−measure. The ∗∗−property implies
that Bm \Bom contains a µJm−atom with positive µJm−measure. Whence, νJm (Bm \Bom) > 0. ¤
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