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1. Introduction

Since the first works on asymmetrical auctions, by Vickrey (1961) and Gries-
mer, Levitan and Shubik (1967), many theoretical papers have considered the ques-
tion of the equilibrium existence for such games, among which we can cite Amman
and Leininger (1996), Lebrun (1999), Lizzeri and Persico (2000), Maskin and Riley
(2000), Athey (2001), Reny and Zamir (2004) and Jackson and Swinkels (2005).1

The methods to prove the existence of equilibrium are essentially of two kinds. The
first papers appeal to a system of differential equations whose solution is shown to
be an equilibrium. The later ones discretize the space of types or bids, obtain the
equilibrium in this case and then prove that the limit when the grid is made fine is
an equilibrium.2

In this paper, we take another route to prove the equilibrium existence for monotonic
asymmetrical auctions with independent types.3 We allow assumptions weaker than
the usual: we do not assume that the utilities are increasing in all types but only
in the own bidder’s type, and payment can depend on all bids. Thus, we treat
in a single framework many kinds of asymmetrical auctions with unitary demand,
including double auctions.
We work on the set of non-decreasing functions, N , and of smooth increasing

functions, I. We prove that the set of best responses to functions in I is a “unitary”
subset of N .4 Thus, convexity of the set of best replies is straightforward. We make
a perturbation of the original auction to avoid the problem of discontinuities. Since
N is compact in the L1 topology, we can use the Kakutani-Fan-Glicksberg Theorem
to obtain easily a fixed point. The limit of these fixed points is shown to be an
equilibrium under an appropriate tie-breaking rule.
We prove equilibrium existence with an endogenous tie-breaking rule à la Simon

and Zame (1990) and Jackson, Simon, Swinkels and Zame (2002), henceforth JSSZ.
As discussed in subsection 3.1, the need of a special tie-breaking rule is unavoidable
in our setting.
This is the first equilibrium existence result for asymmetric double auctions with

interdependent values and a small number of players (see section 5 for a discussion
on the literature). Thus, we are also interested in establishing that the equilibrium
is not trivial, that is, there is a positive probability of trade. This was established
for private value auctions by Jackson and Swinkels (2001) under quite general con-
ditions. Nevertheless, since they are restricted to private values, their proof does not
directly apply. Moreover, for interdependent value auctions, it is possible to give
examples where trade occurs with zero probability even when there is a positive
probability of the values of buyers being above the values of sellers (see example

1While Vickrey (1961), Athey (2001) and Jackson and Swinkels (2005) consider many kinds of
games and Amman and Leininger (1996) treat all-pay auctions, the rest of these papers are mainly
concerned with first-price auctions, as are Griesmer, Levitan and Shubik (1967). Vickrey (1961)
analyzes mainly symmetric auctions.

2Jackson and Swinkels (2005) can be considered an exception, because they appeal to more
general theorems about the existence of Nash equilibrium.

3Our method is related to Fundenberg, Mobius and Szeil (2003). See section 5.
4This needs a qualification. It is not exactly unitary. See Remark 1.
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3). This is related to Akerlof’s (1970) ’market for lemons’ example on the effects
of private information. Thus, additional assumptions are needed. We make such
assumptions and obtain the result about the positive probability of trade.
The connection between Akerlof’s market for lemons and the problem of nontrade

in auctions with interdependent values should not be surprising. Indeed, auctions
provide a good setup for analyzing general equilibrium models with asymmetric
information. More than that, as Milgrom (1981) argues, auction theory is useful to
explain or solve some paradox of general equilibrium theory, such as that related
to rational expectations. Although Milgrom (1981) is able to provide explanations
of such paradoxes, his models are restricted to second price auctions. Since double
auctions are more realistic models of the reality, one can view our results as a
contribution to Milgrom’s program of establishing strategic foundation for rational
expectations equilibrium through auction theory.
The paper is organized as follows. In section 2 we describe the model. In section 3

we present our equilibrium existence result and a useful auxiliary result. In section
4 we give sufficient conditions for double auctions having a non-trivial equilibrium,
that is, an equilibrium with a positive probability of trade. The conclusion (section
5) is a discussion about the contributions of the paper and the related literature.
An appendix collects the proofs.

2. The Model

Let P = {1, ..., n} be the set of players. Players are sellers, each possessing one
object, or buyers, who are interested in buying just one object. The game may
consist of only buyers or only sellers, in which case we say that the auction is single-
sided. It is convenient to say that P = S ∪ B, where players j ∈ S are sellers and
players i ∈ B are buyers.
Some of these players can be non-strategic, in which case the utility functions

defined below do not exist. To asssume the existence of non-strategic players is
useful in single-sided auctions or to prove the existence of trade in double auctions.
For instance, we can model a single-sided auction with nB buyers and no objects
by assuming the existence of no non-strategic sellers so that there are n = no + nB
players. Non-strategic but secret reserve prices can also be modeled as bids of
non-strategic sellers. Although non-strategic players do not have a relevant payoff
function, they will be treated exactly as strategic players (with signals and covert
bids), but with an exogenously fixed strategy. This does not introduce any problem
and makes the statements easier. Nevertheless, the reader should keep in mind that
Assumptions 2-8 below, about the utility functions, refer only to strategic players.
Player i ∈ {1, ..., n} receives a unidimensional private information, ti, and chooses

an action that is a real number (i.e., she submits a bid bi). The auctioneer compares
the bids and determines who receives one object and who does not, according to an
allocation rule specified below.
If player i receives one object, her payoff is ui (t, b) and if she receives no object,

her payoff is ui (t, b), where t = (ti, t−i) is the profile of all signals and b = (bi, b−i) is
the profile of bids. The dependence on all bids and the asymmetry of the functions
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allow modeling all players in double auctions and exotic single-sided auctions, where
the payment is a function of all bids.

2.1. Information. We assume independence of types. Because ui (t, b) and ui (t, b)
can have any form, we may assume without loss of generality that the private signal
of each player, ti, is a real number uniformly distributed in [0, 1].5 To summarize,
we require the following:

Assumption 1. Types are independent and uniformly distributed on [0, 1].

The main role of Assumption 1 is to obtain the existence of a monotonic best
reply, when the opponents follow strictly increasing strategies, which is the theme
of our first result (Theorem 1 below). This states the existence and (a qualified)
uniqueness of the best reply. Although we use independence to simplify arguments in
general, it seems possible to modify all other proofs to accommodate dependence (in
the case where there exists a strictly positive density function on [0, 1]n), provided we
have the consequences pointed by Theorem 1. Unfortunately, even under affiliation,
the conclusion of Theorem 1 is not always true (see Reny and Zamir, 2004 for a
counter-example). Because of this, we maintain such an assumption throughout the
paper.

2.2. Bidding. After receiving the private information, each player submits a sealed
proposal, that is, a bid bi ∈ R. There is a reserve price b ≥ 0 and a maximum
valid bid b, which are commonly known.6 In addition, buyers can take a non-
participation decision, bBOUT < b, which ensures them the payoff of zero. In the same
way, sellers can take a non-participation decision bSOUT > b. Thus, the action space
is
©
bBOUT

ª ∪ £b, b¤ for buyers and £b, b¤ ∪ ©bSOUTª for sellers. For simplicity, we will
make an abuse of notation by defining

B ≡ ©bBOUTª ∪ £b, b¤ ∪ ©bSOUTª
as the action space. As said earlier, b stands for the profiles of bids, that is, b = (b1,
b2, ..., bn) ∈ Bn. As usual, we will use the notation b−i = (b1, ..., bi−1, bi+1, ..., bn)
and write b = (bi, b−i).

5Assume that the original type is hi, distributed on
£
hi, hi

¤
according to the strictly increasing

and continuous c.d.f. Fi (·) and that the value of the object is given by vi (hi, h−i). Then, we can
define ti = Fi (hi) and ui (ti, t−i) ≡ vi

¡
F−1i (ti) , F

−1
−i (t−i)

¢
. Now, the type ti is uniformly distrib-

uted on [0, 1] . Thus, our assumption rules out just the cases of atoms or gaps in the distribution
of types.
6If there is no reserve price (in the usual sense), let b = 0. We are assuming a maximum

permitted bid to rule out behaviors (equilibria) in which one bidder bids arbitrarily high and the
others bid zero. This could happen in third price auctions, for instance.
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2.3. Allocation. The allocation of the objects is done according to an allocation
rule (or function) a : Bn → [0, 1]n, with the meaning that, given a profile of bids
b ∈ Bn, if ai (b) = 1 then player i receives one object at the end of the auction, that
is, if i is a buyer, she buys one object, whereas if i is a seller, she keeps her object.
We allow ai (b) to take values between 0 and 1 in order to model the situation where
a player receives the object with a probability between 0 and 1. For instance, when
there is a tie, it is usual to split the object randomly among the tying bidders. (We
will call this as the standard tie-breaking rule).
JSSZ point out that some auctions do not have equilibrium with the standard tie-

breaking rule (see their example 1 and also Jackson et. al. 2004). Thus, some special
tie-breaking rules are required for a general equilibrium existence result and they
may require that the bidders take further actions in the case of a tie. For instance,
Maskin and Riley (2000) use a second price auction tie-breaking rule, which requires
the bidders involved in a tie to bid in a second-price auction. JSSZ propose that
the action is the announcement of their types. To model this, we will assume that
the allocation rule is actually defined as a function a : Bn × Sn → [0, 1]n, where S
is a set of actions used to break ties. We will omit S when no action is required to
break ties. Thus, we have the following:

Definition 1. Let no be the number of objects in the auction.7 A function a :
Bn × Sn → [0, 1]n is an allocation rule if:
(i) t 7→ a (b (t) , s (t)) is measurable for all profiles of measurable strategies (b, s).8

(ii) For all (b, s) ∈ Bn × Sn,
P

i∈P ai (b, s) = no.
(iii) For each i ∈ P , ai (b, s) is non-decreasing in bi and non-increasing in bj, for

j 6= i.
(iv) For each i ∈ P , ai (b, s) does not depend on s, unless {j : bj > bi} < no and
{j : bj < bi} < n− no, that is, unless there is a relevant tie at bi.9

(v) For each i ∈ P , ai
¡
bBOUT , b−i, s

¢
= 0 and ai

¡
bSOUT , b−i, s

¢
= 1 for all b−i and

s.10

Condition (i) is just a technical condition, while condition (ii) establishes that
all the objects are received by some bidder (including, possibly, the non-strategic
ones). Condition (iii) establishes that an increasing in own bid does not diminish
the possibility of winning (and may increase it). Condition (iv) is the restriction
that the actions s are important only in cases of ties. Condition (v) is just the
formalization of the definition of bBOUT and bSOUT .

7Formally, the number of objects in the auction no is equal to the number of strategic and
non-strategic sellers, nS . We introduce the notation no only to avoid confusion in the case of
single-sided auctions (of buyers), where there are no sellers (besides the non-strategic ones).
8We will always work with allocation rules that are monotonic in all arguments. Thus, measur-

ability will not be a issue.
9A tie is relevant only if it brings doubt as to who gets the object. For instance, a tie between

the two highest bids is not relevant in an auction with three objects.
10Although bBOUT is available only for buyers and b

S
OUT is available only for sellers, it is convenient

to define ai for all bi ∈ B.
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The reader should note that the definition does not require that the bidder with
the highest bid receives the object, as occurs in fair auctions. This freedom in the
definition will be useful in the statement of our results, but we are interested in fair
allocation rules, where each player receives the object if her bid is above n−no bids.
Indeed, consider the following:

Definition 2. Let no be as above. A function a : Bn × Sn → [0, 1]n is a fair
allocation rule (or a tie-breaking rule) if it satisfies the properties (i)-(v) above and,
additionally:
(vi) ai (b, s) = 1 if {j : bj < bi} ≥ n− no.
(vii) ai (b, s) = 0 if {j : bj > bi} ≥ no.

It is easy to see that fair allocation rules define a threshold bid, TB (b−i), for each
player and profile of the opponents’ bids, b−i, which is just the no-order statistics
of the opponents’ bids. That is, for each player i ∈ P and each profile b−i ∈ Bn−1,
there is TB (b−i) ∈ B such that ai (b, s) = 1 if bi > TB (b−i) and ai (b, s) = 0 if
bi < TB (b−i). The value of ai (b, s) is unspecified only if bi = TB (b−i). Condition
(iii) implies that TB : Bn−1 → B is a non-decreasing function. Thus, conditions (vi)
and (vii) above could also be written as:
(vi) ai (b, s) = 1 if bi > TB (b−i).
(vii) ai (b, s) = 0 if bi < TB (b−i).
The reader should note that the payments are specified in the utility functions

ui, ui. Thus, we define an auction as a profile A = Aa = (P, {ui, ui}i∈P , no, B, S,
a). Now, observe that if we let a vary in the set of fair allocation rules, the outcome
of the auction is completely defined, except in situations where there are relevant
ties. Thus, it is useful to have the following:

Definition 3. An auction with unspecified allocation rule is a profile A = (P,
{ui, ui}i∈P , no, B). A specification of A is a profile Aa = (P, {ui, ui}i∈P , no, B, S,
a), where a is an allocation rule. If we restrict the specification of A to the set of fair
allocation rules, we may say that A is a fair auction with unspecified tie-breaking
rule.

Definition 4. The standard allocation rule or the standard tie-breaking rule is a fair
allocation rule where S = {∅} and the ties are broken by giving the object with the
same probability to all tying bidders. The standard tie-breaking rule will be denoted
by ā. A fair allocation rule (tie-breaking rule) is said to be special if it is not the
standard one.

2.4. Assumptions on the payoff functions. Before the formal statement, given
below, we summarize our assumptions on the payoff functions ui and ui: they are
required to be continuous (Assumption 2); the net benefit ui ≡ ui −ui is increasing
with the own player’s type, but not necessarily in the other players’ types (Assump-
tion 3); the utilities are supermodular (Assumption 4) and weakly monotonic on the
bids (Assumption 5).
We formalize and discuss each of these assumptions in the sequel:



SINGLE AND DOUBLE ASYMMETRICAL AUCTIONS 7

Assumption 2. For all i ∈ P , ui (t, b) and ui (t, b) are absolutely continuous in
t ∈ [0, 1]n and b ∈ Bn.

It is standard in auction theory to assume continuity or differentiability of the
utility functions. Assumption 2 weakens differentiability, but rules out continuous
functions with singular parts, that is, functions whose image of zero measure sets
may have positive measure. Since the domains are compact sets, this implies that
the functions are bounded. Absolute continuity implies the existence of derivatives
almost everywhere and that the function is equal to the integral of its derivative.

Assumption 3. For all i ∈ P , ui (t, b) ≡ ui (t, b)− ui (t, b) is strictly increasing in
ti.

This is a monotonicity condition weaker than what is usually required. In in-
terdependent value auctions, it is almost always assumed that the functions are
increasing in the own bidder’s type and non-decreasing in the other types. In con-
trast, Assumption 3 allows the utility function to be decreasing in the opponents’
types. For instance, the example 1 of JSSZ is included in our framework, where
ui (b, t) = 5+ ti− 4t−i− bi and ui (b, t) = 0. We will return to this example later on,
when we discuss the need of the tie-breaking rule (see Example 2 in subsection 3.1).

Assumption 4. For all i ∈ P , ∂biui (t, b) and ∂biui (t, b) are non-decreasing in ti
(where these derivatives exist).

This assumption is only the requirement that ui and ui be supermodular as func-
tions of (ti, bi). Indeed, in the case of twice differentiable functions, supermodularity
is equivalent to ∂2bitiui > 0 and ∂2bitiui > 0. (In the general case with real variables,
a function f (a, x) is supermodular if a0 > a, x0 > x imply f (a0, x0) + f (a, x) >
f (a0, x) + f (a, x0)).
To see that this assumption is not restrictive in the usual auctions, assume that we

have differentiability and consider the second price auctions. In this case, ui (t, b) =
Ui (vi (t)−maxj 6=i bi) and ui (t, b) = 0. Thus, ∂2bitiui = ∂2bitiui = 0. For the first price
auction, ui (t0i, t−i, b) = Ui (vi (t)− bi), then ∂2bitiui = U 00

i · (−1) · v0i. If v0i > 0, as
usual, then ∂2bitiui > 0⇔ U 00

i 6 0, i.e., in this setting, super modularity is equivalent
to weak risk aversion. We illustrate below that it is also not restrictive for double
auctions (see Lemma 1). Supermodularity is an assumption usually required to
prove existence of pure strategy equilibria in auctions (see, for instance, Lizzeri
and Persico (2000), Maskin and Riley (2000), Athey (2001), etc.) In this sense,
Assumption 4 is a standard one.
Assumptions 1-4 are used in the proof of Theorem 1, which shows, under an

additional condition, that if a bid is a best reply for a fixed type, no bid below it
will be optimal for a higher type, that is, all best replies are non-decreasing (see
Remark 1 for a more precise statement). Our equilibrium existence result (Theorem
2) is also valid under Assumptions 1-4. Nevertheless, we consider an additional
assumption:

Assumption 5. ui and ui are both non-decreasing or both non-increasing in bi for
all i ∈ P .
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The purpose of this assumption is to offer a direct and simple proof of equilibrium
existence. Indeed, Assumption 5 is used only in the proof of Lemma 3, which is valid
without it (see footnote 14). The role of this assumption is to obtain convexity of
the best-reply correspondence, after the consequences of Theorem 1. The proof of
this fact is direct and elementary and does not require any previous results based
on partial order or lattice theory. The simplicity of the proof may be useful for
pedagogical purposes and to clarify the issue of convexity for this kind of game.
It should be noted that auctions usually considered in the literature, including

double auctions, satisfy Assumption 5, as we show below.

2.5. Examples. This setting applies to a broad class of discontinuous games. For
example, ui (t, b) = vi (t) − bi and ui (t, b) = 0 correspond to a first price auction
with risk neutrality. Thus, ui is decreasing in bi and ui is constant with it, which
implies Assumption 5. If ui (t, b) = vi (t)− bi and ui (t, b) = −bi we have the all-pay
auction and both ui and ui are decreasing in bi, also satisfying Assumption 5. The
same is true if ui (t, b) = vi (t) − maxj 6=i bj and ui (t, b) = −bi, which is called the
war of attrition. As pointed out by Lizzeri and Persico (2000), we can also have
combinations of these games. For example, ui (t, b) = vi (t)−αbi− (1− α)maxj 6=i bj
and ui (t, b) = 0, with α ∈ (0, 1), gives a combination of first and second price
auctions. Another possibility is the “third price auction” or an auction where the
payment is a general function of the others’ bids.
The assumptions are also natural to double auctions. Indeed, consider the follow-

ing specification, which we use in Theorem 3, on the existence of trade with positive
probability:

Assumption 6. Let ui (t, b) and ui (t, b) be defined as follows:

ui (t, b) =

½
Ui (vi (t)− ei) , if i ∈ S
Ui (vi (t)− pi (b)− ei) , if i ∈ B

and

ui (t, b) =

½
Ui (pi (b)− ei) , if i ∈ S
Ui (−ei) , if i ∈ B

where ei ≥ 0 is a participation fee, which is zero if bi ∈
©
bBOUT , b

S
OUT

ª
and pi (b) ≥ 0

is the price paid (received) by buyer i ∈ B (seller i ∈ S). Moreover: (i) Ui is strictly
increasing and differentiable for all i, with Ui (0) = 0; (ii) Ui is concave for all
i ∈ B; (iii) pi (b) is differentiable and non-decreasing in bi for all i; (iv) vi is strictly
increasing in ti for all i.

We have the following:

Lemma 1. Assumption 6 implies Assumptions 2-5.

Proof. It is immediate to check Assumptions 2 and 3. For sellers, Assumption 4 holds
trivially because ∂biui and ∂biui do not depend on ti. For buyers, ∂biui also do not
depend on ti. Now, ti 6 t0i implies vi (ti, t−i)−p (b) 6 vi (t

0
i, t−i)−p (b) by (iv), which

in turn implies −U 0
i (vi (ti, t−i)− p (b)− ei) 6 −U 0

i (vi (ti, t−i)− p (b)− ei) because
of (i) and (ii). Now, (iii) implies that ∂bip (b) > 0 and Assumption 4 follows from
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the expression ∂biui (b, t) = −U 0
i (vi (t)− p (b)) · ∂bip (b). Finally, (iii) implies that

Assumption 5 is also satisfied. ¤
It should be said that our model is not restricted to auctions. For instance,

Bertrand pricing games can also be treated. In a Bertrand pricing game, the firm’s
payoff is given by (pi − ci (t))D (p) if its price pi is below the price of the others and
zero otherwise. Here, D (·) stands for the demand and ci is the cost of firm i. Thus,
we put ui (t, p) = 0 and ui (t, p) = (pi − ci (t))D (p). Assumptions 2-5 are satisfied
if ci (·) and D (·) are absolutely continuous, ci (·) is decreasing with the type ti and
D (·) is non-increasing in pi, which are natural assumptions to require.

2.6. Notation. Let Ñ be the set of non-decreasing functions from [0, 1] to B. For
a function g ∈ Ñ , let [g] be the equivalence class of the functions that differ of g

only in a set of zero measure. Now, define N as
n
[g] : g ∈ Ñ

o
. The equivalence

classes will be referred to as functions, in the usual abuse of terminology. We endow
N with the norm topology of L1 ([0, 1] ,R). It is easy to see that N is compact and
convex.11

In order to avoid confusion with the bids, we will use bold letters to denote bidding
functions, i.e., b = (b1, ..., bn) ∈ Nn. If we fix the strategies of i’s opponents, b−i =
(b1, ...,bi−1,bi+1, ...bn) ∈ Nn−1, let

Fb−i (β) ≡ Pr ({t−i : ai (β,b−i (t−i)) > 0}) .
Note that Fb−i is a c.d.f. by the properties of ai required by Definition 1.
If Fb−i is absolutely continuous with respect to the Lebesgue measure, let fb−i (·)

be its Radon-Nykodim derivative. Let us define b∗ ≡ ess inf{β ∈
£
b, b
¤
: fb−i (β) > 0}

and b∗ ≡ ess sup{β ∈ £b, b¤: fb−i (β) > 0}. Note that b∗ and b∗ vary with b−i, but we
will omit such dependence. The support of Fb−i (β) will be denoted Sb−i. Obviously,
Sb−i ⊆ [b∗, b∗].
Let I ⊂ N be the set of smooth strictly increasing functions bi : [0, 1] → R.

Observe that if b−i ∈ In−1, then the distribution Fb−i (β) is absolutely continuous
with respect to the Lebesgue measure (in particular, there is no relevant tie with
positive probability).
If the allocation rule is fixed and so is the profile b−i, the (interim) expected

payoff of bidder i of type ti, when bidding bi ∈
£
b, b
¤
is:

Πi(ti, bi,b−i) ≡
Z
[ui (t, bi,b−i (t−i)) ai

+ui (t, bi,b−i (t−i)) (1− ai)] dt−i,

11One way to see compactness is to remember Helly’s Theorem, which says that a sequence of
non-decreasing functions has a subsequence that converges pointwise to a nondecreasing function
for all the continuity points of the limit function. The pointwise convergence implies the conver-
gence in L1. Thus, the representative function in each equivalence class bmi ∈ N has a convergent
subsequence that converges to bi ∈ N . Another way to see this is to prove that N is totally
bounded, constructing, for each ε > 0, a finite covering of N with sets of diameter less than ε.
This can be done with step functions for a sufficiently fine grid.
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where we omitted the dependence on ai to simplify notation. Assume thatΠi(ti, bi,b−i) =
0 if bi ∈

©
bBOUT , b

S
OUT

ª
.

When b−i is clear, we will write Πi(ti, bi) for Πi(ti, bi,b−i) and omit the arguments
and the measure (dt−i).
Observe also that if b−i do not involve ties with positive probability, then all

fair allocation rules produce the same payoff. Thus, in this case, the function
Πi(ti, bi,b−i) is well defined for a fair auction with unspecified tie-breaking rule
(see definition 3).
Let ui ≡ ui − ui be the net ex-post payoff and let

Vi (bi,b−i) =
Z

Πi (ti,bi (ti) ,b−i) dti

be the ex-ante payoff.
Finally, we define the interim and the ex-ante best-reply correspondence, respec-

tively, by
Θi (ti,b−i) ≡ argmax

β∈B
Πi (ti, β,b−i) ,

and
Γi (b−i) ≡ arg max

bi∈L1([0,1],B)
Vi (bi,b−i) .

3. Existence of Pure Strategy Equilibrium

Our first result is related to Proposition 1 of Maskin and Riley (2000). This
proposition says that if there is a best reply, it is monotonic, but the authors
proved it for first price auctions only. Theorem 1 says that there exists a monotonic
best reply to strategies which does not involve relevant ties or when the allocation
rule is smooth. Moreover, it says that all best replies are monotonic, with the only
possible exception being bids out of the support of the threshold bid TB (·) (see
Remark 1 below).

Theorem 1. Fix an auction Aa = (P, {ui, ui}i∈P , no, B, S, a) satisfying Assump-
tions 1-4, where a is a fair allocation rule or a smooth allocation rule. Fix a profile
b−i such that the distribution Fb−i (β) is absolutely continuous with respect to the
Lebesgue measure (in particular, there is no relevant tie with positive probability).
Then, for each ti, Θi (ti,b−i) is non-empty. Moreover, let t1i < t2i and let b

k
i be a

best-reply for type tki , for k = 1, 2, that is, b
1
i ∈ Θi (t

1
i ,b−i) and b2i ∈ Θi (t

2
i ,b−i). If

there are relevant bids of opponents between b1i and b
2
i , that is,

Pr
¡{t−i : ai ¡b2i ,b−i (t−i)¢ 6= ai

¡
b1i ,b−i (t−i)

¢}¢ > 0,
then b1i ≤ b2i .

The proof of Theorem 1 is given in the appendix. In the case of smooth allocation
rules, the proof of Theorem 1 is easy to understand. In this case, the interim payoff
is just the integral of its derivative on bi:12

∂bi [ui (t, b) ai (b) + ui (t, b)] = ∂biui (t, b) ai (b) + ui (t, b) ∂biai (b) + ∂biui (t, b) .

12Remember that ui ≡ ui − ui.
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It is easy to see that the assumptions imply that this is is strictly increasing in
ti. Thus, under the maintained assumptions, the difference Πi (ti, b

1
i )− Πi (ti, b

2
i )

is also increasing in ti, because it is the integral of the above derivative over a set
of positive probability. Since b1i is optimum for a player with type t1i , Πi (t

1
i , b

1
i ) >

Πi (t
1
i , b

2
i ). These two facts imply that Πi (t

2
i , b

1
i ) > Πi (t

2
i , b

2
i ), but this contradicts

the optimality of b2i for a player with type t
2
i . In the case of fair allocation rules, the

proof is just an adaptation of these ideas.
When Πi (ti, b

1
i )− Πi (ti, b

2
i ) is (strictly) increasing in ti, Topkis (1978) and Vives

(1990) say that Πi has (strictly) increasing differences. This property was weakened
by Milgrom and Shannon (1994) to the requirement that Πi (ti, b

1
i )− Πi (ti, b

2
i ), as

a function of ti, crosses zero only once and from below. They called it the single
crossing condition. Athey (2001) used the Milgrom-Shannon single crossing property
to prove the existence of equilibrium in games of incomplete information.

Remark 1. Theorem 1 has an important consequence: the best-reply map Γi (b−i)
is a “unitary” set in N , in the following sense. Under the maintained assumptions,
Theorem 1 implies that the sets Θi (ti,b−i) and Θi (t

0
i,b−i) have at most one point in

common if ti 6= t0i. Thus, the set of types ti where Θi (ti,b−i) has a diameter greater
than ε > 0 is finite. Then, Θi (ti,b−i) is uni-valued except for a countable set of
types ti. Thus, the correspondence ti 7−→ Θi (ti,b−i) has a unique selection in L1.
By the definition of Γi (b−i), we conclude that this selection is the unique function
in Γi (b−i), and it is non-decreasing. Nevertheless, this is true only when

Pr
¡{t−i : ai ¡b2i (ti) ,b−i (t−i)¢ 6= ai

¡
b1i (ti) ,b−i (t−i)

¢}¢ > 0,
for two functions b2i and b

2
i in the set of best replies. If the two functions induce

winning and losing in the same events (for instance, functions that specify non-
serious bids, that is, bids below those of the opponents), then it is not always true
that the convex combination of best replies is also a best reply (but this is true under
Assumption 5, as we show in the proof of Lemma 3).

This remark clarifies that Theorem 1 cannot be obtained from Topkis (1978)’s
Theorem 6.3 or Milgrom and Shannon (1994)’s Theorem 4’, which ensure that all
selections of the best-reply map are non-decreasing. The reason is that such a
conclusion is not true in general. Also, it points out that strict single crossing or
strict increasing differences are not necessarily true in our setting.
Theorem 1 can be used to obtain the following:

Theorem 2. Fix a fair auction with unspecified tie-breaking ruleA = (P, {ui, ui}i∈P ,
no, B) satisfying Assumptions 1-4. Then there exists a specification A∗ = (P,
{ui, ui}i∈P , no, B, S, a∗), where a∗ : Bn × [0, 1]n → {0, 1}n is a fair allocation
rule which requires the announcement of types to break ties, such that there exists
a pure strategy equilibrium (b∗, s∗) for A∗, where b∗ is a profile of non-decreasing
functions and s∗ is the identity (that is, the bidders announce their types truth-
fully). Moreover, for each i = 1, ..., n, a∗i (b

∗ (t) , s∗ (t)) is non-decreasing in ti and
non-increasing in t−i.

The proof of Theorem 2 is given in subsection 3.2 and its idea is as follows. First,
we introduce a sequence of smooth allocation rules that approximate fair allocation
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rules. Using Theorem 1, it is easy to obtain the existence of equilibrium for each
auction defined with a smooth allocation rule in this sequence. Next, we consider the
sequence of these equilibria. Since the equilibria are in the compact set N , they have
a convergent subsequence. Using such a subsequence, we define a tie-breaking rule
that sustains the limit of equilibria as the equilibrium of the original auction. The
proof is concluded by arguing that the definition of the tie-breaking rule ensures that
a profitable deviation at the limit would imply a profitable deviation throughout the
sequence of equilibria, which is absurd.
One question that can arise is whether we could use Athey’s proof to obtain our

results. Theorem 2 cannot be derived from Athey (2001)’s Theorems 6 or 7, for two
reasons. First, her model does not allow the dependence of the utility on the bid of
opponents as ours does. Second, her assumption A3 is not satisfied by the models
that we consider (see discussion in subsection 3.1 below).
An important point about Theorem 2 is why we need a special tie-breaking rule

(that is, a rule distinct of the standard tie-breaking rule), which is not so usual in
auction theory. In the following subsection, we discuss why the standard tie-breaking
rule is not sufficient for equilibrium existence.

3.1. Why a special tie-breaking rule? Since we are treating single and double
auctions, the fact that the standard tie-breaking rule (breaking the tie randomly) is
not sufficient to ensure equilibrium existence is easy to establish. Indeed, consider
the following example:

Example 1. (Jackson and Swinkels, 2005, Example 4) There are two players, a
buyer and a seller, and the payment is the medium of the two bids. The value of the
object for the seller is uniformly distributed on [0, 1], that is, u1 (t, b) = t1, and she
receives the price if she sells: u1 (t, b) = (b1 + b2) /2. The value of the object for the
buyer is uniformly distributed on [3, 4], that is, u2 (t, b) = 3 + t2 − (b1 + b2) /2 and
the buyer pays nothing if she loses, u2 (t, b) = 0. Jackson and Swinkels (2005) prove
that there is no equilibrium for this auction under the standard tie-breaking rule.

Although there is no equilibrium for the example above under the standard tie-
breaking rule, it exists under a trade-maximixing tie-breaking rule, that is, a rule
that specifies that a tie between a buyer and a seller is solved by giving the object
to the buyer. Although Jackson and Swinkels (2005) show that this is sufficient
for private value auctions, the same is not necessarily true for interdependent value
double auctions. Moreover, even for single-sided auctions, the generality of our
assumptions implies that the equilibrium existence may require special tie-breaking
rules. To see this, consider the following example:

Example 2. (JSSZ, Example 1) There are two buyers disputing one object. For
i = 1, 2, consider ui (b, t) = 5 + ti − 4t−i − bi and ui (b, t) = 0. Observe that this
example satisfies all Assumptions 1-5. JSSZ prove that this auction does not have
an equilibrium under the standard tie-breaking rule. (See also Jackson, Swinkels,
Simon and Zame, 2004).

Since this example satisfies our assumptions, it is not possible to provide an ex-
istence result that does not need a special tie-breaking rule. On the other hand,
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Athey (2001) proves the existence of equilibrium under the standard tie-breaking
for a class of discontinuous games. Thus, it is useful to understand why her Theorem
6 does not apply to the above example. Indeed, this example satisfies all of her as-
sumptions but Assumption A3, which requires that the expected value of ui (ti, bi, ·)
conditioned on the event of winning with a bid β is nondecreasing in β (maintaining
bi fixed), when the opponents follow non-decreasing strategies. It is easy to see why
Example 2 does not satisfy such an assumption: if the opponents are following non-
decreasing strategies, increasing β, bidder i will win against opponents of a higher
type, which implies that her utility may decrease.
It is also easy to see that Athey’s assumption A3 is not valid for double auctions:

increasing β may imply that a buyer wins against sellers who are asking higher
prices, which may imply a higher price to be paid and, consequently, a decrease of
the expected utility. This explains why we need special tie-breaking rules for the
auctions which we consider.
It is an open question whether it is possible to ensure the equilibrium existence

result in our setting with a tie-breaking that does not require announcement of
types. Nevertheless, in the symmetrical case, Araujo, de Castro and Moreira (2006)
show that an all-pay auction tie-breaking rule is sufficient to solve the problem of
equilibrium existence. This rule does not require the annoucement of types and is
inspired by the Vickrey auction tie-breaking rule used by Maskin and Riley (2000).
Although we do not have a complete characterization of the tie-breaking rules,

Theorem 2 provides a partial characterization: the tie-breaking rule is monotonic in
the types.

3.2. Proof of Theorem 2. The proof of Theorem 2 is given through a series of
lemmas, whose proofs are in the appendix. We begin by the following fact, whose
proof follows the idea of the existence of partition of unity:

Lemma 2. For each m ∈ {2, 3, ...}, there exists a C∞ allocation rule am : Bn →
[0, 1]n (set S = {∅} in the original definition), such that: (i) if bi > TB (b−i) + 1

m
,

then ami (b) = 1 and; (ii) if if bi < TB (b−i)− 1
m
, then ami (b) = 0.

13

For each m ∈ {2, 3, ...}, consider the auction game Am = (P, {ui, ui}i∈P , no, B,S = {∅}, obtained from A by specifying the smooth allocation rules am given by
the previous lemma.

Lemma 3. For each m, Am has an equilibrium in non-decreasing strategies.14

Let us denote by bm = (bm1 , ...,b
m
n ) the equilibrium of the auction Am. Since

{bm} ⊂ Nn, it has a convergent subsequence. Passing to it (without renaming), we
have: bm → b∗. We show below that b∗ is equilibrium of the auction A∗ = (P,
{ui, ui}i∈P , no, B, S = [0, 1] , a∗), where a∗ : Bn × Sn → [0, 1] is a fair allocation
rule that depends, for the case of relevant ties, on the announcement of types s ∈
13Note that these allocation rules are not fair, in the sense of definition 2.
14 We use Assumption 5 only in the proof of this lemma. Nevertheless, the lemma is valid

without it, by Theorem 6.1 of Vives (1990) or by Corollary 2.1 of Athey (2001).
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Sn = [0, 1]n. The allocation rule a∗ is defined as follows, if there is a relevant tie for
bidder i (that is, bi = TB (b−i)) and s = (si, s−i) are the announced types:

a∗i (b, s) =
½
limm ami (b

m (s)) , if bj = limbmj (sj) , for all j
limm ami (b) , otherwise

The next result concludes the demonstration of Theorem 2.

Lemma 4. Consider the auction A∗ = (P, {ui, ui}i∈P , no, B, S = [0, 1] , a∗) and
b∗ as defined above. Let s∗ : [0, 1]n → [0, 1]n be the identity, that is, s∗i (ti) = ti is
the strategy of announcing the own type truthfully. If the opponents are following¡
b∗−i, s

∗
−i
¢
, it is optimum for bidder i to follow (b∗i , s

∗
i ).

4. Positive probability of trade

In this section we prove that there is a non-trivial equilibria for double auctions.
Besides the specification contained in Assumption 6, we will need the following:

Assumption 7. The sets of sellers S = {1, 2, ..., nS} and buyers B = {nS + 1, ..., n}
are non-empty and they have the utilities specified in Assumption 6. Moreover, for
all b ∈ Bn, there exists K, L0 and L such that:
(i) for all i ∈ P , 0 < L0 ≤ U 0

i ≤ L;
(ii) for all i ∈ P , 0 ≤ ∂bipi (bi, b−i) ≤ K;
(iii) pi (b) ∈ [max {b,minj=1,...,n bj} , bi] for all i ∈ B;
(iv) pj (b) ∈

£
bj,min

©
b,maxj=1,...,n bj

ª¤
for all j ∈ S;

(v) if bi = TB (b−i), then pi (b) = bi, for all i ∈ P .

Items (i) and (ii) of Assumption 7 are limitations of derivatives of utility and
payment functions, Ui and pi, respectively; item (iii) says a buyer pays at most her
bid; item (iv) says that a seller receives at least her bid; and item (v) specifies that
the payment is the value of the bid in case of a relevant tie. These are natural
assumptions to require.
For each i ∈ P , let wi (ti) be the maximum of possible values of the object for

player i with type ti, that is, wi (ti) ≡ sup
©
vi (ti, t−i) : t−i ∈ [0, 1]n−1

ª
. Similarly,

let wi (ti) be the minimum of possible values of the object for player i with type
ti, that is, wi (ti) ≡ inf

©
vi (ti, t−i) : t−i ∈ [0, 1]n−1

ª
. It is clear that wi and wi are

non-decreasing functions. Let w be the maximum possible value for buyers and
let w be the minimum possible value for sellers, that is, w ≡ maxi∈B wi (1) and
w ≡ minj∈S wj (0).
We need the following:

Assumption 8. (i) b ≤ w < w ≤ b and (ii) there exist a seller j ∈ S, a buyer
i ∈ B and types ti, tj ∈ (0, 1) such that wi (ti) > w and wj (tj) < w.

The first part of this assumption requires that the maximum value for buyers
be above the minimum value for sellers. This part of the assumption is weak and
natural. Indeed, if we have w ≥ w, trade will be profitable for the players with
probability zero (from the atomless assumption on the values).



SINGLE AND DOUBLE ASYMMETRICAL AUCTIONS 15

The second part of the assumption is not trivial for interdependent value auc-
tions, although it is a consequence of the first part for private value auctions (where
wi (ti) = wi (ti)). It requires that there exists a type of a buyer (it can be a very high
type, close to 1) whose minimum value is above the minimum value for sellers; and
a type of a seller (it can be a type very close to 0) whose maximum value is below
the maximum value for buyers. For interdependent value auctions, only condition
(i) of Assumption 8 is not sufficient to ensure the existence of trade, as the next
example shows.

Example 3. There is one seller (player 1) and one buyer (player 2); the players
are risk-neutral (that is, U1 (x) = U2 (x) = x), the value of the object for the seller is
uniformly distributed on [2, 3] and privately known by the seller (that is, v1 (t1, t2) =
t1+2) and the value for the buyer is given by v2 (t1, t2) = 3t1+ t2. It is a first price
auction for both players (the auctioneer pockets the difference of the bids). It is easy
to see that w = 2 < w = 4. Thus, the first part of Assumption 8 is satisfied. Also,
w1 (t1) = t1+2 ≤ 3 < 4 = w, which is exactly the condition wj (tj) < w in item (ii)
of Assumption 8. Nevertheless, w2 (t2) = 0 < w = 1 for all t1 ∈ [0, 1], so that the
second part of Assumption 8 is not satisfied. This auction has no equilibrium (even
in mixed strategies) with positive probability of trade. To see this, assume that there
is a mixed strategy equilibrium with positive probability of trade. Let β be a bid for
which there is positive probability of negotiation. The seller will accept such an offer
only if v1 (t1, t2) = t1 + 2 < β (the event v1 (t1, t2) = β has zero measure and the
behavior in it does not matter). Thus, the object for the buyers that negotiate under
β has expected value not greater than:

E
£
(3t1 + t2 − β) 1[t1+2≤β]

¤
=


0, if (β − 2) < 0
3
2
(β − 2)2 + (t2 − β) (β − 2) , if (β − 2) ∈ [0, 1]

t2 +
3
2
− β if (β − 2) > 1

Observe that the last line is negative for β > 3 (that is, β − 2 > 1), while the
maximum value of the second line for β ∈ [2, 3] is 0, achieved by β = 2 (and the
expected value is negative for all β ∈ (2, 3]). Thus, it is better for the buyer to bid
β ≤ 2, which wins with zero probability.
The reader should note that the above example has some of the characteristics of

Akerlof’s (1970) famous “market for lemons” example. The seller is better informed
than the buyer about the value of the object to the buyer; the buyer does not know
the value for the seller, and the range of possible prices excludes the more valuable
sellers.
The logic behind the example explains why we need Assumption 8: simply, the

value of the object for the buyers is such that they cannot guarantee profits with any
bid because their values are too dependent on the values of the sellers. Assumption
8 requires them to ensure a value at least above the least value of the seller. In
such a way, we manage to guarantee that there exists a price that is good for both
parties. The example also shows that it is not sufficient to assume only one of the
two conditions: either wi (ti) > w or wj (tj) < w.
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We have the following:

Theorem 3. Fix an auction A satisfying Assumptions 1 and 6-8. Then, there is
an equilibrium where trade occurs with positive probability.

4.1. Proof of Theorem 3. Our proof will follow the same argument as the proof of
Theorem 15 of Jackson and Swinkels (2005). For x ∈ {3, 4, ...}, consider an auction
Ax modified fromA as follows: besides the strategic players 1, 2, ..., n, there are two
non-strategic players, 0 and n + 1, a seller and a buyer, who play a bid uniformly
distributed on [w,w] with probability 1

x
, and stay out of the auction with probability

1− 1
x
.15

Our existence result ensures the equilibrium existence for auction Ax (remember
that Lemma 1 says that Assumption 6 implies Assumptions 2-5). Let bx be a pure
strategy monotonic equilibrium of Ax. Now consider, as before, the limit bx → b∗

as x → ∞. The proof of Theorem 2 can be used to argue that b∗ is again an
equilibrium of the original auction with an appropriate fair allocation rule.
Clearly, the probability of trade is continuous in b and is positive for each auction

Ax. The argument consists in finding a contradiction if the probability of trade
goes to zero when x → ∞. We first prove that if the probability of trade goes to
zero, then the probability of bids by buyers above w − 2δ goes to zero, as does the
probability of bids by sellers below w+2δ. The contrapositive of this is the content
of the following lemma.

Lemma 5. Fix 0 < 2δ < min {wi (ti)− w,w − wj (tj)}, for i ∈ B, j ∈ S and
types ti, tj ∈ (0, 1) given by the Assumption 8. Assume that there is a subsequence
of auctions Ax such that equilibrium profiles bx specify a probability γ > 0 of bids
by sellers below w + 2δ (alternatively, of bids by buyers above w − 2δ). Then, the
probability of trade along this subsequence is bounded away from zero.

The fact that these probabilities go to zero is now used to argue that there is a
player j with a profitable deviation dj in auction Ax, which contradicts bx being
equilibrium. To reach the contradiction, we need a characterization of profitable
deviations in our setting, which the following lemmas provide.

Lemma 6. Fix a buyer i ∈ B, a type ti ∈ [0, 1] and a profile b−i of strategies
followed by buyer i’s opponents, that is, players j 6= i. Consider the deviation from
a bid β1 to the bid β2 > β1. The deviation is advantageous to buyer i if

L0 (wi (ti)− β2) Pr [ai (β2, ·) > ai (β1, ·)] > LK (β2 − β1)Pr [ai (β1, ·) > 0] .
Lemma 7. Fix a seller j ∈ S, a type tj ∈ [0, 1] and a profile b−j of strategies
followed by seller j’s opponents. Consider the deviation from a bid β1 to the bid
β2 < β1. The deviation is advantageous to seller j if

L0 (β2 − wj (tj)) Pr [ai (β1, ·) > ai (β2, ·)] > LK (β1 − β2) Pr [ai (β1, ·) < 1] .
15The strategies can be defined as follows: bx0 (t0) = xt0 (w − w) + w, if t0 < 1

x and b
x
0 (t0) =

bSOUT if t0 ∈
£
1
x , 1

¤
; bxn+1 (tn+1) = bBOUT if t0 < 1− 1

x and b
x
n+1 (tn+1) = x

¡
tn+1 − 1 + 1

x

¢
(w − w)

+ w if t0 ∈
£
1− 1

x , 1
¤
.
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Lemmas 5, 6 and 7 provide the results necessary to adapt the proof of Jackson
and Swinkels (2005) to the setting of auctions with interdependent values. In other
words, the proof of the following lemma follows closely the proof of their Theorem
15.

Lemma 8. There exists an x, a player j ∈ P and a deviation dj from bxj , which is
profitable for player j in the auction Ax.

This concludes the proof of Theorem 3.

5. Conclusion: related literature and the contribution

The main contributions of this paper are: (1) a proof of existence of monotonic
pure strategy equilibrium in a setting where only the existence of a mixed strategy
equilibrium is known; (2) a proof of existence of trade with positive probability for
auctions with asymmetrical interdependent values.
A theorem that includes our setting is that of JSSZ, who prove the existence

of asymmetrical mixed strategy equilibrium with any distribution of types. They
used the “endogenously defined” tie-breaking rule solution concept introduced by
Simon and Zame (1990), as we do too. We particularize their assumptions to the
independent types’ case, but we are able to obtain the existence in monotonic pure
strategies.
Athey (2001), for general games, and Reny and Zamir (2004), for first-price auc-

tions, obtained monotonic pure strategy equilibrium without special tie-breaking
rules. Nevertheless, they assumed the monotonicity of the utilities with respect to
all types and do not consider double auctions, as we do.
Williams (1991) consider symmetric double auctions with independent types.

Jackson and Swinkels (2005) consider (multi-unit) asymmetrical double auctions
with general distribution of types, but they are restricted to the private value case.
In this setting, they are able to prove that the tie-breaking rule does not matter,
a result that does not hold in our setting, as we argued in subsection 3.1. Reny
and Perry (2003) and Fundenberg, Mobius and Szeil (2003) consider symmetrical
double auctions with conditionally independent types but are only able to prove the
existence of equilibrium when the number of players is high. Thus, these works do
not cover our equilibrium existence result for asymmetrical double auctions with
interdependent values and small number of players.
Also, the previous results ensuring the existence of pure strategy equilibrium do

not consider utilities that may be decreasing in the signal of opponents. Thus, they
do not need special tie-breaking rules as our setting requires.
Our method of proof is related to that used by Fundenberg, Mobius and Szeil

(2003). They also used a perturbation of the allocation rule and worked with a
compact space of functions. Their space is that of functions near the identity.
Accordingly, they do not need special tie-breaking rules, but do need a large number
of players, which is not necessary in our case.
Another point is that our proof clarifies that is not necessary at all to discretize

the space of bids and this simplifies the proof. We also show that the argument of
convexity can be made straightforwardly, if we require Assumption 5.
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The other main contribution of the paper is the result concerning positive prob-
ability of trade. While Jackson and Swinkels (2005) established it for a general
model of private value auctions, we show by a counterexample that this result is
not necessarily true for interdependent value auctions. Introducing an appropriate
condition, we are able to prove the non-triviality of the equilibrium.

Appendix
The proof of Theorem 1 requires the following lemma.

Lemma 1. Assume (A0). Fix a profile of bidding functions b−i such that Fb−i (β)
is absolutely continuous with respect to the Lebesgue measure and a is a fair allo-
cation rule. The payoff of bidder i can be expressed by

Πi(ti, bi,b−i) = Πi(ti, b∗,b−i) +
Z
[b∗,bi)

∂biΠi(ti, β,b−i)dβ.

where ∂biΠi(ti, β) exists for almost all β ∈ (b∗, b∗) and is given by

∂βΠi(ti, β,b−i) = E
£
∂biui

¡
t1i , ·
¢
1[β>TB(b−i(·))]

¤
(1)

+E
£
∂biui

¡
t1i , ·
¢
1[β<TB(b−i(·))]

¤
+E [ui (t, β,b−i (t−i)) |TB (b−i (·)) = β] fb−i (β) .

This lemma can be proved using the Leibiniz rule. For a proof in a more general
setting, see de Castro and Riascos (2004). Now, we proceed to the proof of Theorem
1.

Proof of Theorem 1. Let us first consider a fair allocation rule. Under the assump-
tion on b−i, Πi(ti, bi,b−i) is continuous. Since B is compact, Θi (ti,b−i) is ob-
viously non-empty (and compact). For the second part, assume that t1i < t2i ,
b1i ∈ Θi (t

1
i ,b−i), b

2
i ∈ Θi (t

2
i ,b−i), b

2
i < b1i and

(2) Pr
¡{t−i : ai ¡b2i ,b−i (t−i)¢ < ai

¡
b1i ,b−i (t−i)

¢}¢ > 0.
Since [0, 1]n−1 and Bn are compact and ui is (absolutely) continuous, there exists

δ > 0 such that ui (t1i , t−i, b)+2δ < ui (t
2
i , t−i, b) for all t−i ∈ [0, 1]n−1 and all b ∈ Bn.

For a bid β ∈ B, define the functions

g1 (t−i) = ui
¡
t1i , t−i, β,b−i (t−i)

¢
, and

g2 (t−i) = ui
¡
t2i , t−i, β,b−i (t−i)

¢
.

Then, g1 (t−i) + 2δ < g2 (t−i). By the positivity of conditional expectations,16

E
£
g2 − g1 − 2δ|TB (b−i (·)) = β

¤
> 0.

Thus, from the independence of types, we conclude that

(3) E[ui
¡
t1i , ·
¢ |TB (b−i (·)) = β] + δ < E[ui

¡
t2i , ·
¢ |TB (b−i (·)) = β].

16See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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By Assumption 4,

(4) E
£
∂biui

¡
t1i , ·
¢
1[β>TB(b−i(·))]

¤
6 E

£
∂biui

¡
t2i , ·
¢
1[β>TB(b−i(·))]

¤
.

and

(5) E
£
∂biui

¡
t1i , ·
¢
1[β<TB(b−i(·))]

¤
6 E

£
∂biui

¡
t2i , ·
¢
1[β<TB(b−i(·))]

¤
.

Then, (3), (4), (5) and the expression of ∂biΠi(ti, β,b−i) given by (1) imply that for
almost all β,

(6) ∂biΠi(t
2
i , β,b−i) > ∂biΠi(t

1
i , β,b−i) + δfb−i (β) .

The difference Πi(t
2
i , b

1
i ,b−i)−Πi(t

2
i , b

2
i ,b−i) can be written as the integral:Z

[b2i ,b1i )
∂biΠi(t

2
i , β,b−i)dβ >

Z
[b2i ,b1i )

∂biΠi(t
1
i , β,b−i)dβ + δ

Z
[b2i ,b1i )

fb−i (β) dβ

> δ
£
Fb−i

¡
b1i
¢− Fb−i

¡
b2i
¢¤

> 0,
where the first inequality comes from (2) and (6); the second comes from the fact
that b1i ∈ Θi (t

1
i ,b−i), that is,Z

[b2i ,b1i )
∂biΠi(t

1
i , β,b−i)dβ > 0;

and the third comes from b1i > b2i . Now, this implies thatΠi (t
2
i , b

1
i ,b−i) >Πi (t

2
i , b

2
i ,b−i),

which contradicts the fact that b2i ∈ Θi (t
2
i ,b−i).

The proof for smooth allocation rules is similar. First, we observe that the ex-post
utility ui (t, b) ai (b) + ui (t, b) is continuous and has increasing differences in (ti, bi),
because

∂biui (t, b) ai (b) + ui (t, b) ∂biai (b) + ∂biui (t, b)

is increasing in ti. Since the expression of ∂biΠi(t
1
i , β,b−i) is the integral of the

above expression, we can repeat the arguments and use (2) to obtain the same
conclusion. ¤
Proof of Lemma 2. Let a : Bn → [0, 1]n be any fair allocation rule and consider
n independent and identically distributed variables εi, with support contained in¡−1
2m

, 1
2m

¢
and whose density function is C∞. Define, for each i,

ami (b) = E(εi)i∈P
£
ai
¡
(bi + εi)i∈P

¢¤
= Pr

n
(εi)i∈P : bi + εi > TB

³
(bj + εj)j 6=i

´o
.

Ties in the bids (bi + εi)i∈P occur with zero probability so that the expectation
above is equal across all the fair allocation rules and is well-defined.
Now, we verify conditions (i)-(iv) of Definition 1. It is easy to see that t 7→

am (b (t)) if t 7→ b (t) is measurable. Thus, (i) is satisfied. For each realiza-
tion of (εi)i∈P , we have

P
i∈P ai

¡
(bi + εi)i∈P

¢
= no with probability one. Thus,P

i∈P a
m
i (b) = no, which implies condition (ii).
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It is easy to see that ami is non-decreasing in bi and non-increasing in bj, for j 6= i,
which is condition (iii). Condition (iv) is trivial, since S = {∅} for am. The Lemma
is proved. ¤
Proof of Lemma 3. Fix m and define the set-valued map Υm

i (b−i) ≡ Γmi (b−i) ∩
N , where Γmi is the best-reply map for auction Am. For simplicity, we omit the
upperscript m.
It is easy to see, from continuity and Theorem 1, that Υi : N

n−1 → N is upper
semicontinuous with non-empty values. Let us show that it has convex values.
Suppose that bi,b0i ∈ Υi (b−i), with bi 6= b0i. This means that the set A ≡ {ti :

bi (ti) 6= b0i (ti)} has positive measure. Let A0 be the set of types ti in A such that

Pr ({t−i : ai (bi (ti) ,b−i (t−i)) 6= ai (b
0
i (ti) ,b−i (t−i))}) = 0,

and let A1 ≡ A\A0, that is, A1 is the set of types ti in A such that the above
probability is positive. By Theorem 1 and Remark 1, Pr (A1) = 0, which implies
that Pr (A) = Pr (A0) > 0.
Since ai is non-decreasing in bi, we have that for every α ∈ [0, 1] and b̄i =

αbi + (1− α)b0i,

Pr
¡{t−i : ai ¡b̄i (ti) ,b−i (t−i)¢ 6= ai (b

0
i (ti) ,b−i (t−i))}

¢
= 0,

for all ti ∈ A0. Since ui and ui are weakly monotonic in the same direction, by
Assumption 5, and bi (ti) and b0i (ti) give the same probability of winning to bidder
i, it should be that the expectation of uiai +ui (1− ai), that is, the interim payoff,
is constant between bi (ti) and b0i (ti).

17 Thus, the convex combination b̄i gives the
same payoff as bi and b0i. Thus, b̄i ∈ Γi (b−i). It is clear that b̄i ∈ N , because
bi,b

0
i ∈ N . This shows that Υi has convex values.

Define the upper semicontinuous and convex-valued map Υ : Nn → Nn as the
product of the Υi. It is defined on the compact convex set Nn. By Kakutani-Fan-
Glicksberg Theorem, it has a fixed point, denoted by bm = (bm1 , ...,b

m
n ), which is

an equilibrium of the auction Am. ¤
Proof of Lemma 4. First, we establish the following:

Claim 1. Given that other players are using their strategies
¡
b∗−i, s

∗
−i
¢
, then for all

strategies
³
b̂i, ŝi

´
of player i there exists a sequence of strategies b̂mi such that

lim
m→∞

V m
i

³
b̂mi ,b

m
−i
´
= V ∗i

³³
b̂i, ŝi

´
,
¡
b∗−i, s

∗
−i
¢´

.

Proof. If ŝi (ti) is such that limm b
m
i (̂si (ti)) = b̂i (ti), define b̂

m
i (ti) = b

m
i (̂si (ti)) . If

limbmi (̂si (ti)) 6= b̂i (ti), define b̂mi (ti) = b̂i (ti) for all m. In the first case the limit
allocation a∗i

³
b̂i (ti) ,b

∗
i (ti) , ŝi, s

∗
−i
´
is

lim
m→∞

ami
¡
bmi (̂si (ti)) ,b

m
−i (t−i)

¢
= lim

m→∞
ami

³
b̂mi (ti) ,b

∗
−i (t−i)

´
.

17The same argument works if Assumption 5 is changed to the requirement that one of the
functions ui or ui does not depend on bi and the other is quasiconcave as a function of bi.
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In the second case we have ami
³
b̂mi (ti) ,b

∗
−i (t−i)

´
→ a∗i

³
b̂i (ti) ,b

∗
i (ti) , ŝi, s

∗
−i
´
. In

both cases we have b̂mi (ti)→ b̂i (ti) and

lim
m→∞

ami

³
b̂mi (ti) ,b

∗
−i (t−i)

´
= a∗i

³
b̂i (ti) ,b

∗
i (ti) , ŝi, s

∗
−i
´
.

Thus, the function t 7→ uia
m
i + (1− ami )ui, with bids defined by

³
b̂mi ,b

m
−i
´
, con-

verge a.e. to t 7→ uia
∗
i + (1− a∗i )ui, where the bids and allocations are defined by³³

b̂i, ŝi
´
,
¡
b∗−i, s

∗
−i
¢´
. Thus, by the Lebesgue convergence theorem, V m

i

³
b̂mi ,b

m
−i
´
→

V ∗i
³³
b̂i, ŝi

´
,
¡
b∗−i, s

∗
−i
¢´
. ¤

The rest of the proof is trivial. Assume that a player i has an improving deviation³
b̂i, ŝi

´
from (b∗i , s

∗
i ) when the opponents follow

¡
b∗−i, s

∗
−i
¢
, that is,

V ∗i
³³
b̂i, ŝi

´
,
¡
b∗−i, s

∗
−i
¢´

> V ∗i
¡
(b∗i , s

∗
i ) ,
¡
b∗−i, s

∗
−i
¢¢
+ 2ε,

for some ε > 0. By the claim, there exists a sequence b̂mi such that for a sufficiently
high m,

V m
i

³
b̂mi ,b

m
−i
´
> V m

i

¡
bmi ,b

m
−i
¢
+ ε,

which contradicts the fact that
¡
bmi ,b

m
−i
¢
is equilibrium for the auction Am. ¤

Proof of Lemma 5. Consider the first case, that is, there is probability γ > 0 of bids
by sellers below w+2δ. Let ρx the probability of buyer bids above w+2δ. If ρx ≥ ρ
for all x and some ρ > 0, then the probability of trade is at least γρ > 0. If ρx → 0,
then for sufficiently high x, there is a probability 1/2 that there is no buy bid above
w+2δ. Consider the strategy of buyer i that speficies the bid bBOUT for all types t

0
i < ti

and the bid w + 2δ otherwise. From the fact that pi (w + 2δ,b−i (t−i)) ≤ w + 2δ
(Assumption 7) and w+2δ < wi (ti) (by definition of δ), there exists η > 0 such that
Ui (vi (t

0
i, t−i)− pi (w + 2δ,b−i (t−i))) ≥ η for all t0i ≥ ti and t−i ∈ [0, 1]n−1. Thus,

such strategy ensures at least the payoff ηγ/2 > 0 for sufficiently high x. Thus, it
is impossible that trade goes to zero, since this would imply payoff going to zero.
By an analogous argument, one obtains a contradiction for the case where there is
probability γ > 0 of bids by buyers above w − 2δ. ¤
Proof of Lemma 6. In the expressions below, we will omit the term b−i. The payoff
of bidding βk is

Πi (ti, βk) = E−i [Ui (vi (ti, t−i)− pi (βk, ·)− ei) ai (βk, ·)]
+E−i [Ui (−ei) (1− ai (βk, ·))] ,

for k = 1, 2. The difference Πi (ti, β2)−Πi (ti, β1) is equal to

E−i{[Ui (vi (ti, t−i)− pi (β2, ·)− ei)− Ui (−ei)] ai (β2, ·)}
−E−i{[Ui (vi (ti, t−i)− pi (β1, ·)− ei)− Ui (−ei)] ai (β1, ·)}
= E−i{[Ui (vi (ti, t−i)− pi (β2, ·)− ei)− Ui (−ei)] [ai (β2, ·)− ai (β1, ·)]}
−E−i {[Ui (vi (ti, t−i)− pi (β1, ·)− ei)− Ui (vi (ti, t−i)− pi (β2, ·)− ei)] ai (β1, ·)} .
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Since vi (ti, t−i) ≥ wi (ti) for all t−i and pi (β2, ·) ≤ β2, then the term on the third
line above is not lesser than

L0 (wi (ti)− β2) Pr [ai (β2, ·) > ai (β1, ·)] .
On the other hand, since Ui is concave, U 0

i ≤ L and ∂bipi ≤ K,

Ui (vi (ti, t−i)− pi (β1, ·)− ei)− Ui (vi (ti, t−i)− pi (β2, ·)− ei)

≤ L [pi (β2, ·)− pi (β1, ·)]
≤ LK (β2 − β1) .

Thus, the deviation will be profitable if

L0 (wi (ti)− β2) Pr [ai (β2, ·) > ai (β1, ·)] > LK (β2 − β1)Pr [ai (β1, ·) > 0] .
¤

Proof of Lemma 7. The difference Πj (tj, β2)−Πj (tj, β1) is equal to

E−i [Uj (vj (tj, t−j)− ei) ai (β2, ·) + Uj (pj (β2, ·)− ei) (1− ai (β2, ·))]
−E−i [Uj (vj (tj, t−j)− ei) ai (β1, ·) + Uj (pj (β1, ·)− ei) (1− ai (β1, ·))]

= E−i {[Uj (pj (β2, ·)− ei)− Uj (vj (tj, t−j)− ei)] (ai (β1, ·)− ai (β2, ·))}
−E−i {[Uj (pj (β1, ·)− ei)− Uj (pj (β2, ·)− ei)] (1− ai (β1, ·))} .

As before, we have:

Uj (pj (β2, ·)− ei)− Uj (vj (tj, t−j)− ei) ≥ L0 [pj (β2, ·)− wj (tj)]

≥ L0 (β2 − wj (tj)) ,

and
Uj (pj (β1, ·)− ei)− Uj (pj (β2, ·)− ei) ≤ LK (β1 − β2) .

Thus, the deviation will be profitable if

L0 (β2 − wj (tj)) Pr [ai (β1, ·) > ai (β2, ·)] > LK (β1 − β2) Pr [ai (β1, ·) < 1] .
¤

Proof of Lemma 8. As said before, this is an adaptation of the proof of Theorem 15
of Jackson and Swinkels (2005), henceforth JS. Thus, we will use their notation and
refer to their results when they apply to our case. Let H ⊂ B be the set of buyers i
for whom wi = w. By Assumption 8, there is ω > 0 such that for each i ∈ H, there
is a probability of at least ω that there is a seller with value below w− ω, and such
that for each i /∈ H, i is a seller or wi < w− ω. In particular, w < w − ω.
Consider an arbitrary k ∈ {3, 4, ...}, and let δ < ω/k. Fix an equilibrium strategy

bx. For i = 1, ..., n + 1, let Qx
Bi = 1 if bidder i is a buyer and bids above w− 2δ

and Qx
Bi = 0 otherwise. For each x, let

µx = max
i∈H

Pr x {Qx
Bi = 1}

be the maximum probability that any buyer (not n+ 1) makes a bid above w− 2δ
in Ax (by the definition of ω, Prx {Qx

Bi = 1} = 0 for each player in N\H). Let ix
be an associated maximizer of µx.
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Let Qx
B =

Pn+1
i=1 Q

x
Bi be the random variable giving the number of buyer bids

above w− 2δ under bx (including the bids of player n+ 1). Let Qx
S be the number

of seller bids at or below w− 2δ. Observe that this does not include player ix who
is a buyer.
Lemma 5 establishes that if the trade goes to zero, then Prx {Qx

B > 0} → 0 and
Prx {Qx

S > 0}→ 0 must hold. Now, an argument of JS shows that

(7) Pr x (Q
x
B = 1 | Qx

B > 0)→ 1.

Choose a subsequence along which ix is constant. Consider the deviation dj for
sellers j ∈ S, that whenever wj (tj) ≤ w− ω, and the equilibrium specifies a bid
above w− 2δ, j submits w− 2δ instead. We will obtain a contradiction if this is not
improving for at least one j ∈ S.
Let Cx

j denote the event where ai
¡
bxj (ti) ,b

x
j (t−j)

¢
< 1 and let Dx

j denote the
event where ai

¡
bxj (ti) ,b

x
j (t−j)

¢
> ai

¡
dj (ti) ,b

x
j (t−j)

¢
. We have the following

Corollary to Lemma 7:

Corollary 1. dj is a profitable deviation for seller j if

L0 (ω − 2δ) Pr £Dx
j

¤
> 2δLK Pr

£
Cx
j

¤
.

Proof. The deviation specifies the bid β2 = w − 2δ, differently from the equi-
librium strategy only when wj (tj) ≤ w− ω, and the equilibrium specifies a bid
β1 ∈ (w − 2δ, w], where the limitation above for β1 comes from the fact that the
seller will never receive more than w. Then, β2−wj (tj) ≥ ω−2δ and β1−β2 ≤ 2δ.
The result now follows from Lemma 7. ¤
Consider the following set of events, whose dependence on x will be omitted:
E1 : Q

x
B > 0.18

E2: Qx
S = 0.

E3j: Player j has not sold her unit and wj (tj) ≤ w − ω.
E4: Qx

B ≤ 1.
E5: There is a seller j such that wj (tj) ≤ w− ω.
Note that Prx(E1) = µ̂x. Arguing as JS, we have that for x sufficiently large,

Pr
x
(E1 ∩E2 ∩E4 ∩E5) ≥ ω

2
µ̂x.

Since Dx
j includes the set E1 ∩ E2 ∩E3j, we have

Pr
£
Dx

j

¤ ≥ Pr x(E1 ∩E2 ∩E3j ∩E4 ∩ E5)
≥ Pr x(E3j|E1 ∩E2 ∩E4 ∩ E5)ω

2
µ̂x.

On the other hand, j sells under bx with probability Pr
£
Cx
j

¤
, which is bounded by

Prx(Q
x
B > 0). JS establishes that Prx(Qx

B > 0) ≤ nµ̂x. From the previous corollary,

18 Our definition of this set can be simpler than JS’ because in our setting, players are always
buyers or always sellers, JS’s unlike. This difference is also the reason why we are able to prove
the existence of trade when there is just one buyer and one seller, which is not allowed by JS’s
assumptions.
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in order for the deviation not to be profitable, it must be that

L0 (ω − 2δ) Pr x(E3j|E1 ∩E2 ∩E4 ∩E5)ω
2
µ̂x ≤ 2δLKnµ̂x.

Dividing both sides by µ̂xδ (which is valid, because µ̂x is positive thanks to player
n +1), and summing across sellers,

ω

2

³ω
δ
− 2
´X

j∈S
Pr x(E3j|E1 ∩E2 ∩E4 ∩E5) ≤ nSn2LK.

But in any realization where E1 ∩ E2 ∩ E4 ∩E5 holds, E3j must hold for at least
one seller j ∈ S, since E5 specifies that for at least one seller j, wj (tj) ≤ w− ω,
since no sell bid is at or below w−2δ, and since there is one buy offer above w−2δ.
Thus the sum of probabilities above is at least 1 and so

ω

2

³ω
δ
− 2
´
≤ nSn2LK.

Recall that k ∈ {3, 4, ...} is arbitrary and that δ was chosen so that ω/k > δ. It
follows that

ω

2
(k − 2) ≤ nSn2LK.

This equation is clearly false for k sufficiently large, and we have the desired
contradiction. ¤
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