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Summary

Distance-based regression allows for a neat implementation of the Partial
Least Squares recurrence. In this paper we address practical issues arising
when dealing with moderately large datasets (n ∼ 104) such as those typical
of automobile insurance premium calculations.
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1 Introduction

Distance-Based Regression (DBR) (see Cuadras 1989, Cuadras & Arenas
1990, Cuadras et al. 1996) is a method for predicting a numerical response
y from a set z of both numerical and categorical predictors. The name of
the procedure originates in the fact that it involves a metric in the space of
predictors, d( · , · ), which must be Euclidean in the sense of Multidimensional
Scaling (see Section 2).

In this paper we adapt PLS regression to the DBR context, with an empha-
sis on computational issues arising in treating moderately large (n ≤ 105)
datasets. Since DBR for such datasets entails a linear regression on a large
number of predictors, it seems particularly adequate for PLS. It is so in-
deed, but huge matrices appearing at intermediate phases impose a careful
out-of-core treatment.

A motivation for this study is the analysis of automobile insurance data,
more precisely in rate-making, i.e., predicting total claim amounts from a set
of a priori risk factors, whose results will be used to determine risk premia
for new policy holders (Boj et al. 2004, 2005). Such data usually consist of
a number of observations ranging from a moderately large to a very large
size (> 106). In this paper we will concentrate on the former, which can
be directly input to DBR, whereas the very large case requires a modified
approach with additional processing, such as subsampling or stratification.

The paper is structured as follows: in Section 2 we outline the main char-
acteristics of Distance Based Regression. In Section 3 we derive the DBR
version of the PLS recurrence and in Section 4 we give some details on its
implementation. As an illustration, in Section 5 we apply the method to an
example with real data.

2 Distance Based Regression

The DBR procedure is as follows: Given n observed pairs {(yi, z i), 1 ≤ i ≤
n}, we compute the matrix D , with entries

(
d2(z i, z j)

)
, and the doubly-

centered inner products matrix,

G = −1

2
J ·D · J ,

where J = I − 1 · 1 ′/n is the n × n centering matrix. The Euclidean
requirement is equivalent to the positive semidefiniteness of G, hence to the
existence of an X such that G = X · X ′, called in this context a centered

Euclidean configuration of D , meaning that 1 ′ ·X = 0 and that the squared
Euclidean interdistances

‖x i − x j‖2
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between the rows x 1, . . . ,xn of X coincide with the corresponding entries
in D . The verification of this equivalence involves some simple algebra for
which we refer to any standard textbook on Multidimensional Scaling, such
as Borg and Groenen (2005).

DBR of y = (yi) on the predictor distance matrix D is defined as a Least
Squares regression of y on a Euclidean configuration X of D . The rationale
supporting this definition is that DBR contains Ordinary Least Squares re-
gression as a particular case. Specifically, with the Pythagorean metric (ℓ2)
on numerical z predictors DBR reduces to OLS.

For a given G there are many Euclidean configurations: Applying any nonsin-
gular linear transformation or a translation to one of them generates another.
DBR predictions, however, are independent of the choice. The reason is that
both the hat matrix giving the fitted responses,

ŷ = H · y

that is, the orthogonal projector

H = X · (X ′ ·X )−1 ·X ′

on the subspace G = 〈X 〉 ⊂ R
n generated by the columns of X , and G itself

can be expressed directly in terms of G or D , hence they are independent of
X . It can be checked that

H = G+ ·G = G ·G+,

where G+ is the Moore-Penrose generalized inverse of G.

When implementing DBR a possible method is to actually compute an ex-
plicit Euclidean configuration X . For instance, Cuadras et al. (1996) use the
Principal Coordinates Euclidean configuration, X = U ·Λ, obtained from the
eigendecomposition G = U · Λ2 ·U ′. This version of DBR amounts to per-
forming a Principal Components Regression (PCR) (see, e.g., Jolliffe 2002).
One of the pitfalls of PCR (Cuadras 1993, 1998, Hadi & Ling 1998)is the fact
that the first few Principal Axes, with a greater variance, are not necesarily
highly correlated with the response y . Furthermore, diagonalization of large
n × n matrices presents substantial computational problems.

The choice of a metric is an important component in DBR model-building:
it has points of contact with the choice of a link function for a Generalized
Linear Model. In principle it is possible to tailor a metric to reflect specific
information on predictors and on how their proximity relates to the particular
prediction under study. Most of the times, however, it suffices to utilize
an omnibus metric function which satisfies the Euclidean condition referred
to in the Introduction. One very popular metric for mixtures of numerical
continuous, nominal categorical and binary predictor variables is the one
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based on Gower’s general similarity coefficient, which for two p-dimensional
vectors z i and z j is equal to

sij =

∑p1

h=1
(1 − |zih − zjh| /Rh ) + a + α

p1 + (p2 − d) + p3

, (1)

where p = p1 + p2 + p3, p1 is the number of continuous variables, a and d are
the number of positive and negative matches, respectively, for the p2 binary
variables, and α is the number of matches for the p3 multi-state categorical
variables. Rh is the range of the h-th continuous variable. The squared
distance is computed as:

d2(z i, z j) = 1 − sij . (2)

It can be proved (Gower 1971) that (2) satisfies the Euclidean condition.

3 PLS for DB regression

PLS regression provides us with a sensible alternative. The standard proce-
dure (see, e.g., Helland 1988, Hoskuldsson 1988) can be described as follows:
Given an n× p centered predictor matrix X and an n× 1 centered response
y , for each k, 1 ≤ k ≤ p, we obtain sets:

{uj ; 0 ≤ j ≤ k}, of n × 1 vectors,

{E j ; 0 ≤ j ≤ k}, of n × p matrices,

{f j ; 1 ≤ j ≤ k}, of n × 1 orthogonal vectors,

{aj ; 1 ≤ j ≤ k}, of p × 1 vectors,

{bj ; 1 ≤ j ≤ k}, of scalars,

for which the following decompositions hold:

X = f 1 · a ′

1 + · · · + f k · a ′

k + Ek, (3)

y = f 1 b1 + · · · + f k bk + uk. (4)

These sets are generated sequentially, through the following recursion: Let
E0 ≡ X and u0 ≡ y . Then, for each k ≥ 1, ak and bk are the regression
coefficients

ak = (E ′

k−1 · f k)/(f ′

k · f k),

bk = (u ′

k−1 · f k)/(f ′

k · f k),

and f k is the linear combination

f k = Ek−1 ·wk, (5)
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with weights
wk = E ′

k−1 · uk−1. (6)

The next recurrence step starts with the residuals

Ek = Ek−1 − f k · a ′

k, (7)

uk = uk−1 − f k bk. (8)

In the DBR context, X is assumed to be a centered Euclidean configuration
of the square distance matrix D , but its explicit computation is not required
for the PLS recursion, since all the steps are invariant under a change of X

and may be performed by operating directly with G. Indeed,

f 1 = X ·X ′ · y = G · y ,

b1 =
y ′ · f 1

f ′

1 · f 1

=
y ′ ·G · y
y ′ ·G2 · y

,

ŷ1 = f 1 b1 =
G · y (y ′ ·G · y)

y ′ ·G2 · y
,

which can be written more compactly in terms of f 1 = G · y :

ŷ1 =

(
f 1 · f ′

1

‖f 1‖2

)
· y = P1 · y ,

where P1 = f 1 ·f ′

1/‖f 1‖2 is the orthogonal projector on the one-dimensional
linear space spanned by f 1. The residual

ỹ1 = y − ŷ1 = Q1 · y ,

where Q1 = I −P1 is the complementary orthogonal projector, also depends
on X through G. Similarly,

a1 =
X ′ · f 1

f ′

1 · f 1

=
X ′ ·G · y
y ′ ·G2 · y

=
X ′ · f 1

‖f 1‖2
,

X̂ 1 = f 1 · a ′

1 = P1 ·X ,

X̃ 1 = X − X̂ 1 = Q1 ·X .

Thus we see that it is possible to define the following recursive procedure:
Given an n×n doubly centered positive semidefinite matrix G and an n× 1
centered response y , for each k, 1 ≤ k ≤ rank(G), we obtain sets:
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{uj ; 0 ≤ j ≤ k}, of n × 1 vectors,

{Gj ; 0 ≤ j ≤ k}, of n×n doubly centered positive
semidefinite matrices,

{f j ; 1 ≤ j ≤ k}, of n × 1 orthogonal vectors,

{(Pj ,Qj); 1 ≤ j ≤ k}, of pairs of complementary n × n
orthogonal projectors,

{bj; 1 ≤ j ≤ k}, of scalars,

starting with u0 ≡ y and G0 ≡ G. The recursion, for k ≥ 1, follows by:

f k = Gk−1 · uk−1, bk =
1

‖f k‖2
f ′

k · uk−1,

Pk =
1

‖f k‖2
f k · f ′

k, Qk = I −Pk,

uk = uk−1 − f k bk = Qk · uk−1,

Gk = Qk ·Gk−1 ·Qk.

showing that each recurrence step, hence the whole sequence of computations,
involves only the distances D . The fitted response vector at step k is given
by the sum

ŷk = f 1 b1 + · · · + f k bk.

It is worth noting that, for 1 ≤ j ≤ k, f j bj = P j · uj−1 and, by recurrence,

f j bj = Pj · y ,

hence the k-th hat matrix, i.e., the orthogonal projector H k such that ŷk =
H k · y , is given by the sum of mutually orthogonal orthogonal projectors:

H k = P1 + · · · + Pk.

4 Implementation

Very large datasets, with a number of observations greater than 105, require
specific treatments with the goal of reducing the computational effort to a
feasible range. Such an endeavor would involve a displacement of the theo-
retical emphasis to designing and analyzing suitable subsampling strategies,
a problem which will not be treated here. Instead, our current targets are
those datasets referred to in the Introduction as moderately large, consisting
of n ∼ 104 observations. Even for this size, both the distance matrix D and
the inner products matrix G are too large to fit comfortably into the main
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memory of a standard computer. For instance, if n = 104, double precision
storage requires about 0.8 GB. The PLS-DB scheme outlined above can be
easily adapted to this situation. To this end, we implement the following
pieces of software:

1. calcd: Computes D from the observed predictors z i and writes it
sequentially (one row at a time) to the disk. Several matrices along the
computations will be stored out-of-core in this way and henceforth we
name them big matrices. We are not taking advantage of the symmetry
of D for storage since the resulting code complexity and the increased
access time override the intended saving.

2. bigproduct: An auxiliary function for multiplying an n×n big matrix,
M , times an n×1 in-core vector, resulting another n×1 in-core vector.

3. bigproject: An auxiliary function to compute

(I − v · v ′) ·M · (I − v · v ′)

for an n×1 in-core unit vector v and an n×n big matrix M , resulting
another big matrix, the orthogonal projection of M onto the hyperplane〈
v
〉⊥

, the orthogonal complement of v . We need bigproject both to
obtain G from D (with v = 1/

√
n) and in each PLS step, to obtain

the residual.

4. PLSstep: From an n × 1 in-core ỹ and a big G̃, computes the new

(ŷ , ỹ) and G̃.

A main function controls the sequence and measures convergence. The PLS-
DBR procedure can integrate formal stopping rules for the iterative algo-
rithm, by adapting usual devices such as the Akaike or the Bayes Informa-
tion Criteria or a Crossvalidation Statistic, which can be implemented in a
straightforward manner. As a final observation, it is not necessary to allocate
disk space for several Gigabyte-sized matrices. Three of them will suffice, one
for D and two more to flip-flop between the two G̃’s of consecutive steps.

A package with the set of MATLAB functions implementing DBR-PLS is
available from the authors upon request.

5 An illustrative case in insurance

We consider the problem of rate-making in automobile insurance, that is,
prediction of total claim amounts from a set of a priori risk factors (for ter-
minology and context see Boj et al. 2004). The results are used to determine
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Table 1: Set of predictors for the insurance dataset

• Continuous predictors:

– Power of the vehicle (in HP)

– Vehicle age

– Price (Original list price)

– Age of the main driver

– Driving license age

• Categorical predictors:

– Sex of the main driver

– Geographical zone (10 levels)

risk premia for new policy holders. As an illustration we use a real dataset
with n = 11028 cases, obtained from a portfolio from a Spanish insurer in
the period 1996–1997 corresponding to compulsory civil liability insurance.

We set up a DB regression model, where the response is the total claim
amount per policyholder and the set of predictors is of a mixed type, com-
prising both continuous and categorical predictors (Table 1).

The metric we use is Gower’s distance (2), based on the general similarity
coefficient (1). In addition to being one of the most popular measures of
proximity for mixed data types, as mentioned above, it appears to be ade-

Table 2: R2 as a function of the number of PLS steps

k R2

1 0.7698

2 0.8034

3 0.8214

10 0.8633

20 0.8806

30 0.8864

49 0.8934



8

Table 3: Comparing PLS and PCR: R2 as a function of the number of steps

R2 (PLS-DBR) R2 (PCR-DBR)

1 0.1601 0.0825

2 0.2072 0.1072

3 0.2274 0.1075

4 0.2471 0.1080

9 0.3091 0.1516

24 0.4610 0.2276

49 0.7132 0.2771

74 0.8531 0.2908

99 0.9254 0.3294

149 0.9736 0.3640

199 0.9904 0.4003

642 1.0000 0.7202

quate for the type of actuarial prediction we are currently dealing with (Boj
et al. 2002).

Table 2 shows the successive determination coefficients obtained as a function
of the number of PLS steps. We observe a quite steep ascent, as it is to be
expected for the PLS algorithm. The purpose of this table is to demonstrate
the comparatively effortless computation required by PLS-DBR to attain
a given predictive quality, neatly defeating other methods that require an
explicit Euclidean configuration.

For instance, computation of DBR through the Principal Coordinates Eu-
clidean configuration (PCR-DBR) for datasets in the range of sizes we are
dealing with here, is at least impractical, perchance utterly impossible, since
it would involve obtaining eigenpairs of a huge out-of-core matrix. We have
extracted a relatively small subset (n = 1000) from the dataset used above
in order to compare both methods. Table 3 shows the results as pairs of R2

for equal number of steps (number of latent variables taken as predictors) in
both methods.

6 Conclusion

We have presented an implementation of the PLS recurrence for DB regres-
sion. The fact that it does not need explicit matrix decompositions or eigen-
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value extraction is a crucial property that enables the method to handle
moderately large datasets, such as those found in automobile insurance pre-
diction.
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