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Depth-based classification for functional data

Sara López-Pintado and Juan Romo

Abstract. Classification is an important task when data are curves. Recently,
the notion of statistical depth has been extended to deal with functional obser-

vations. In this paper, we propose robust procedures based on the concept of

depth to classify curves. These techniques are applied to a real data example.
An extensive simulation study with contaminated models illustrates the good

robustness properties of these depth-based classification methods.

1. Introduction

Classification is an important problem when dealing with functional obser-
vations. Due to the huge technological advances and the growing complexity of
experiments, curves are now the data frequently produced in different fields, such
as biology, physics and economics. Classification of functions has been recently con-
sidered by several authors. For example, in ([8]) a penalized discriminant analysis
is proposed. It is adequate for situations with many highly correlated predictors,
as those obtained by discretizing a function. Nonparametric tools to classify a set
of curves have been introduced in [3]. They calculate the posterior probability
of belonging to a given class of functions by using a consistent kernel estimator.
In addition, a new method for extending classical linear discriminant analysis to
functional data has been analyzed in [9]. This technique is particularly useful
when only fragments of the curves are observed. The problem of unsupervised
classification or clustering of curves is addressed in [10], who elaborate a flexible
model-based approach for clustering functional data. It is effective when the ob-
servations are sparse, irregularly spaced or occur at different time points for each
subject. [1] consider unsupervised clustering of functions. They fit the functional
data by B−splines and partition the estimated model coefficients using a k−means
algorithm. In a related problem, [7] explore a functional data-analytic approach
to perform signal discrimination. Many of these procedures are, however, highly
sensitive to outliers. We propose in this paper two robust methods for supervised
classification of curves based on the idea of depth for functional data.

A statistical depth expresses the “centrality”or “outlyingness”of an observation
within a set of data (or with respect to a probability distribution) and provides a
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criterion to order observations from center-outward. [22] and [14] introduced the
earlier and most used definitions of depth in the multivariate context. Recently,
new notions of depth for finite dimensional data have been proposed and all of
them extensively studied (see, for example, [13], [15], [16], [18], [21], [23], [24]
and [25]). Depth-based classification has been already analyzed in the literature
for multivariate observations in, e.g., [5], [6], [11], [12] and [20]. Recently, the
notion of depth has been extended to functional data. Fraiman and Muniz ([2])
have proposed a depth for functions defined as the integral of univariate depths.
Alternatively, López-Pintado and Romo ([17]) have introduced a functional depth
based on the proportion of bands including the curve graph.

Robustness is an interesting feature of the statistical methods based on depth.
Robust techniques are even more useful for functional data than for multivariate
observations because functional outliers can affect the statistical analysis in many
different ways and they are not always easy to identify. The idea behind the depth-
based classification methods proposed below is to construct a distance between an
observation and the most representative data from each group. The functional
depth measures how representative or interior is an observation within its group.

The rest of the article is organized as follows. In the next section we recall some
ideas on depth for functional data. Section 3 presents two depth-based classification
procedures for curves. A real data example is analyzed in section 4. The robustness
of these new discrimination methods is illustrated in section 5 with an extensive
simulation. Finally, section 6 collects the main conclusions of the paper.

2. Depth for functional data

The classification methods proposed below can be implemented with any depth
defined for functional observations. We will use the idea of depth for functions
introduced in [17]. It is a graph-based approach. Therefore, in this section we
review some concepts about function graphs that will be used throughout the paper.
Let x1(t), ..., xn(t) be a set of real functions. For simplicity, we will assume that
they belong to the space C[0, 1] of continuous functions defined on the interval [0, 1].
The graph of a function x is the subset of R2

(2.1) G(x) = {(t, x(t)) : t ∈ [0, 1]} .

The band in R2 determined by k curves from the sample x1, ..., xn is

V (xi1 , xi2 , ..., xik
) =

{
(t, y) : t ∈ [0, 1], min

r=1,...,k
xir (t) ≤ y ≤ max

r=1,...,k
xir (t)

}
=

{
(t, y) : t ∈ [0, 1] y = αt min

r=1,...,k
xir

(t) + (1− αt) max
r=1,...,k

xir
(t),(2.2)

for some αt ∈ [0, 1]} .

Figure 1a shows the band determined by two curves V (x1, x2). In Figure 1b two
additional curves, y1 and y2, are also represented. The red curve y1 is included in
the band, whereas the black one y2 does not (since it is not always inside the band).
The band can be determined by more than two curves. Thus, Figure 2 presents a
band V (x1, x2, x3) defined by three curves.
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Figure 1. (a) Band defined by two curves x1, x2, and (b) a third
curve y1 belonging to the band V (x1, x2) and a fourth curve y2 not
completely inside the band.
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Figure 2. Band determined by three curves x1, x2, and x3.

For any of the functions x in {x1, ..., xn} , the quantity

S(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

I{G(x) ⊂ V (xi1 , xi2 , ..., xij
)}, j ≥ 2,

expresses the proportion of bands V (xi1 , xi2 , ..., xij
) determined by j different curves

xi1 , xi2 , ..., xij containing the graph of x (I{A} = 1, if A occurs, and I{A} = 0,
otherwise). The definition of depth for functional data introduced by [17] states
that for functions x1, ..., xn, the band depth of any of these curves x is

Sn,J(x) =
J∑

j=2

S(j
n (x), J ≥ 2.
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Figure 3. (a) Three deepest curves in red, yellow and green, re-
spectively, and (b) ten less deepest curves in red.

If X1 , X2 , ..., Xn are independent copies of the stochastic process X which gen-
erates the observations x1, ..., xn, the population versions of these depth indexes
are

S(j(x) = P{G(x) ⊂ V (Xi1 , Xi2 , ..., Xij
)}

and

SJ(x) =
J∑

j=2

S(j(x) =
J∑

j=2

P{G(x) ⊂ V (Xi1 , Xi2 , ..., Xij
)}.

A sample median function m̂n,J is a curve from the sample with highest depth
value,

m̂n,J = arg max
x∈{x1,...,xn}

Sn,J(x),

and a population median is a function mJ in C[0, 1] maximizing SJ(·). If there is
more than one function achieving the depth maximum value, the median is defined
as the average of those curves maximizing depth.

The band depth is applied to a a real data set of functions represented in
Figure 3. The curves constitute the angle formed by the hip in the sagittal plane
during one gait cycle for a set of thirty nine boys ([19]). The three deepest curves
appear in red, yellow and green (left panel). Note that these curves resemble the
main characteristics of the whole set. The ten less deepest curves are marked in
red (right panel). These curves could be consider as outer observations within the
sample.

Following also [17], a more flexible notion of depth (called generalized band
depth) can be introduced if instead of considering the indicator function in the
definition of depth we measure the set where the function is inside the corresponding
band. For any function x in {x1, ..., xn} and j ≥ 2, let

Aj(x) ≡ A(x;xi1 , xi2 , ..., xij
) ≡

{
t ∈ [0, 1] : min

r=i1,...,ij

xr(t) ≤ x(t) ≤ max
r=i1,...,ij

xr(t)
}
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Figure 4. Set of points t where y is inside the band V (x1, x2).

be the set of points in the interval [0, 1] where the function x is inside the band
determined by the observations xi1 , xi2 , ..., xij

. Figure 4 shows a red curve y which
is only partially contained in the band V (x1, x2); the set where y is inside the band
is marked in black.

If λ is the Lebesgue measure on the interval [0, 1], λ(Aj(x)) is the “proportion
of time” that x is inside the band. Thus,

GS(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

λ(A(x;xi1 , xi2 , ..., xij
)), j ≥ 2,

is a generalized version of S
(j
n (x): if x is always inside the band, the measure

λ(Aj(x)) is one and this generalizes the previous definition of depth. If a general
compact interval I is used instead of [0, 1], the expression must be normalized by
dividing by λ(I).

As defined in [17], the generalized band depth of any of the curves x in {x1, ..., xn}
is

GSn,J(x) =
J∑

j=2

GS(j
n (x), J ≥ 2.

If X1 , X2 , ..., Xn are independent copies of the process X which provide the
observations x1, ..., xn, the population version of these indexes are

GS(j(x) = E λ(A(x;Xi1 , Xi2 , ..., Xij
)), j ≥ 2,

and

GSJ(x) =
J∑

j=2

GS(j(x) =
J∑

j=2

Eλ(A(x;Xi1 , Xi2 , ..., Xij )), J ≥ 2.

The generalized band depth is very stable in J , providing the same center-
outward order in a collection of curves. Therefore, in what follows we consider
J = 2 and denote GS2 = GS. The theoretical properties of the band-depth and its
generalized version are extensively studied in [17].
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Figure 5. (a) Three deepest curves in red, yellow and green, and
(b) ten less deepest curves in red, using in both cases the general-
ized band depth.

The sample median function using the generalized band depth is denoted as

m̂n,GS = arg max
x∈{x1,...,xn}

GSn,J(x).

Figure 5 shows the deepest and less deepest curves for the generalized band
depth. For simplicity, we will denote by S any of these definitions of depth in the
rest of the paper.

In addition to the definition of median function, the notion of functional depth
allows to define order-based statistics, such as L-statistics. For example, a func-
tional version of the α−trimmed mean is defined as the average of the n − [nα]
deepest curves from the sample ([nα] is the integer part of nα). Let x(1), ..., x(n) be
the center-outward ordered sample, based on S, where x(1) is the deepest observa-
tion and x(n) is the less deepest one. The α−trimmed mean is defined as

mα =

n−[nα]∑
i=1

x(i)

n− [nα]
.

If there are curves in the sample with the same depth, S(xi1) = S(xi2) = ... =
S(xik

) with i1 < i2 < ... < ik, they are ordered according to their original order
in the sample: if xi1 is the r − th deepest point from the sample (xi1 = x(r)) then
xi2 = x(r+1), ..., xik

= x(r+k−1).

3. Classification for functions

In supervised classification, the curves belong to known groups A1, . . . , AG and
the goal is to assign any new observation to one of the G groups. Let x1, . . . , xn

be a collection of continuous curves defined on the compact interval [0, 1] and let
yi be a natural number in {1, . . . , G} denoting the class of xi. A classification
rule separates the space of continuous functions C[0, 1] in G disjoint groups Â1,

Â2, ..., ÂG, such that x ∈ Âg if, and only if, the class prediction is g. Hence, a
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classification rule assigns any new observation to a group based on the observations
with known group.

To estimate the error (or misclassification) rate, the known observations are
divided into the learning or training set L = {(x1, y1) , (x2, y2) , ...(xnL

, ynL
)} and

the validation or test set T = {x1, ..., xnT
} . The classification rule is constructed

from the training set and applied to the observations in the test set, comparing the
true class membership with the predicted one. The estimated error rate e is the
ratio between the number of misclassified observations in T and the total number
nT . In practice, there are many situations where the test set is not predefined and
to estimate the error rate, random partitions of the sample data set into training
L and test set T are considered.

In this section two new methods of supervised classification for functional data
based on depth are presented: “distance to the trimmed mean” and “weighted
averaged distance”.

Distance to the trimmed mean (D). Calculates the distance from the new
observation to the trimmed mean of each group. The steps are the following:

(1) Compute the trimmed mean for each group (for a given α): mα
g , g =

1, ..., G.
(2) Calculate the distance from a new observation xi to mα

g : d(xi,m
α
g ), g =

1, ..., G, where d is any distance in C[0, 1]. In particular, throughout this
paper we consider

d(x, y) = ‖x− y‖1 =
∫ 1

0

|x(t)− y(t)| dt

(3) Classify xi in the group k such that: d(xi,m
α
k ) = min

g=1,...G

{
d(xi,m

α
g )

}
.

Depending on the trimming, the two extreme cases are: i) to compute the
distance to the mean (α = 0), and ii) to calculate the distance to the deepest
observation (α = (n− 1)/n).

Weighted Averaged Distance (AD). This second classification method ob-
tains the distance from an observation to a group as a weighted average of distances
to each element in the group. The weights will be determined by the points depth
within the group. Thus, the influence of any observation on the final distance will
depend on its depth, i.e., the deeper an observation, the greater its weight in the
calculated distance. Let Ag =

{
x1, ..., xng

}
. The weighted average distance of x to

Ag is

(3.1) AD(x,Ag) =

ng∑
i=1

d(x, xi)S(xi)

ng∑
i=1

S(xi)
, where ng is the size of the group Ag.

A problem with the notion of “weighted averaged distance” is that the result
depends strongly on the number of observations in each group. Therefore, if the
number of observations in separate groups are too different, the outcome of the
classification is inaccurate. A plausible approach, denoted as “Trimmed Weighted
Averaged Distance” (TAD), is to fix m ≤ n1, ..., ng and consider only the m deepest
observations from each group to compute the distance. Thus,
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Figure 6. Growth curves for fifty four girls (in red) and thirty
nine boys (in blue).

(3.2) TAD(x, Ag) =

m∑
i=1

d(x, x(i))S(x(i))

m∑
i=1

S(x(i))
.

4. Real data example

Next we apply the classification techniques to the growth curves for a sample
of boys and girls from [19] (see Figure 6). The observations are the heights (in
centimeters) of fifty four girls and thirty nine boys measured at a set of twenty nine
ages from one to eighteen years old. The original data was smoothed using a spline
basis. We use this data set to compare the performance of the classification methods
introduced in the previous section (D, AD and TAD), applying them to classification
in two groups (boys-girls). We have estimated the error or misclassification rate
by separating the sample into k groups of the same size and considering one of
them as the validation or test group T. The remaining observations constitute
the learning set L. We calculate the number of misclassified observations from the
validation group. All these steps are repeated changing the test group k times and
the total error rate is defined as the number of misclassified observations over the
total number of observations for each method. Three validation approaches are
used to estimate the probability error: V1 (dividing the sample in k = 4 parts), V2
(dividing the sample in k = 10 parts) and V3 (classical cross-validation, dividing
the sample in k = n1 + n2 parts, where ni is the size of group i).

a. Distance to the trimmed mean (D)

The α−trimmed mean is computed for each group of curves (boys and girls
respectively) with α = 0.2 and using three different notions of depth: band depth
with J = 3 (S3), band depth with J = 4 (S4) and the generalized band depth
(GS). The error rate is estimated using three validation procedures V1, V2 and
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Table 1. Error rate for the distance to the trimmed mean method D.

DS3 DS4 DGS DM
V1 0.2374 0.2374 0.1486 0.2260
V2 0.2488 0.2113 0.1768 0.2440
V3 0.1828 0.1828 0.1613 0.2258

Table 2. Error rate for the weighted averaged distance method AD.

ADS3 ADS4 ADGS DM
V1 0.2622 0.2508 0.1961 0.2395
V2 0.2565 0.2565 0.1893 0.2315
V3 0.2473 0.2473 0.1935 0.2258

Table 3. Error rate for the trimmed weighted averaged distance
method TAD.

TADS3 TADS4 TADGS DM
V1 0.2601 0.2601 0.2075 0.2260
V2 0.2536 0.2536 0.1690 0.2363
V3 0.2436 0.2436 0.1690 0.2258

V3. Table 1 shows the error rates comparing the distance to the α−trimmed mean
(three first columns) and the distance to the mean.

b. Weighted averaged distance (AD)

Compute each data depth within its group and obtain the weighted averaged
distance of every observation to each group as in (3.2). In a similar way to part
a, we consider three validation procedures V1, V2 and V3 and the previous three
definitions of depth (Table 2).

c. Trimmed weighted averaged distance (TAD)

This third classification method is a slight modification of AD. We consider
only the m = 39 deepest curves from each group to calculate the weighted averaged
distance as in (3.2). The results of this discrimination procedure appear in Table
3.

The error rates are minimized for the generalized band depth in all three clas-
sification procedures (D, AD and TAD). Moreover, the best error rate is obtained
with procedure D and depth GS.

In addition to calculating the error rate for the boys-girls growth curves exam-
ple, we have also estimated the error distribution. One third of the sample (growth
curves for boys and girls together) is randomly used as the test group and the re-
maining observations constitute the learning or training set. We have repeated this
r = 50 times and the error rate is computed each time for the different classification
methods. In this example is convenient to apply TAD instead of AD because the
sizes of the two groups of curves are not similar (fifty four girls versus thirty nine
boys). The box-plots of the error distributions are represented in Figure 7 and the
mean, first, second and third quartiles appear in Table 4.
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Figure 7. Error rate distribution for boys and girls growth curves.
The classification procedures are: distance to the mean (DM),
distance to the 0.2-trimmed mean with S3, S4, GS, (DS3, DS4,
DGS) and trimmed weighted averaged distance with S3, S4, GS,
(TADS3, TADS4 and TADGS).

Table 4. Mean, first, second and third quartiles of the error rate
distribution for the growth data.

mean q1 q2 q3
DM 0.2839 0.2581 0.2903 0.3226
DS3 0.2710 0.2258 0.2903 0.3226
DS4 0.2694 0.2258 0.2903 0.3226
DGS 0.2274 0.1935 0.2419 0.2581
TADS3 0.3177 0.2742 0.3226 0.3710
TADS4 0.3097 0.2581 0.3226 0.3548
TADGS 0.2645 0.2258 0.2581 0.3226

The best results (minimum error rates) correspond to the distance to the
trimmed mean, followed by the trimmed weighted averaged distance based both
of them on the generalized band-depth.

5. Simulation Results

We now illustrate the robustness of the classification techniques for functional
data introduced above. To compare their behavior, we have simulated curves from
several models with some type of contamination. There are different ways of con-
taminating a continuous process; among others, we will use the ones in [2]. In all
cases analyzed below we have considered two models and simulated seventy curves
from each one. The training set consists of thirty randomly chosen curves from each
group and the remaining forty observations from each sample are the test group.
This is repeated r = 50 times and the error rates are computed. The methods used
to classify are DM (distance to the mean), DS3 (distance to the trimmed mean
based on S3), DS4 (distance to the trimmed mean based on S4), DGS (distance
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Figure 8. Box-plots of the error distribution for curves simulated
from model A with α = 0.2, q = 0.05 and M = 25.

to the trimmed mean based on GS), TADS3 (trimmed averaged distance based
on S3), TADS4 (trimmed averaged distance based on S4) and TADGS (trimmed
averaged distance based on GS). In all cases, the trimmed averaged distance is
calculated with m = 30.

Model A (Asymmetric contamination). Consider two gaussian processes
with the same covariance function but different mean function, and with some
contaminated observations in the second process,

Xi(t) = f(t) + εi

Yi(t) = g(t) + εi + ciM,

where ε is a gaussian process with zero mean and covariance function

(5.1) γ(t, s) = 0.25 ∗ exp
{
− |t− s|2

}
,

f(t) = 4t, g(t) = 7t, ci takes the value 1 with probability q and 0 with probability
1−q and M is the contamination size. The simulation results are obtained following
the procedure described above. Figure 8 and Table 5 show the errors distributions
based on the different classification methods introduced previously. The trimmed
mean is computed with α = 0.2, q = 0.1 and the contamination size M is 25. The
best error rate is obtained with DGS followed by TADGS.

Model A simulation has been repeated with q = 0.1 and the error distribution
is represented in Figure 9. The best results again correspond to DGS and TADGS.

Model B (Symmetric contamination). A symmetric contamination can
be introduced by considering

Xi(t) = f(t) + εi

Yi(t) = g(t) + εi + ciσiM,

where εi is a gaussian process with covariance function (5.1), ci and M are defined
as in model A and σi is a sequence of random variables independent from ci taking
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Table 5. Mean, first, second and third quartiles of the error dis-
tribution for model A with q = 0.05.

mean q1 q2 q3
DM 0.1772 0.15 0.175 0.2125
DS3 0.1455 0.125 0.15 0.1625
DS4 0.1458 0.125 0.15 0.1625
DGS 0.1450 0.125 0.15 0.1625
TADS3 0.16 0.1375 0.1625 0.1750
TADS4 0.1597 0.1375 0.1625 0.1750
TADGS 0.1605 0.1375 0.1625 0.1750
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Figure 9. Box-plots of the error distribution for curves simulated
from model A with α = 0.2, q = 0.1 and M = 25.

Table 6. Mean, first, second and third quartiles of the error dis-
tribution in model B.

mean q1 q2 q3
DM 0.1970 0.1167 0.1667 0.2417
DS3 0.1567 0.1333 0.15 0.1833
DS4 0.1528 0.1250 0.15 0.1750
DGS 0.1447 0.1167 0.15 0.1667
TADS3 0.1677 0.1333 0.1667 0.2
TADS4 0.1630 0.1333 0.1667 0.1917
TADGS 0.1572 0.1333 0.1583 0.1833

values 1 and −1 with probability 1/2. Figure 10 and Table 6 show the error dis-
tribution using different classification procedures (DM , DS3, DS4, DGS, TADS3,
TADGS) with α = 0.2, q = 0.1 and M = 25. The minimum error rate is obtained
with DGS followed by DS3.
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Figure 10. Box-plots of the error distribution for data simulated
from model B with α = 0.2, q = 0.1, and M = 25.
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Figure 11. Box-plots of the error distribution for simulated data
from model C with α = 0.2, q = 0.1, and M = 25.

Model C (Partially contaminated model). The partially contaminated
model can be expressed as

Xi(t) = f(t) + εi

Yi(t) =
{

g(t) + εi + ciσiM for t ≥ Ti

g(t) + εi, for t < Ti,

where ci, σi and M are defined as above and Ti is a random number generated
from a uniform distribution on [0, 1].

The box-plots of the error distribution for data simulated from model C can
be seen in Figure 11. The mean, first, second and third quartiles of the error
distribution are represented in Table 7. In this case, the best result is obtained
with DS3.
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Table 7. Mean, first, second and third quartiles of the error dis-
tribution for model C.

mean q1 q2 q3
DM 0.1617 0.1167 0.1417 0.2
DS3 0.1540 0.1167 0.15 0.1833
DS4 0.1563 0.1167 0.15 0.1833
DGS 0.1577 0.1167 0.15 0.1833
TADS3 0.1567 0.1167 0.15 0.1833
TADS4 0.1573 0.1333 0.15 0.1833
TADGS 0.1663 0.1333 0.1667 0.1833
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Figure 12. Box-plots of the error distribution for simulated data
from model D with α = 0.2, q = 0.1, and M = 25.

Model D (Peaks contaminated model). The fourth model is contaminated
with peaks and is given by

Xi(t) = f(t) + εi

Yi(t) = g(t) + εi + ciM for Ti ≤ t ≤ Ti + l and
Yi(t) = g(t) + εi for t /∈ [Ti, Ti + l],

where ci is defined as in previous model, l = 2/30 and Ti is a random number
generated from a uniform distribution on (0, 1− l). The idea underlying this model
is to contaminate it only during a short interval of length l.

As shown in Figure 12 and Table 8, in model D the methods based on S3 and
S4 give, in contrast with models A-C, significantly better error rates than the ones
based on GS. This is caused by the type of contamination considered in this last
case; when the contamination occurs only in a short interval of the domain of the
curve, the band depth of the contaminated curves is low, but the generalized band
depth can still be high by definition. Therefore, classification procedures based on
GS are less robust in this situation.
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Table 8. Mean, first, second and third quartiles of the error dis-
tribution for model D.

mean q1 q2 q3
DM 0.0710 0.0167 0.0333 0.0833
DS3 0.0487 0 0.0167 0.0333
DS4 0.0477 0 0.0167 0.0333
DGS 0.077 0.0167 0.0167 0.05
TADS3 0.0303 0.0167 0.0333 0.0333
TADS4 0.0310 0.0167 0.0333 0.05
TADGS 0.0540 0.0333 0.05 0.0667

Interestingly, in all models considered (A-D), the depth-based classification
methods perform better than the distance to the mean (which is the worst method
due to contamination).

6. Conclusions

Nonparametric robust classification procedures for functional data have been
proposed and analyzed. These methods are based on the notion of depth for func-
tional observations and the definitions introduced in [17] have been used through-
out the paper. The idea of depth provides a criterion to order a sample of curves
from center-outward and robust location estimates, such as the trimmed mean, are
defined for functional data. Classic discriminant techniques (for example calculat-
ing the distance to the mean curve in each group) can be modified by using the
trimmed mean instead of the mean as a representative element from each cluster.
In addition, a second method of classification using a weighted averaged distance,
with weights depending on depth, is also proposed. The good behavior in terms
of robustness of the new procedures is illustrated using a real data example and
also simulated data from contaminated processes. Interesting topics that could
be addressed in the future are the analysis of some theoretical properties of these
new classification procedures and their comparison with those already studied in
the literature (see e.g. [3], [4] and [9]). Also, depth-based clustering methods for
functional data extending the ideas in [10] and [11] could be considered.
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