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Abstract

This work deals with estimating the vector of means of characteristics of small areas.
In this context, a unit level multivariate model with correlated sampling errors is
considered. An approximation is obtained for the mean squared and cross product
errors of the empirical best linear unbiased predictors of the means. This approach has
been implemented on a Monte Carlo study using economic data observed for a sample
of Australian farms.
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1 Introduction

Assume a subpopulation (like a county or an age domain) of a global population (e.g., a

state or a country) from which a sample has been drawn. In order to estimate certain char-

acteristics of the subpopulation (poverty counts, per capita income, ...), it is possible to use

direct estimators, constructed only with observations coming from that specific subpopula-

tion. The definition of “small area”, although somewhat diffuse, could be a subpopulation

where estimates with higher precision can be obtained by incorporating information from
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outside this target subpopulation. This is the aim of the procedures and techniques com-

prised in the discipline called small area estimation. Typically the precision of the estimators

is characterized by its mean squared error (MSE).

The interest in small area estimation has increased in the last decades. On the one hand,

the public sector finds it useful for planning regional policies and allocating government funds.

On the other, the private sector has a growing demand of models that account for local socio-

economic conditions that affect businesses and industries. For instance, in U.S.A. this interest

has given rise to the Small Area Income and Poverty Estimates program of the Census Bureau

or the Local Area Unemployment Statistics program from the Bureau of Labor Statistics.

In Europe the project called EURAREA (Enhancing Small Area Estimation Techniques to

Meet European Needs) produces small-area socio-economic measures, like unemployment

rates or annual average gross family income. A large part of the most important recent

advances and references on small area estimation can be found in the monograph by Rao

(2003).

In this framework models represent a powerful tool, since they “borrow strength” of

related areas in the global population and take into account auxiliary information (such

as that provided by census and administrative records). In particular, mixed models (see,

e.g., McCulloch and Searle, 2001) that include area-specific random effects usually provide

estimators with better precision. This is because these models allow to separate and estimate

the variation between areas that is not due to auxiliary variables. But it is necessary to point

out that their strength relies on a careful identification and fitting of the model, and on the

information provided by the available explanatory variables.

For instance, Gaussian mixed linear models have been used to estimate the income or

poverty counts in small places in U.S.A (Fay and Herriot, 1979; National Research Council,

2000), the census undercount in the decennial census of U.S.A. (Ericksen and Kadane, 1985)

and Canada (Dick, 1995) and the extension of county crop areas using satellite information

(Battese et al., 1988).

When the aim is to estimate a multidimensional characteristic τ depending on several

correlated response variables Y, then the natural extension is to use multivariate linear mixed

models. For example, Datta et al. (1999) considered the estimation of crop areas under

corn and soybeans (dimension r = 2) in different counties using a multivariate nested error

regression model. These authors implemented empirical best linear predictors (EBLUP) and

empirical Bayes estimators and an approximation to their MSE. Fay (1987) and Datta et al.

(1991) proposed a multivariate Fay-Herriot model, and showed its improvement in precision

over the univariate modelling. Datta et al. (1996) developed hierarchical Bayes estimators

of median income in the context of a multivariate Fay-Herriot model.
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Under a multivariate model we might also be interested in estimating a quantity which

is a function h(τ ) of an r-dimensional (r > 1) characteristic τ . If we estimate h(τ ) by h(t̂),

where t̂ = (t̂1, . . . , t̂r)
′ is an estimator of τ = (τ1, . . . , τr)

′, then an approximation to the

mean squared error E(h(τ )− h(t̂))2 will most likely require an approximation to the mean

cross products E[(t̂i − τi)(t̂j − τj)], i, j = 1, . . . , r. This work deals with this last problem

when τ is a quantity related to the vector of means of the response variables in a certain

small area.

The approximation to the MSE has been tackled in several small-area models. For

univariate Gaussian mixed models and estimating the dispersion parameters by a method

of moments, Prasad and Rao (1990) provided an approximation to the MSE of an EBLUP

up to order o(D−1), where D denotes the number of small areas in the global population.

This approximation was proved to be of the same order under maximum likelihood (ML)

or restricted ML (RML) estimation by Das et al. (2004). Here we focus on a unit-level

multivariate model and estimate the unknown parameters by ML. In Section 3 we obtain an

o(D−1) approximation to the matrix E[(t̂ − τ )(t̂ − τ )′] of mean squared errors and mean

crossed product terms. Finally, in Section 4, the results are checked in a Monte Carlo

experiment with real economic data observed for Australian farms.

2 Description of the model

Assume that an r-dimensional response vector is available, together with certain auxiliary

variables, for population elements in D small areas. Denote by Nd the population size in

the d-th area, d = 1, . . . , D. We assume that the following general linear model relates the

response variables to the auxiliary ones

ydj = Xdjβ + ud1r + edj, j = 1, . . . , Nd, d = 1, . . . , D, (1)

where ydj is the response corresponding to the j-th individual from the d-th area, Xdj is

an r × p matrix containing the values of the auxiliary variables in that same individual,

β = (β1, . . . , βp)
′ is a vector of unknown parameters and 1r denotes the r× 1 vector of ones.

Here the area-specific and individual effects follow Gaussian distributions with

ud
iid∼ N(0, σ2

u), edj
iid∼ Nr(0,Σ), ud and edj independent, (2)
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where the covariance matrix of the errors is given by

Σ = σ2


1 % · · · %

% 1 · · · %
...

...
. . .

...

% % · · · 1


r×r

, (3)

and σ2 > 0, % are unknown parameters. From now on, when r > 1, we will assume that the

condition −(r − 1)−1 < % < 1 holds, since it guarantees the positive definiteness of Σ.

Observe that if we define the parameter φ = σ2%, then Σ can be expressed as

Σ = σ2Ir + φ(Jr − Ir), (4)

where Ir denotes the r × r identity matrix and Jr = 1r1
′
r. In the new reparameterization,

the dispersion parameter space under the model is

Θ = {θ = (σ2
u, σ

2, φ)′ : σ2
u, σ

2 ∈ (0,∞), −σ2(r − 1)−1 < φ < σ2}.

We are interested in computing the small area vectors of means

Ȳd =
1

Nd

Nd∑
j=1

ydj (5)

In order to estimate these parameters of interest, a sample sd of size nd is taken in the d-th

area, for all d = 1, . . . , D. For the sake of simplicity we reorder the population elements

in such a way that the first nd individuals in the d-th area are those of the sample sd. We

assume that the sample elements comply with the model given by (1)–(3), that is,

y =

 y1

...

yD

 = Xβ + Zu + e =

 X1

...

XD

β +

 Z1

...

ZD


 u1

...

uD

+

 e1

...

eD

 ,

where yd = (y′d1, . . . ,y
′
dnd

)′, ed = (e′d1, . . . , e
′
dnd

)′,

Xd =

 Xd1

...

Xdnd

 , Zd =
[

0r nd×(d−1) 1r nd
0r nd×(D−d)

]

and u and e are independent Gaussian distributed random vectors. From now on we will

denote n = r
∑D

d=1 nd.
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3 Outline of main results

Observe that each area mean can be split into sampled and nonsampled elements as follows

Ȳd =
1

Nd

∑
j∈sd

ydj +
1

Nd

∑
j /∈sd

Xdj β +

(
1− nd

Nd

)
ud1r +

1

Nd

∑
j /∈sd

edj.

Thus it suffices to predict

τd =
1

Nd

∑
j /∈sd

Xdj β +

(
1− nd

Nd

)
ud1r. (6)

Following Henderson (1975), the best linear unbiased predictor (BLUP) of τd is given by

td =
1

Nd

∑
j /∈sd

Xdj β̃ +

(
1− nd

Nd

)
ũd1r (7)

(see also Rao 2003, p. 110). In this expression,

β̃ = (X′V−1X)−1X′V−1y

is the maximum likelihood estimator (MLE) of β,

ũ = (ũ1, . . . , ũD)′ = σ2
uZ

′V−1(y −Xβ̃)

is the vector of predicted values of the area effects, and V is the covariance matrix of y,

Var(y). Observe that V = diag(V1, . . . ,VD) with

Vd = Var(yd) = σ2
uJrnd

+ σ2Irnd
+ φ diag(Jr − Ir, . . . ,Jr − Ir). (8)

Let us denote R = Var(e) = diag{Σ, . . . ,Σ} and G = Var(u) = σ2
uID. Observe that τd

is a vector of type Kβ + Mu, where

K =
1

Nd

∑
j /∈sd

Xdj and M =

(
1− nd

Nd

)[
0r×(d−1) 1r 0r×(D−d)

]
. (9)

Then the mean squared error (MSE) of the BLUP, td = Kβ̃ + Mũ, is given by

MSE(td) = E[(td − τd)(td − τd)
′]

= M(Z′R−1Z + G−1)−1M + Λ(X′V−1X)−1Λ′, (10)

where

Λ = K−M(Z′R−1Z + G−1)−1Z′R−1X
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(see, e.g., Datta et al., 1999).

Let θ0 = (θ01, θ02, θ03)
′ ∈ int(Θ) denote the true, unknown value of the parameter θ in

the population. As the BLUP estimator td depends on θ0, we replace this parameter by its

MLE estimator θ̂ = θ̂(y) = (σ̂2
u, σ̂

2, φ̂)′. Thus we obtain the empirical best linear unbiased

predictor (EBLUP) t̂d = td(θ̂), whose mean squared error is

MSE(t̂d) = MSE(td) + E[(t̂d − td)(t̂d − td)
′], (11)

since θ̂ is translation invariant (see Kackar and Harville, 1981).

If we substitute β by β̃ in the loglikelihood

l(θ) = c− 1

2
log |V| − 1

2
(y −Xβ)′V−1(y −Xβ)

we obtain the profile loglikelihood

lP (θ) = c− 1

2
log |V| − 1

2
y′Py,

where c is a constant and

P = V−1 −V−1X(X′V−1X)−1X′V−1.

Observe that the MLE θ̂ is also a solution to the equation ∂lP /∂θ = 0.

In Theorem 1, conditions on the model (1)–(3) are given, under which the second term

in (11) can be expressed as

E[(t̂d − td)(t̂d − td)
′] =

[
E[(h′dkI−1s)(h′d`I−1s)]

]r
k,`=1

+ [o(D−1)]r×r, (12)

where, for td = (td1, . . . , tdr)
′,

hdk =
∂tdk

∂θ

∣∣∣∣
θ0

, s =
∂lP
∂θ

∣∣∣∣
θ0

and I = E

(
−∂2lP

∂θ2

∣∣∣∣
θ0

)
. (13)

The last two quantities, s and I, are the scores vector and the Fisher information matrix

respectively. Plugging expression (12) into (11) yields the following decomposition

MSE(t̂d) = MSE(td) +
[
E[(h′dkI−1s)(h′d`I−1s)]

]r
k,`=1

+ [o(D−1)]r×r. (14)

Finally the following spelled-out formula is proved in Theorem 2

E[(h′dkI−1s)(h′d`I−1s)] = tr

(
∂γ ′d
∂θ

V
∂γd

∂θ
I−1

)∣∣∣∣
θ0

+ o(D−1), k, ` = 1, . . . , r,

with γd = (1−nd/Nd)σ
2
uV

−1md, where md denotes the d-th column of Z. As a consequence,

we have

MSE(t̂d) = MSE(td) + Jr tr

(
∂γ ′d
∂θ

V
∂γd

∂θ
I−1

)∣∣∣∣
θ0

+ [o(D−1)]r×r. (15)
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4 Theorems and proofs

In the following, we use the notation λmin(B) and λmax(B) for the minimum and maximum

eigenvalues respectively of a square matrix B, ‖B‖ = λ
1/2
max(B′B), ‖B‖2 = tr1/2(B′B), ∆i =

∂V/∂θi and ∆id = ∂Vd/∂θi, for i = 1, 2, 3, d = 1, . . . , D. Throughout this work we will

make use of the hypotheses stated below, where V0 denotes V evaluated at θ0.

(A1) p < ∞ and r < ∞.

(A2) lim inf
D→∞

D−1λmin(X
′X) > 0.

(A3) All the possible values of the elements of X are uniformly bounded.

(A4) lim sup
D→∞

max
1≤d≤D

nd < ∞ and lim inf
D→∞

min
1≤d≤D

nd > 0.

(A5) lim inf
D→∞

D−1λmin(I) > 0.

The following result provides the convergence rate of θ̂ to θ0 as D → ∞, together with

an asymptotic representation of θ̂ − θ0 which will be used in the proof of Theorem 1.

Lemma 1 : Let the multivariate model (1)–(3) satisfy assumptions (A1), (A4) and (A5).

Then, for any 0 < η < 1, there exists a set B on which, for large D, it holds that |θ̂ −
θ0| < D−η/2 and |θ̂ − θ0 − I−1s| ≤ D−ηu, with E(ug) bounded for g > 0. Furthermore

P (Bc) = O(D−ζg/2), where ζ = min(1/4, 1− η).

Proof: It suffices to check that the hypotheses in Theorem 2.1 of Das et al. (2004) are

satisfied for the profile loglikelihood lP . More concretely, we have to see if conditions (i) and

(ii) below hold:

(i) lim infD→∞ D−1λmin (I) < ∞.

(ii) The g-th moments (g > 0) of the following variables are bounded,

1√
D

∣∣∣∣∣ ∂lP
∂θi

∣∣∣∣
θ0

∣∣∣∣∣ , 1

D

∣∣∣∣∣ ∂2lP
∂θi∂θj

∣∣∣∣
θ0

− E

(
∂2lP

∂θi∂θj

∣∣∣∣
θ0

)∣∣∣∣∣ , 1

D
sup
θ∈Sδ

∣∣∣∣ ∂3lP
∂θi∂θj∂θk

∣∣∣∣ ,
where the expectations are taken at θ0 and Sδ = Sδ(θ0) = {θ : |θi−θ0i| ≤ δ, i = 1, 2, 3},
for some δ > 0.
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The first order partial derivatives of lP are given by

∂lP
∂θi

= −1

2
tr(V−1∆i) +

1

2
y′P∆iPy, (16)

∂2lP
∂θi∂θj

=
1

2
tr(V−1∆iV

−1∆j)− y′P∆iP∆jPy, (17)

∂3lP
∂θi∂θj∂θk

= −tr(V−1∆kV
−1∆jV

−1∆i) + y′P∆kP∆jP∆iPy

+y′P∆jP∆kP∆iPy + y′P∆jP∆iP∆kPy, (18)

for i, j, k = 1, 2, 3. Thus the (i, j)-th element of I is

Iij = E

(
− ∂2lP

∂θi∂θj

∣∣∣∣
θ0

)
= −1

2
tr
(
V−1

0 ∆iV
−1
0 ∆j

)
+ tr (P0∆iP0∆j) , (19)

where P0 is matrix P evaluated at θ0.

To prove condition (i) it is enough to see that the following stronger condition holds

lim inf
D→∞

(
D−1Iii

)
< ∞, i = 1, 2, 3. (20)

In order to do this observe that

|Iii −
1

2
tr(V−1

0 ∆i)
2| ≤ |tr(W∆iV

−1
0 ∆i)|+ |tr(W∆iP0∆i)|, (21)

where W = V−1
0 − P0. Now let us prove that the two terms on the right-hand side of last

inequality are bounded. Indeed,

|tr(W∆iV
−1
0 ∆i)| = |tr(V−1

0 X(X′V−1
0 X)−1X′V−1

0 ∆iV
−1
0 ∆i)|

≤ p‖V−1/2
0 ∆iV

−1
0 X(X′V−1

0 X)−1/2‖2

≤ p λ−2
min(V0) ‖∆i‖2 ‖V−1/2

0 X(X′V−1
0 X)−1/2‖2

By assumptions (A1) and (A4), all the terms in this last product are bounded. In a similar

way it can be proved that |tr (W∆iP0∆i)| is bounded. Therefore

lim
D→∞

D−1

(
Iii −

1

2
tr(V−1

0 ∆i)
2

)
= 0.

Taking advantage of the block-diagonal structure of the matrices V−1
0 and ∆i, it is easy to

see that, under assumptions (A1) and (A4), tr(V−1
0 ∆i)

2 is of exact order D. This implies

the statement in (20).
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Let us now prove condition (ii). It suffices to consider g ≥ 2. By (16) and Minkowski

inequality it can be seen that

E

(
1√
D

∣∣∣∣∂lP
∂θi

∣∣∣∣)g

=
1

Dg/22g
E|ξ′Mξ − tr(V−1

0 ∆i)|g (22)

≤ 1

Dg/22g
[(E|ξ′Mξ − E(ξ′Mξ)|g)1/g

+|tr(P0∆i)− tr(V−1
0 ∆i)| ]g, (23)

where M = V
1/2
0 P0∆iP0V

1/2
0 and ξ is a random vector with distribution Nn(0, In). For

i = 1, 2 the term in (23) can be bounded in the following way

|tr(P0∆i)− tr(V−1
0 ∆i)| ≤ p ‖Bi‖2λ−1

min(V0) ‖V−1/2
0 X(XV−1

0 X)−1/2‖2, (24)

with Bi given by ∆i = B′
iBi. For i = 3 the proof is analogous. Using (A1) and (A4) we

have that all the terms appearing in the product on the right-hand side of (24) are bounded.

On the other hand, by Lemma 5.1 in Das et al. (2004), we have that, for some constant c

depending only on g,

E|ξ′Mξ − E(ξ′Mξ)|g ≤ c‖M‖g
2 = c trg/2(∆iP0)

2.

This, together with the fact that tr(∆iP0)
2 is O(D), implies that the left-hand side of (22)

is bounded.

Concerning the second-order derivatives of the profile log-likelihood, remark that, by (17)

and (19), we intend to prove that the term

1

Dg
E|y′P0∆iP0∆jP0y − tr(P0∆iP0∆j)|g, (25)

is bounded. Indeed, denoting M = V
1/2
0 P0∆jP0∆iP0V

1/2
0 the expression in (25) can be

rewritten as
1

Dg
E|ξ′Mξ − E(ξ′Mξ)|g ≤ 1

Dg
c‖M‖g

2,

where once more we have used Lemma 5.1 in Das et al. (2004). By applying Lemma 5.2

of the same authors it is easy to show that ‖M‖2 ≤ ‖∆iP0‖2‖∆jP0‖2 = O(D) and this

finishes the proof that (25) is bounded.

Finally it just remains to prove the claim, stated in (ii), about the third-order partial

derivatives of lP . By (18) and Minkowski inequality, it suffices to bound the following two

terms, for i, j, k = 1, 2, 3,

1

Dg
E

(
sup
θ∈Sδ

|y′P∆kP∆jP∆iPy|
)g

(26)

9



and
1

D
sup
θ∈Sδ

|tr(V−1∆kV
−1∆jV

−1∆i)|. (27)

The second term can be bounded noting that

|tr(V−1∆kV
−1∆jV

−1∆i)| ≤ r
D∑

d=1

nd‖V−1
d ‖3‖‖∆di‖‖∆dj‖‖∆dk‖.

We know that ‖∆di‖ = O(1), i = 1, 2, 3 and ‖V−1
d ‖ ≤ λ−2

min(Vd). When φ ≥ 0, it holds that

λmin(Vd) ≥ σ2 − φ. By taking δ > 0 small we can get σ2 − φ > c > 0, for a constant c

independent of θ. For φ < 0, the term λmin(Vd) can be proved to be bounded away from

zero analogously. This means that (27) is O(1).

Concerning the term (26), there exists an n× (n−p) matrix F, not depending on θ, such

that F′X = 0, rg(F) = n− p and P = F(F′VF)−1F′ (see Searle et al. 1992, p. 451). Let us

define z = F′y, H = (F′VF)−1 and Ki = F′∆iF, for i = 1, 2, 3. Then, we have

y′P∆kP∆jP∆iPy = z′HKkHKjHKiHz ≤ |z′H1/2
0 |2‖H−1/2

0 HKkHKjHKiHH
−1/2
0 ‖.

Therefore,

E

(
sup
θ∈Sδ

|y′P∆kP∆jP∆iPy|
)g

≤
(

sup
θ∈Sδ

‖H−1/2
0 HKkHKjHKiHH

−1/2
0 ‖

)g

E (|z′H0z|g) . (28)

To see that E(|z′H0z|g) = O(Dg), it suffices to observe that z′H0z follows a X 2
n−p distribu-

tion. Finally it just remains to check that the first term on the right-hand side of (28) is

bounded. Indeed, observe that

‖H−1/2
0 HKkHKjHKiHH

−1/2
0 ‖ = ‖V0P∆kP∆jP∆iP‖ ≤ ‖V0‖‖P∆k‖‖P∆j‖P∆i‖‖P‖.

By assumptions (A1) and (A4), we know that ‖V0‖ is bounded. It can also be seen that

‖P∆i‖ ≤ λ−1
min(V) λ1/2

max(∆
2
i ),

which is bounded for δ sufficiently small. 2

Lemma 2 : Let the multivariate model (1)–(3) satisfy assumptions (A1)–(A5) and let the

parameter space be

Θ̃ = Θ ∩ {θ = (σ2
u, σ

2, φ) : σ2
u ≤ Cu, σ2 ≤ Ce, ce − σ2(r − 1)−1 ≤ φ ≤ σ2 − c′e}

10



for some fixed constants Cu, Ce, ce, c
′
e > 0. Assume that θ0 ∈ int(Θ̃). Then there exists a

constant δ > 0 such that each of the components of the BLUP td = (td1, . . . , tdr)
′, given in

(7) with θ = θ0, can be expressed in the form

tdk = tdk(θ0,y) =
K∑

q=1

λkq(θ0)Wq(y), k = 1, . . . , r, (29)

where K = O(D), and the following terms are bounded

max
1≤q≤K

E|Wq(y)|b, max
1≤q≤K

sup
θ∈Θ̃

|λkq(θ)|,
K∑

q=1

∣∣∣∣∣ ∂λkq

∂θ

∣∣∣∣
θ0

∣∣∣∣∣ ,
K∑

q=1

sup
|θ−θ0|<δ

∥∥∥∥∂2λkq

∂θ2

∥∥∥∥ , (30)

for all b > 0.

Proof: Let xdjk denote the k-th row of Xdj and Q = (X′V−1X)−1. Then

tdk(θ,y) = a′(θ)y + b′(θ)yd + c′(θ)y,

where a, b and c are (n× 1), (rnd × 1) and (n× 1) vectors respectively given by

a′(θ) =
1

Nd

∑
j /∈sd

xdjk QX′V−1,

b′(θ) =

(
1− nd

Nd

)
σ2

u1
′
r nd

V−1
d ,

c′(θ) = −
(

1− nd

Nd

)
σ2

u1
′
r nd

V−1
d XdQX′V−1.

Since the terms λkq in (29) are actually given by the components of vectors a, b and c, we

have K = 2n + rnd, which is O(D) under assumptions (A1) and (A4). On the other hand,

each Wq(y) in (29) is just a component of y. The normality assumption of the model yields

the boundedness of the first term in (30).

It is clear that the second term in (30) is bounded if the suprema over θ of |a|, |b| and

|c| respectively are bounded. To check this point, observe that

|a| ≤ 1

Nd

∑
j /∈sd

|xdjk|λ1/2
max(Q) λ

−1/2
min (V),

|b| ≤ σ2
u r nd λ−1

min(Vd)

|c| ≤ σ2
u r nd λ

−3/2
min (Vd)‖Xd‖λ1/2

max(Q),

11



with λmin(Vd) ≥ λmin(V), and where λmin(V) is bounded away from zero over Θ̃. Further,

λmax(Q) =

(
min

v

v′X′V−1Xv

v′v

)−1

≤ λmax(V)λ−1
min(X

′X). (31)

This means that, by assumptions (A1)–(A3), |a|, |b| and |c| are uniformly bounded over

θ ∈ Θ̃.

In order to see that the third term in (30) is bounded, it is enough to show that∣∣∣∣∣ ∂am

∂θi

∣∣∣∣
θ0

∣∣∣∣∣ = O(D−1),

∣∣∣∣∣ ∂bm

∂θi

∣∣∣∣
θ0

∣∣∣∣∣ = O(1),

∣∣∣∣∣ ∂cm

∂θi

∣∣∣∣
θ0

∣∣∣∣∣ = O(D−1),

for i = 1, 2, 3 and any value of m, where a = (am)n
m=1, b = (bm)rnd

m=1 and c = (cm)n
m=1.

Indeed, if we denote by em the (n× 1) unit vector in the direction m, we have∣∣∣∣∣ ∂am

∂θi

∣∣∣∣
θ0

∣∣∣∣∣ ≤ sup
j /∈sd

|xdjk| ‖Q0‖|X′V−1
0 ∆iP0em|,

where Q0 = (X′V−1
0 X)−1. By the definition of P, we have

|X′V−1
0 ∆iP0em| ≤ ‖X′

dV
−1
0d ∆idV

−1
0d ‖+ ‖X′V−1

0 ∆iV
−1
0 X‖‖Q0‖‖X′

dV
−1
0d ‖.

But ‖X′
dV

−1
0d ∆idV

−1
0d ‖ and ‖X′

dV
−1
0d ‖ are bounded under assumptions (A1), (A3) and (A4),

while ‖Q0‖ = O(D−1) by assumption (A2) and inequality (31). Further,

‖X′V−1
0 ∆iV

−1
0 X‖ ≤

D∑
d=1

‖X′
dV

−1
0d ∆idV

−1
0d Xd‖ = O(D),

and this implies the desired result. The derivatives of bm and cm can be bounded following

similar arguments.

Finally we will focus on the last term of (30). Observe that it suffices to see that, for

i, ` = 1, 2, 3 and any m,

sup
|θ−θ0|<δ

∣∣∣∣ ∂2am

∂θi∂θ`

∣∣∣∣ = O(D−1), sup
|θ−θ0|<δ

∣∣∣∣ ∂2bm

∂θi∂θ`

∣∣∣∣ = O(1) and sup
|θ−θ0|<δ

∣∣∣∣ ∂2cm

∂θi∂θ`

∣∣∣∣ = O(D−1).

Since the second derivative of a is given by

∂2a′

∂θi∂θ`

=
1

Nd

∑
j /∈sd

xdjkQX′V−1(∆iP∆`P + ∆`P∆iP),

we have ∣∣∣∣ ∂2am

∂θi∂θ`

∣∣∣∣ ≤ sup
j /∈sd

|xdjk| ‖Q‖
(
|X′V−1∆iP∆`Pem|+ |X′V−1∆`P∆iPem|

)
.

12



On the one hand, under assumptions (A1)-(A4), supj /∈sd
|xdjk| is bounded and the supremum

of ‖Q‖ is O(D−1). On the other hand, we have

∆iP∆`P = ∆iV
−1∆`V

−1 −∆iV
−1∆`V

−1XQX′V−1 −∆iV
−1XQX′V−1∆`V

−1

+∆iV
−1XQX′V−1∆`V

−1XQX′V−1.

Let us study each term. For the first one observe that

|X′V−1∆iV
−1∆`V

−1em| ≤ ‖X′
dV

−1
d ∆idV

−1
d ∆`dV

−1
d ‖ = O(1).

for some d. By similar arguments, and taking into account that terms like ‖X′V−1∆`V
−1X‖

are O(D), the remaining terms in |X′V−1∆iP∆`Pem| can be bounded.

Regarding b, when i 6= 1 and ` 6= 1, its second derivative has the following expression

∂2b′

∂θi∂θ`

=

(
1− nd

Nd

)
σ2

u1
′
rnd

V−1
d (∆idV

−1
d ∆`d + ∆`dV

−1
d ∆id)V

−1
d ,

which can be bounded as before. For i = 1 or ` = 1, and for the second derivative of c the

proofs are analogous. 2

The following result provides an approximation up to [o(D−1)]r×r to the second term on

the right-hand side of (11). Consequently, the decomposition given in (14) for the MSE of

the EBLUP, t̂d, holds.

Theorem 1 : Under the hypotheses of Lemma 2, for hdk, s and I as defined in (13),

td = (td1, . . . , tdr)
′ defined in (7) and t̂d = (t̂d1, . . . , t̂dr)

′, it holds that

E[(t̂dk − tdk)(t̂d` − td`)] = E[(h′dkI−1s)(h′d`I−1s)] + o(D−1), k, ` = 1, . . . , r. (32)

Proof: For any fixed 0 < η < 1, the term on the left-hand side of (32) can be decomposed

as

E[(t̂dk − tdk)(t̂d` − td`)] = E[(t̂dk − tdk)(t̂d` − td`)1B] + E[(t̂dk − tdk)(t̂d` − td`)1Bc ], (33)

where B was the set introduced in Lemma 1 and 1B denotes the indicator function of B. Using

the expression of tdk stated in (29), bounding |λkq| uniformly in θ ∈ Θ̃, for q = 1, . . . , K and

k = 1, . . . , r by a constant M > 0, and applying Hölder inequality, we get

E[(t̂dk − tdk)(t̂d` − td`)1Bc ] ≤ 4M2

[
K∑

q=1

E1/2(W 2
q (y)1Bc)

]2

. (34)
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Let b > 2 be a constant. By Lemma 2 there exists a constant W > 0 bounding E(|Wq(y)|b)
for all q = 1, . . . , K. Then Hölder inequality and Lemma 1 with η = 2/3 and ζ = 1/4 yield

E(W 2
q (y)1Bc) ≤ W2/b(P (Bc))1−2/b = O(D− g

8(1− 2
b )).

Plugging this expression into (34) and using the fact that K = O(D), we arrive to

E[(t̂dk − tdk)(t̂d` − td`)1Bc ] = O(D2− g
8
(1− 2

b
)).

Observe that g > 0 and b > 2 can be taken as large as desired so that this term is o(D−1).

Regarding the first term on the right-hand side of (33), consider the following Taylor

series expansion on the set B

t̂dk − tdk = h′dk(θ̂ − θ0) + rk, (35)

where, by Lemma 1, rk satisfies |rk| ≤ uk|θ̂ − θ|2 ≤ D−ηuk with

uk =
1

2

K∑
q=1

sup
|θ−θ0|<D−η/2

∥∥∥∥∂2λkq(θ)

∂θ2

∥∥∥∥ |Wq(y)|.

By Lemma 2, E(u2
k) is bounded. Now, applying Lemma 1, we get

t̂dk − tdk = h′dkI−1s + r∗k,

where |r∗k| ≤ D−η(|hdk|u+uk) = D−ηu∗k, with E[(u∗k)
2] bounded. This holds for k = 1, . . . , r.

Thus,

E[(t̂dk − tdk)(t̂d` − td`)1B] = E[(h′dkI−1s)(h′d`I−1s)1B]

+E(h′dkI−1s r∗` 1B) + E(h′d`I−1s r∗k 1B) + E(r∗k r∗` 1B). (36)

It is clear that E(r∗kr
∗
` ) = O(D−2η). On the other hand, for the second and third terms on

the right-hand side of (36), Hölder inequality leads to

E(h′dkI−1s r∗`1B) ≤ E1/4|hdk|4 E1/4|I−1s|4 E1/2|r∗` |2, (37)

for any k, ` = 1, . . . , r, where we know that E1/2(r∗` )
2 = O(D−η). Now by assumption (A5),

Hölder inequality applied to E|D−1/2s|4 and Lemma 2, we get

E1/4|I−1s|4 ≤ D1/2 ‖I−1‖ E1/4|D−1/2s|4 = O(D−1/2).

The first expectation on the right of (37) can be bounded applying Hölder inequality and

Lemma 2. Thus

E(h′dkI−1s r∗`1B) = O(D−1/2−η), k, ` = 1, . . . , r. (38)
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Finally, the first term on the right-hand side of (36) can be expressed in the form

E[(h′dkI−1s)(h′d`I−1s)1B] = E[(h′dkI−1s)(h′d`I−1s)]− E[(h′dkI−1s)(h′d`I−1s)1Bc ]. (39)

For the last term on the right-hand side of (39), proceeding as before, we have

E[(h′dkI−1s)(h′d`I−1s)1Bc ] ≤ E1/2[(h′dkI−1s)21Bc ] E1/2[(h′d`I−1s)21Bc ] = O(D−1−g/16),

which implies that

E[(t̂dk − tdk)(t̂d` − td`)1B] = E[(h′dkI−1s)(h′d`I−1s)] + o(D−1). 2

The following result is a technical lemma to be used in the proof of Theorem 2.

Lemma 3 : Let u ∼ Nk(0,Σ), wij = λ′iju, qj = u′Aju, i = 1, 2, j = 1, . . . , s, where

λij and Aj are constant k × 1 vectors and k × k symmetric matrices respectively, and Σ is

positive definite. Then, for wi = (wi1, . . . , wis)
′ and q = (q1, . . . , qs)

′, the following equalities

hold

(i) E[w′
1(q − Eq)w′

2a] = 2(
∑s

`=1 alλ
′
2`)Σ(

∑s
j=1 AjΣλ1j), where a = (a1, . . . , as)

′ is any

constant vector;

(ii) E[w′
1(q − Eq)w′

2(q − Eq)] = tr[Cov(w1,w2)Var(q)] + 4
∑s

j=1

∑s
`=1 λ′1jΣ(AjΣA` +

A`ΣAj)Σλ2`.

Proof:

(i) It is a direct consequence of Lemma 3.1(i) in Das et al. (2004).

(ii) It can be seen that

E[w′
1(q− Eq)w′

2(q− Eq)]

=
s∑

j=1

s∑
`=1

E[w1j(qj − Eqj)w2`(q` − Eq`)]

=
s∑

j=1

s∑
`=1

λ′1jE[u(u′Aju− E(u′Aju))(u′A`u− E(u′A`u))u′]λ2`

=
s∑

j=1

s∑
`=1

2tr(AjΣA`Σ)λ′1jΣλ2` + 4
s∑

j=1

s∑
`=1

λ′1jΣ(AjΣA` + A`ΣAj)Σλ2`

where we have used Lemma 3.1 (iii) in Das et al. (2004). 2
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The following result provides an approximation to the second term on the right-hand

side of (14).

Theorem 2 : Under the same hypotheses of Theorem 1, the following equality holds

E[(h′dkI−1s)(h′d`I−1s)] = tr

(
∂γ ′d
∂θ

V
∂γd

∂θ
I−1

)∣∣∣∣
θ0

+ o(D−1), k, ` = 1, . . . r, (40)

where γd = (1− nd/Nd)σ
2
uV

−1md and md is the d-th column of Z.

Proof: Let us first compute the expression for hdk. Observe that we can write

tdk = Kkβ̃ + γ ′d(y −Xβ̃)

= Kkβ + Kk(X
′V−1X)−1X′V−1v + γ ′dVPv,

where Kk is the k-th row of matrix K in (9) and v = Zu + e. This yields

∂tdk

∂θj

∣∣∣∣
θ0

=

(
f ′kj +

∂γ ′d
∂θj

∣∣∣∣
θ0

)
v,

with

f ′kj = −(Kk − γ ′d|θ0
X)(X′V−1

0 X)−1X′V−1
0 ∆jP0 −

∂γ ′d
∂θj

∣∣∣∣
θ0

X(X′V−1
0 X)−1X′V−1

0 ,

for k = 1, . . . , r, j = 1, 2, 3, and

∂γ ′d
∂θj

= m′
dV

−1

(
∂σ2

u

∂θj

In − σ2
u∆jV

−1

)(
1− nd

Nd

)
, j = 1, 2, 3.

Thus we have obtained that hdk = Dkv = (Fk + ∂γ ′d/∂θ|θ0
)v, where Fk is the matrix whose

j-th row is given by f ′kj. Observe also that s = (q− Eq)/2 + ν, with qi = v′P0∆iP0v and

νi = (tr(P0∆i)− tr(V−1
0 ∆i))/2, i = 1, 2, 3.

If we denote wk = I−1hdk = I−1Dkv, the left-hand side of (40) can be written as

E[(h′dkI−1s)(h′d`I−1s)] =
1

4
E[w′

k(q− Eq)w′
`(q− Eq)]

+
1

2
E[w′

kν w′
`(q− Eq)] +

1

2
E[w′

k(q− Eq)w′
`ν] + E[w′

kν w′
`ν]. (41)

Now we apply Lemma 3(ii) to the first term on the right-hand side of (41)

E[w′
k(q− Eq)w′

`(q− Eq)] = tr[Cov(wk,w`)Var(q)]

+4
3∑

i=1

3∑
j=1

λ′kiV0P0(∆iP0V0P0∆j + ∆jP0V0P0∆i)P0V0λ`j. (42)
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where λkj is in this case the j-th row of I−1Dk. Under the hypotheses of the theorem we

have that ‖I−1‖ = O(D−1), ‖V−1
0 ‖ = O(1), ‖Dk‖ = O(1) for all k and ‖∆i‖ = O(1) for all

i. This implies that the last term in (42) is O(D−2). On the other hand, by (19) and (21),

it is easy to check that

1

4
tr[Cov(wk,w`)Var(q)] = tr(I−1DkV0D

′
`) + O(D−2)

= tr

(
I−1∂γ ′d

∂θ
V

∂γd

∂θ

)∣∣∣∣
θ0

+ tr
(
I−1FkV0F

′
`

)
(43)

+tr

(
I−1FkV

∂γd

∂θ

)∣∣∣∣
θ0

+ tr

(
I−1∂γ ′d

∂θ
VF′

`

)∣∣∣∣
θ0

+ O(D−2). (44)

By the assumptions in the theorem and using that ‖Fk‖ = O(D−1/2), the second term in

(43) is bounded as

tr
(
I−1FkV0F

′
`

)
≤ 3‖I−1FkV0F

′
`‖ ≤ 3λmax(V0) ‖Fk‖ ‖F′

`‖ ‖I−1‖.

On the other hand, since ‖∂γd/∂θ‖ is bounded for θ = θ0, it can be seen that each of the

two terms in (44) is o(D−1). Thus

1

4
tr[Cov(wk,w`)Var(q)] = tr

(
∂γ ′d
∂θ

V
∂γd

∂θ
I−1

)∣∣∣∣
θ0

+ o(D−1).

To check that the last three terms in (41) are O(D−2) it suffices to apply Lemma 3(i) and

and proceed as before. 2

5 A Monte Carlo Experiment with Real Data: Aus-

tralian Farms

From the Australian Agricultural and Grazing Industries Survey (AAGIS) there are data

available for 1652 farms. The type of small areas considered in this study are within-state

regions (corresponding to different farming areas), which will be indexed by d ∈ {1, . . . , D},
with D = 29. The regions are located in seven states of Australia. Each farm in the sample

was assigned a weight depending on the number of farms it represented in the region.

The variables recorded consisted of financial and production aspects of the observed farm.

In particular, here we have considered the vector of responses y = (y1, y2, y3)
′, where y1 is

the logarithm of the variable “equity”, the difference (in A$) between the value of the farm

business and its debt, and y2 and y3 are the logarithm of the total cash costs and receipts

respectively (in A$) of the farm over the surveyed year. The four auxiliary variables will be
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the logarithm of the total area (in hectares) of the farm, the logarithm of its cultivated area,

of the number of beef cattle and of the number of sheep in the farm.

The AAGIS data were used to generate, via bootstrap, a global population of 81982

farms. The sampling was performed with replacement and with probability proportional

to the sample weight of the farm within each region. From the global population we have

extracted 1000 independently selected stratified Monte Carlo samples, each of size 1652. The

small area sample sizes ni, i = 1, . . . , 29, were chosen equal to those in the original AAGIS

data set and are displayed in Table 1.

For each of the Monte Carlo samples the goal was to predict the regional mean as given

in (5), to implement the estimation of the MSE obtained in the previous section and to

compare it with the real squared error which can be computed using the global population

data. The results appearing in Table 1 give, for each region, the average values (over the

Monte Carlo samples) of the difference between the estimated MSE and the real squared

error. If we denote by A this (3× 3) matrix of averaged differences in region d, the d-th row

of Table 1 contains the number of individuals sampled in that region (nd), the proportion

of farms in the global (bootstrapped) population that belong to the region (weight) and

components A11 A12, A13, A22, A23 and A33 of matrix A. It can be seen that the regions

with smaller weight in the global population are the ones yielding larger differences, that is,

worse estimation of the squared error. But, in general terms, the approximation provided

by (15) is satisfactory.

Acknowledgements. We are grateful to Prof. R. L. Chambers for providing us with the

data used in this work.
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Table 1: Difference between estimated MSE and real squared error in AAGIS data

d nd Weight A11 A12 A13 A22 A23 A33

1 55 0.024 0.0475 -0.0863 -0.1101 -0.0382 -0.0247 -0.0158
2 103 0.067 -0.0020 -0.1494 -0.1461 -0.0736 -0.0711 -0.0753
3 60 0.033 0.1470 -0.2876 -0.2168 -0.0108 -0.0530 -0.0829
4 60 0.033 0.2081 -0.2244 -0.2209 -0.0123 -0.0081 -0.0121
5 34 0.035 1.5828 -1.0776 -0.8660 0.3955 0.2816 0.1840
6 80 0.055 0.0730 -0.1678 -0.1570 -0.0436 -0.0419 -0.0499
7 62 0.022 0.1178 -0.2355 -0.2362 -0.0603 -0.0572 -0.0621
8 74 0.037 0.0603 -0.1768 -0.2204 -0.0899 -0.0695 -0.0473
9 81 0.085 0.1973 -0.2855 -0.1959 0.0255 -0.0282 -0.0650
10 79 0.031 0.1379 -0.2217 -0.2421 -0.0582 -0.0441 -0.0370
11 123 0.079 -0.0737 -0.1066 -0.1115 -0.0948 -0.0884 -0.0880
12 77 0.133 0.5723 -0.4431 -0.4119 0.0820 0.0687 0.0507
13 51 0.038 0.2907 -0.4109 -0.2843 0.0429 -0.0338 -0.0864
14 73 0.048 0.5061 -0.3964 -0.3773 0.0618 0.0554 0.0443
15 95 0.056 -0.1091 -0.1414 -0.1450 -0.1270 -0.1218 -0.1238
16 36 0.005 -0.0176 -0.1676 -0.1859 -0.0749 -0.0592 -0.0621
17 117 0.055 -0.1224 -0.1556 -0.1706 -0.1468 -0.1377 -0.1335
18 30 0.012 0.1470 -0.2708 -0.3131 -0.0863 -0.0595 -0.0476
19 83 0.065 -0.0660 -0.1019 -0.1069 -0.0896 -0.0786 -0.0796
20 19 0.006 0.2386 -0.3635 -0.4143 -0.1289 -0.1085 -0.0987
21 51 0.019 -0.0977 -0.1217 -0.1091 -0.1052 -0.0989 -0.1061
22 30 0.009 -0.1670 -0.1708 -0.1493 -0.0899 -0.1846 -0.1438
23 25 0.004 0.2710 -0.3664 -0.2821 0.0192 -0.0089 -0.0698
24 47 0.027 0.2421 -0.2775 -0.3155 -0.0470 -0.0155 0.0005
25 36 0.007 0.2757 -0.4046 -0.2174 0.0755 -0.0404 -0.1008
26 30 0.002 0.9564 -0.7305 -0.8043 0.1499 0.1661 0.1247
27 10 0.001 -0.1721 -0.2399 -0.3072 -0.2366 -0.2314 -0.2346
28 40 0.009 0.3979 -0.3995 -0.4421 -0.0074 0.0133 0.0194
29 6 0.001 0.6029 -1.4085 -0.3500 0.6448 -0.4141 -0.4076
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