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Abstract

A recent and highly attractive area of research in statistics is the analysis of functional
data. In this paper a new definition of depth for functional observations is introduced based
on the notion of “half-graph” of a curve. It has computational advantages with respect
to other concepts of depth previously proposed. The half-graph depth provides a natural
criterion to measure the centrality of a function within a sample of curves. Based on this
depth a sample of curves can be ordered from the center outward and L-statistics are defined.
The properties of the half-graph depth, such as the consistency and uniform convergence,
are established. A simulation study shows the robustness of this new definition of depth
when the curves are contaminated. Finally, real data examples are analyzed.
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1 Introduction

The analysis of functional data is one of the topics that, within the field of statistics, is receiving
a steadly increasing attention in recent years (see for example Ramsay and Silverman (1997)). A
fundamental task in functional data analyisis is to provide a natural ordering within a sample of
curves, thus making possible to define ranks and L-statisitcs. In this paper we introduce a new
definition of depth for functional observations based on the concepts of hypergraph and hypo-
graph of a curve. This functional depth provides a criterion to order the sample of curves from
center outward. The notion of statistical depth was first analyzed for multivariate observations
and different definitions of depth have been studied in the literature: Mahalanobis (1936), Tukey
(1975), Liu (1990), Oja (1983), Singh (1991), Donoho and Gasko (1992), Zuo and Serfling (2000)
and Zuo (2003), among others. These multivariate depths are not adequate for high-dimensional
data, therefore, their applicability is restricted to vector observations with low dimensions. An
advantage of the graph-based depth is that it is computationally not very intensive and can
be easily adapted to high-dimensional data. The paper is organized as follows. In the next
(second) section we define the new concept of functional depth, referred as half-graph depth SH .
In section three we analyze the finite-dimensional version of SH and some of its properties, such
as the consistency and the uniform convergence, are established. We extend these results to the
infinite-dimensional case in section four. Section five deals with a generalized version of SH that
is more convenient for non-smooth functional data. Throughout section six simulated curves are
considered to show the performance of these functional depths and, finally, in the last section,
real data examples are analyzed.

2 Half-graph depth

Let C(I) be the space of continuous functions defined on a compact interval I. Consider a
stochastic process X with sample paths in C(I) with distribution P . Let x1(t), x2(t), .., xn(t) be
a sample of curves from P . The graph of a function x in C(I) will be denoted as G(x), thus

G(x) = {(t, x(t)) , t ∈ I} .

Define the hypograph (hg) and the hypergraph (Hg) of a function x in C(I) as

hg(x) = {(t, y) ∈ I ×R : y ≤ x(t) } ,
Hg(x) = {(t, y) ∈ I ×R : y ≥ x(t) } .

Figures 1 and 2 give, respectively, the hypograph and hypergraph of a curve x.

Definition 1 The half-graph depth at x with respect to a set of functions x1(t), ..., xn(t) is

Sn,H(x) = min {G1n(x), G2n(x)} ,
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Figure 1: Hypograph of the function x.
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Figure 2: Hypergraph of the function x.
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where

G1n(x) =

nP
i=1
I(G(xi) ⊂ hg(x))

n

=

nP
i=1
I(xi(t) ≤ x(t), t ∈ I)

n
,

G2n(x) =

nP
i=1
I(G(xi) ⊂ Hg(x))

n

=

nP
i=1
I(xi(t) ≥ x(t), t ∈ I)

n

and I(A) is the indicator function of the set A.

Hence, the half-graph sample depth at x is the minimum between the proportion of functions
of the sample whose graph is in the hypograph of x and the corresponding proportion for the
hypergraph of x.

The population version of Sn,H(x) is

SH(x) = min {G1(x),G2(x)} ,

where

G1(x) = P (G(X) ⊂ hg(x))
= P (X(t) ≤ x(t), t ∈ I) ,

and

G2(x) = P (G(X) ⊂ Hg(x))
= P (X(t) ≥ x(t), t ∈ I) .

The symmetry of these expressions provides an alternative way of defining the half-graph depth
at a point x with respecto to P,

SH(x) = min {DG1(x),DG2(x)} ,

where
DG1(x) = P (G(x) ⊂ Hg(X))

and
DG2(x) = P (G(x) ⊂ hg(X)).
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Figure 3: Daily temperatures during one year in 35 weather stations in Canada; the curve which
maximizes the depth Sn,H is represented in red.

The sample version of this second way of defining the half-graph depth is obtained substituting
P by the empirical distribution Pn and coincides with the one proposed in Definition 1.

A deepest curve, or SH−sample median b�n, is a curve from the sample which maximizes the
half-graph depth, b�n = argmax

x∈{x1,...,xn}
Sn,H(x)

and the SH−population median is defined as a curve in C(I) which maximizes SH . Moreover,
if the sample of curves x1, x2, ..., xn are ordered according to decreasing values of Sn,H(xi) we
obtain order statistics x(1), x(2), ..., x(n), where x(1) denotes the deepest observation and x(n) the
less deepest one. Figure 3 shows a real data example that consists of the daily temperatures
during one year in thirty five different weather stations in Canada. The curve represented in
red color is the deepest one.

3 Finite-dimensional version

The concepts of hypograph and hypergraph introduced in the previous section can be easily
adapted to finite-dimensional data. Consider each point in Rd as a real function defined in the
set of indexes {1, ..., d} , the hypograph and hypergraph of a point x = (x(1), x(2)..., x(d)) can
be expressed respectively as

hg(x) = {(k, y) ∈ {1, 2, ..., d} ×R : y ≤ x(k)}
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Figure 4: Hypograph and hypergraph of a point in R4 using parallel coordinates.

and
Hg(x) = {(k, y) ∈ {1, 2, ..., d} ×R : y ≥ x(k)} .

Figure 4 gives the hypograph and the hypergraph of a point x = (3, 2, 3, 1) ∈ R4 using
parallel coordinates (Inselberg, 1985). In Figure 5 two points belonging to the hg(x) and Hg(x)
are represented (using green color). An alternative interpretation can be obtained using the
cartesian representation of the points in Rd (with d ≤ 3). Figure 6 shows the hypograph and
hypergraph of a point x in R2 using its representation in cartesian coordinates.

LetX be a d-dimensional random variable with distribution function F. X ≤ x andX ≥ x are
the abreviations for {X(k) ≤ x(k), k = 1, ..., d} and {X(k) ≥ x(k), k = 1, ..., d} , respectively. If
we particularize the half-graph depth to the finite-dimensional case, we obtain

SH(x,F ) = SH(x) = min {P (X ≤ x), P (X ≥ x)}
= min {FX(x), F−X(−x)} = min {FX(x), FY (y)} ,

where Y = −X and y = −x.
Let x1, ..., xn be a random sample from the variable X, the sample version of the half-graph

depth is

Sn,H(x) = min


nP

i=1
I (xi ≤ x)
n

,

nP
i=1
I (xi ≥ x)
n


= min {FXn(x), FYn(y)} .

Figure 7 shows 50 points simulated from a normal bivariate distribution and it ilustrates the
way of computing the half-graph depth Sn,H of a point from the sample represented in red. The
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Figure 5: The points (2, 1, 1.3, 0.8) and (3.1, 2.5, 3.2, 2) belonging to the hypograph and
hypergraph of x, appear respectively in green color.
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Figure 6: Finite-dimenisonal version of the hypergraph and the hypograph of a point x ∈ R2.
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Figure 7: Half-graph depth of a point from a sample of 50 points from a normal distribution.

proportion of points from the sample in the upper right cuadrangle (hypergraph) is 3/50 and in
the lower left cuadrangle (hypograph) is 30/50; hence, the half-graph depth of the point in red is
3/50. In Figure 8 the deepest point from the same sample appears in red. We also illustrate the
way of computing the depth of this point. The proportion of data in the upper right cuadrangle
is 12/50 and in the lower left cuadrangle is 17/50; therefore, the half-graph depth of the deepest
point is 12/50.

The half-graph depth is invariant with respect to traslations and some types of dilations.
Let A be a positive (or negative) definite diagonal matrix and b ∈ Rd, then

SH(Ax+ b, FAx+b) = SH(x,F ).

In the following propositions we establish some other properties of this notion of depth.

Proposition 2 For d = 1 the half-graph depth SH(x) can be expressed as

SH(x) = min {P (X ≤ x) , 1− P (X < x)}
= min

©
F (x), 1− F (x−)ª

and is equivalent to Tukey’s halfspace depth. Moreover, the value that maximizes SH is the usual
median in R.

The half-graph depth decreases to zero when the point tends to infinity.

Proposition 3 (Vanishing at infinity) Let x ∈ Rd,

sup
kxk≥M

SH(x) −→ 0, when M →∞.
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Figure 8: Deepest point in red from a sample of 50 normal observations.

sup
kxk≥M

Sn,H(x)
a.s.−→ 0, when M →∞.

Note that the previous proposition implies that

SH(x) −→ 0, when kxk∞ → ∞,
Sn,H(x)

a.s.−→ 0, when kxk∞ → ∞.

Proposition 4 SH(·) is an upper semicontinuous function. Moreover, if F is absolutely con-
tinuous then SH(·) is continuous.

The proofs of Propositions 3 and 4 are postponed to next section, since they are particular
cases of the same properties in the functional case. In the next proposition we prove the uniform
convergence of Sn,H to its population version.

Proposition 5 Sn,H is uniformly consistent:

sup
x∈Rd

|Sn,H(x)− SH(x)| a.s.−→ 0, when n→∞.

Moreover, if SH(x) is uniquely maximized at � and �n is a sequence of random variables with
Sn,H (�n) = sup

x∈Rd

Sn,H(x), then

�n
a.s.−→ � , when n→∞.
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Proof. Applying Glivenko-Cantelli’s theorem in Rd, we have that

sup
x∈Rd

|FXn(x)− FX(x)| a.s.−→ 0, when n→∞

and
sup
y∈Rd

|FY n(y)− FY (y)| a.s.−→ 0, when n→∞.

Therefore,
sup
x∈Rd

|min {FXn
(x), FYn

(y)}−min {FX(x), FY (y)}|

≤ sup
x∈Rd

|FXn(x)− FX(x)|+ sup
y∈Rd

|FYn(y)− FY (y)| a.s.−→ 0.

The second part of the theorem is proven using arguments similar to the ones proposed by
Arcones et al. (1994) to show the consitency of the simplicial median. By Proposition 4, SH
is an upper semicontinuous function, then, lim sup

n→∞
SH(yn) ≤ SH(y), if yn →

n→∞ y. Also, using

that lim
kxk→∞

SH(x) = 0, and that SH(x) is uniquely maximized at � , we have that for every


 > 0, SH(h) − sup
|x−h|≥�

SH(x) > 0. Hence, for the following argument consider � = SH(h) −
sup

|x−h|≥�
SH(x) > 0.

To prove that �n
a.s.−→ � , it is sufficient to establish that

P

(
sup
n≥l

|�n − � | > 

)
−→ 0, when l→∞.

Recall that

P

(
sup
n≥l

|�n − � | > 

)
≤ P

(
sup
n≥l
(SH(�)− SH(�n)) ≥ �

)

≤ P

(
(sup
n≥l
(SH(�)− Sn,H(�)) + sup

n≥l
(Sn,H(�n)− SH(�n))) ≥ �

)

≤ P

(
sup
n≥l
(SH(�)− Sn,H(�)) ≥ �/2

)
+ P

(
sup
n≥l
(Sn,H(�n)− SH(�n)) ≥ �/2

)

≤ P

(
sup
n≥l

sup
x
|SH(x)− Sn,H(x)| ≥ �/2

)
+ P

(
sup
n≥l

sup
x
|Sn,H(x)− SH(x)| ≥ �/2

)

≤ 2P

(
sup
n≥l

sup
x
|Sn,H(x)− SH(x)| ≥ �/2

)
−→
l→∞

0.

Therefore, P

(
sup
n≥l

|�n − � | > 

)
−→ 0 when l→∞.
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4 Properties of the functional depth

Here, we extend some of the properties established in the previous section to the functional
version of the half-graph depth SH . Let x1, ..., xn be independent copies of a stochastic process
X in C(I) with distribution function P . Assume that the stochastic process X is tight, i.e.,

P (kXk∞ ≥M) −→ 0, when M →∞. (1)

The depth verifies a linear invariance property. Consider a and b functions in C(I), where
a(t) > 0 or a(t) < 0 for every t ∈ I. Then

SH(x,PX) = SH(ax+ b, PaX+b).

The half-graph depth of a function converges to zero when its norm tends to infinity.

Proposition 6 The depths SH and Sn,H verify that

sup
kxk∞≥M

SH(x) −→ 0, when M →∞, (2)

sup
kxk∞≥M

Sn,H(x)
a.s.−→ 0, when M →∞. (3)

Proof. The quantity sup
kxk∞≥M

SH(x) can be decomposed depending on where the supremum is

achieved in the following way:

sup
kxk∞≥M

SH(x) ≤ sup
kxk∞≥M ∩ kxk∞=supx(t)

SH(x) + sup
kxk∞≥M ∩ kxk∞=sup(−x(t))

SH(x).

Now,

sup
kxk∞≥M ∩ kxk∞=supx(t)

SH(x) ≤ sup
kxk∞≥M ∩ kxk∞=supx(t)

P (X(t) ≥ x(t))

≤ sup
kxk∞≥M ∩ kxk∞=supx(t)

P (kXk∞ ≥ kxk∞)

≤ P (kXk∞ ≥M)→ 0, when M →∞.

And also,

sup
kxk∞≥M ∩ kxk∞=sup(−x(t))

SH(x) ≤ sup
kxk∞≥M ∩ kxk∞=sup(−x(t))

P (X(t) ≤ x(t))

≤ sup
kxk∞≥M ∩ kxk∞=sup(−x(t))

P (−X(t) ≥ −x(t))

≤ sup
kxk∞≥M ∩ kxk∞=sup(−x(t))

P (k−Xk∞ ≥ kxk∞)

≤ P (k−Xk∞ ≥M)→ 0, when M →∞.
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To prove that Sn,H converges almost surely to zero we use the same decomposition as before.
Hence, here we just present a sketch of the proof. If kxk∞ = supx(t),

sup
kxk∞≥M ∩ kxk∞=sup(x(t))

Sn,H(x) ≤ sup
kxk∞≥M ∩ kxk∞=supx(t)

1

n

nX
i=1

I {Xi(t) ≥ x(t), t ∈ I}

≤ sup
kxk∞≥M ∩ kxk∞=supx(t)

1

n

nX
i=1

I {kXik∞ ≥ kxk∞}

≤ 1

n

nX
i=1

sup
kxk∞≥M

I {kXik∞ ≥ kxk∞} .

In what follows we show that XM = sup
kxk∞≥M

I {kXik∞ ≥ kxk∞} converges almost surely to 0
when M tends to infinity. Define YM = I {kXik∞ ≥M} , since

0 ≤ XM ≤ YM ,
it is sufficient to prove that YM

a.s.−→ 0, or equivalently that

P

Ã
sup
M≥l
I {kXik∞ ≥M} > 


!
−→ 0, when l →∞.

It is easy to see that the following inequality holds,

sup
M≥l
I {kXik∞ ≥M} ≤ I {kXik∞ ≥ l} ,

and it implies that

P

Ã
sup
M≥l
I {kXik∞ ≥M} > 


!
≤ P (I {kXik∞ ≥ l} > 
) =

= P (kXik∞ ≥ l) −→ 0, when l→∞.
Thus, we have proven that XM

a.s.−→ 0, whenM →∞. In case that kxk∞ = sup(−x(t)) the proof
is analogous.

Proposition 7 SH(·) is an upper semicontinuous functional. Moreover, if P has absolutely
continuous marginals, then SH(·) is continuous.

Proof. To prove that SH(·) is upper semicontinuous we show that lim sup
n→∞

SH(yn) ≤ SH(y),

when yn
k·k∞−→ y.

lim sup
n→∞

SH(yn) = lim sup
n→∞

min {G1(yn), G2(yn)}
= lim sup

n→∞
min {P (G(X) ⊂ hg(yn)), P (G(X) ⊂ Hg(yn))}

≤ min

½
lim sup

n→∞
P (G(X) ⊂ hg(yn)), lim sup

n→∞
P (G(X) ⊂ Hg(yn))

¾
≤ min {P (G(X) ⊂ hg(y)), P (G(X) ⊂ Hg(y))} = SH(y).
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To establish the continuity of the functional SH (·) in C(I) with respect to the supremum
norm is sufficient to prove that both G1(·) and G2(·) are continuous. In what follows we prove
that G1(·) is continuous; the case G2(·) is analogous. We have to see that if xn k·k∞−→ x then
|G1(xn)−G1(x)| −→

n→∞ 0. Recall that

|G1(xn)−G1(x)| = |P (G(X) ⊂ hg(xn))− P (G(X) ⊂ hg(x))|
≤ P (G(X) ⊂ hg(xn) ∩G(X) Ã hg(x))

+P (G(X) Ã hg(xn) ∩G(X) ⊂ hg(x)) .

Using that the marginals of the distribution P are continuous is easy to prove that

P (G(X) ⊂ hg(xn) ∩G(X) Ã hg(x)) −→
n→∞ 0 (4)

P (G(X) Ã hg(xn) ∩G(X) ⊂ hg(x)) −→
n→∞ 0.

Hence, G1 is a continuous function.

In the next theorem we establish the strong convergence of the sample half-graph depth.
To facilitate the reading, we use the abbreviation Xi ≤ x and Xi ≥ x to denote the events
{Xi(t) ≤ x(t), t ∈ I} and {Xi(t) ≥ x(t), t ∈ I} respectively.

Theorem 8 Sn,H is strongly consistent,

Sn,H(x)
a.s.−→ SH(x).

Proof. The sample half-graph depth Sn,H(x) can be expressed as

Sn,H(x) = min

Ã
1

n

nX
i=1

I {Xi ≤ x} , 1
n

nX
i=1

I {Xi ≥ x}
!
.

By the law of large numbers and the continuity of the minimum,

min

Ã
1

n

nX
i=1

I {Xi ≤ x} , 1
n

nX
i=1

I {Xi ≥ x}
!

a.s−→ min (P (X ≤ x), P (X ≥ x)) .

and then Sn,H(x)
a.s.−→ SH(x).

Finally, we establish the uniform consistency of Sn,H and the strong consistency of the
argument that maximizes Sn,H . The half-graph depth can be expressed as a transformation of
two empirical processes. We present first some notation; see, e.g., Pollard (1984). Let f be a
measurable functional from C(I) to R. The value Pnf is the expectation of f under the empirical
distribution and Pf is the expectation of f based on P :

Pnf =
1

n

nX
i=1

f(Xi)

13



and

Pf =

Z
f(X)dP.

For a subset E of C(I), consider the family of functions F1

F1 =
n
f (1)x : x ∈ E

o
, (5)

where f (1)x : E ⊂ C(I) −→ R is defined as

f (1)x (y) = I {x(t) ≤ y(t), t ∈ I} .

Therefore,

f (1)x (Xi) =

½
1,
0,

if x(t) ≤ Xi(t), for every t ∈ I
in any other case.

Analogously, define
F2 =

n
f (2)x : x ∈ E

o
, (6)

where f (2)x : E ⊂ C(I) −→ R,

f (2)x (y) = I {x(t) ≥ y(t), t ∈ I} .

Hence,

f (2)x (Xi) =

½
1,
0,

if x(t) ≥ Xi(t), for every t ∈ I
in any other case.

The following theorem provides the strong uniform consistency of the half-graph depth for classes
of functions F1 and F2 with finite bracketing number.

Theorem 9 If the classes of functions F1 and F2 defined in (5) and (6) have finite bracketing
number (N[ ] (
,F1, L1(P )) <∞, N[ ] (
,F2, L1(P )) <∞ ) for every 
 > 0, then

sup
x∈E

|Sn,H(x)− SH(x)| a.s.−→ 0.

Proof. The result is a consequence of the Glivenko-Cantelli Theorem (for example in van der
Vaart, 1998) and the following equation,

sup
x∈E

|Sn,H(x)− SH(x)| ≤ sup
f∈F1

|Pnf − Pf |+ sup
f∈F2

|Pnf − Pf | .

Since F1 and F2 have finite bracketing number, sup
x∈E

|Sn,H(x)− SH(x)| a.s.−→ 0.

We provide now some examples of families of functions F that verify the condition of finite
bracketing number. In addition, a continuity condition for the probability distirbution is needed.

14



C1 Given 
 > 0, there exists � > 0, such that for every pair of functions zi, zj ∈ C(I) if
kzi − zjk∞ ≤ � then P (zj ≤ X ≤ zi) ≤ 
.

Definition 10 A subset E of C(I) is equicontinuous if for each 
 > 0 there exists �(
) > 0 such
that for every x ∈ E and for every t, s ∈ I,

if |t− s| < � then |x(t)− x(s)| < 
.

In the next theorem we establish the uniform convergence of Sn,H(x) to its population version
over the set of functions E.

Theorem 11 If E ⊂ C(I) is equicontinuous and P is a probability distribution in C(I) verifying
condition C1, then Sn,H(x) is uniformly consistent at E:

sup
x∈E

|Sn,H(x)− SH(x)| a.s−→ 0, when n→∞. (7)

Proof. Without lost of generality, assume that I = [0, 1]. The following decomposition holds

sup
x∈E

|Sn,H(x)− SH(x)| ≤ sup
x∈E,kxk≤M

|Sn,H(x)− SH(x)|+ sup
x∈E,kxk≥M

|Sn,H(x)− SH(x)| .

Since the second term converges almost surely to zero when M tends to infinity by Proposition
6, given M sufficiently large, we just need to prove that

sup
x∈E,kxk≤M

|Sn,H(x)− SH(x)| a.s.−→ 0, when n→∞. (8)

We have that
sup

x∈EM

|Sn,H(x)− SH(x)| ≤

≤ sup
x∈EM

¯̄̄̄
¯1n

nX
i=1

I(x ≤ Xi)− P (x ≤ X)
¯̄̄̄
¯+ sup

x∈EM

¯̄̄̄
¯ 1n

nX
i=1

I(x ≥ Xi)− P (x ≥ X)
¯̄̄̄
¯ ,

where EM = {x ∈ E : kxk∞ ≤M}. If we consider the family of functions FM
1 =

n
f
(1)
x : x ∈ EM

o
and FM

2 =
n
f
(2)
x : x ∈ EM

o
, then

sup
x∈EM

|Sn,H(x)− SH(x)| ≤

≤ sup
f∈FM

1

|Pnf − Pf |+ sup
f∈FM

2

|Pnf − Pf | .

Therefore, it is sufficient to establish that the families FM
1 and FM

2 have finite bracketing number
(N[ ]

¡

,FM

1 , L1(P )
¢
<∞ and N[ ]

¡

,FM

2 , L1(P )
¢
<∞). We will only prove it for FM

1 , because
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the case FM
2 is analogous. Given 
 > 0, we need to construct a finite number of functions

z1, ..., zp that determine brackets covering the family FM
1 and verifying

P
¡
fzj − fzi

¢
= P (zj ≤ X ≤ zi) < 
. (9)

Since the condition C1 is verified, there exists � > 0 such that if kzi − zjk∞ < � then (9)
holds. By the equicontinuity of EM , given � > 0, there exists � > 0, such that if |s− t| < �
then |x(s)− x(t)| < � for every x ∈ EM . Consider the set of functions defined as constants
in the intervals [0, �), [�, 2�), [2�, 3�), ..., [([1/�] − 1)�, 1), and taking values in the secuence:
−[M/�]�, ...− �, 0,�, 2�, ..., [M/�]�. The total number p of possible functions that can be con-
structed like this is finite and we denote them as z1, ..., zp. Define the following set of indicator
functions fz : C → {0, 1},

{fzk , k ∈ {1, ...., p}} = {fzk(X) = I {zk(t) ≤ X(t), t ∈ [0, 1]} : k ∈ {1, ..., p}} .

This set of functions allows to construct 
−brackets that cover the family FM
1 : for every fx ∈

FM
1 , two functions zi and zj can be chosen, such that

P
¡
fzj − fzi

¢
< 


and fzi ≤ fx ≤ fzj . The functions zi and zj are chosen to verify that zj(t) ≤ x(t) ≤ zi(t),
t ∈ [0, 1], and sup

t∈[0,1]
|zi(t)− zj(t)| ≤ �. This implies

I{zi≤X} ≤ I{x≤X} ≤ I{zj≤X}
fzi ≤ fx ≤ fzj

and

P
¡
fzj − fzi

¢
= P (zj ≤ X)− P (zi ≤ X)
= P (zj ≤ X < zi) < 
.

Hence, the family of functions FM
1 and FM

2 have finite bracketing number and the result in (8)
holds.

The following theorem proves the uniform convergence of the value that maximizes Sn,H .

Theorem 12 Let P be a distribución verifying condition C1 in the equicontinuous set E . If
SH(·) is uniquely maximized at � ∈ E and �n is a sequence of functions in E with Sn,H(�n) = sup

x∈E
Sn,H(x) then

�n
a.s.−→ � , when n→∞. (10)

Proof. We have to show that

P

Ã
sup
n≥l

k�n − �k∞ ≥ 

!
−→
l→∞

0.
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(E, k·k∞) is a metric space and SH(·) is an upper-semicontinuous in E and verifies

sup
kxk∞≥M,x∈E

SH(x) −→
M→∞

0.

Then the proof is analogous to the one in Proposition 5.

The set of functions Lip
,A(I) given by

Lip
,A(I) = {x : I → R, such that |x(t1)− x(t2)| ≤ A |t1 − t2|
 , for every t1, t2 ∈ I} ,

is equicontinuous and, therefore, it verifies Theorem 11. Hence, the sample half-graph depth
Sn,H converges uniformly to SH over the set Lip
,A(I).

4.1 A generalized half-graph depth

Here we introduce a generalized version of the half-graph depth, less restrictive than the defini-
tion described before, that can be used for the analysis of irregular curves. This new depth is
based on what we denote as the superior (SL) and the inferior (IL) lengths, which are defined
by:

SL(x) =
1

�(I)
E [� {t ∈ I : x(t) ≤ X(t)}]

IL(x) =
1

�(I)
E [� {t ∈ I : x(t) ≥ X(t)}] ,

where � stands for the Lebesgue’s measure on R. SL(x) can be interpreted as the “proportion
of time” that the stochastic process X is greater than x. Similarly, IL(x) is the “proportion of
time” that the process X is smaller than x. The generalized half-graph depth at x is:

GSH(x) = min {SL(x), IL(x)} .

Let x1, ..., xn be a set of curves with distribution P . The sample version of the notion of depth
is obtained substituting P by the empirical distribution Pn,

GSn,H(x) = min {SLn(x), ILn(x)} ,

where

SLn(x) =
1

n�(I)

nX
i=1

� {t ∈ I : x(t) ≤ xi(t)} ,

ILn(x) =
1

n�(I)

nX
i=1

� {t ∈ I : x(t) ≥ xi(t)} .
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Figure 9: Curves generated with the non-contaminated model and the asymmetric contaminated
model.

5 Simulation results

In this section, we report the results of a simulation study where the robustness of the half-
graph and generalized half-graph depths is analyzed. We have simulated curves from different
contaminated models and compared the trimmed means estimates (based on SH and GSH) with
those obtained using the mean. The models considered are: an elementary non-contaminated
model M1, and four contaminated models denoted as: M2, M3, M4, M5. Some of these models
were analyzed by Fraiman and Muniz (2001). The elementary model M1 consists of p curves
verifying

Xi(t) = f(t) + ei(t), 1 ≤ i ≤ p
where ei(t) is a Gaussian stochastic process with zero mean and covariance function

E(ei(t)ei(s)) =

µ
1

2

¶µ
1

2

¶5|t−s|
and the function f(t) = 4t.

The asymmetric total contamination model (M2) is defined by

Yi(t) = Xi(t) + �iM 1 ≤ i ≤ p,

where �i takes values 1 with probability q and 0 with probability 1− q. The constant M is the
contamination size. In Figure 9 we represent curves simulated using the non-contaminated and
asymmetric contaminated models.
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Figure 10: Curves from the symmetric and partially contaminated models.

A model of symmetric contamination (M3) can be obtained in the following way:

Yi(t) = Xi(t) + �i�iM 1 ≤ i ≤ p,
where �i and M are defined as in the previous model and �i is a sequence of random variables
independent from �i that takes values 1 and −1 with probability 1/2.

A partially contaminated model (M4) can be expressed as follows:

Yi(t) = Xi(t) + �i�iM for t ≥ Ti 1 ≤ i ≤ p, and

Yi(t) = Xi(t) for t < Ti

where �i, M and �i are defined as in model 3 and Ti is a random number generated from
a uniform distribution on (0, 1). Figure 10 shows curves generated from the symmetric and
partially contaminated models.

Finally, the fifth model considered here is a pick contamination model (M5) expressed as:

Yi(t) = Xi(t) + �i�iM, for Ti ≤ t ≤ Ti + l, 1 ≤ i ≤ p, and

Yi(t) = Xi(t), for t /∈ [Ti, Ti + l],
where l = 2/30 and Ti is a random number from a uniform distribution on [0, 1− l]. The idea
behind this model is to contaminate the curves only in a short interval. In Figure 11 we represent
curves generated from the picks contaminated model.

For each model we have consideredN = 500 replications for p = 50 curves and contamination
fraction q = 0.1. In addition we use two contamination constantsM = 5,M = 25 and trimming
level equal to � = 0.2.
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Figure 11: Curves generated from the picks contaminated model.

We have calculated the mean and the trimmed mean estimates in every model,

bmn(t) =

pP
i=1
Xi(t)

p

and

bmn,
(t) =

p−[p
]P
i=1

X(i)(t)

p− [p�]
where � = 0.2, and [p�] is the integer part of p�. For each of the N replications the integrated
error is calculated and is evaluated at I = 30 equally spaced points in [0, 1],

EIm(j) =
1

I

IX
k=1

[bgn(k/I)− f (k/I)]2
where bgn is either bmn or bmn,
. In tables 1 and 2 we represent the mean integrated error for each
estimate, bmn and bmn,
 defined as:

E =
1

N

NX
j=1

EIm(j)
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and its standard deviation

S =

 1

N

NX
j=1

(EIm(j)−Em)
2


1/2

.

We estimate the mean integrated error using the sample mean (Em), the �−trimmed mean
based on SH (E


SH
) and the �−trimmed mean based on GSH (E


GSH
).

Estim. M1 M2 M3 M4 M5
Em

(Sm)
0.0104
(0.0076)

0.3106
(0.2563)

0.0614
(0.011)

0.0342
(0.0367)

0.0916
(0.0477)

E0.2SH³
S0.2SH

´ 0.0133
(0.0101)

0.3293
(0.3036)

0.0296
(0.0502)

0.0416
(0.0452)

0.1116
(0.0648)

E0.2GSH

(S0.2GSH
)

0.0134
(0.0106)

0.0190
(0.0306)

0.0145
(0.0107)

0.0225
(0.0201)

0.1198
(0.0649)

Table 1: N=500, p=50, q=0.1 and M=5.

Estim. M1 M2 M3 M4 M5
Em

(Sm)
0.0098
(0.0067)

7.3973
(6.0935)

1.2307
(1.7753)

0.5947
(0.7722)

0.8566
(0.0577)

E0.2SH³
S0.2SH

´ 0.126
(0.0082)

6.8191
(6.7457)

0.3566
(1.7753)

0.7694
(0.9506)

0.8519
(0.0549)

E0.2GSH

(S0.2GSH
)

0.0126
(0.0086)

0.1037
(0.6365)

0.0247
(0.1514)

0.3173
(0.4883)

1.3122
(0.0649)

Table 2: N=500, p=50, q=0.1 and M=25.

Table 1 provides the results of the simulation with N = 500, p = 50, q = 0.1 andM = 5. The
mean integrated errors in models M2, M3 and M4 are minimized using the generalized half-graph
depth. In the remaining models the mean gives the best results. In table 2 the contamination
constant is now M = 25. The minimum mean integrated errors in models M2, M3 and M4 are
again obtained with GSH and in model M5 the mean integrated error is minimized with SH .

6 Real data examples

Herein, we describe some real data examples to illustrate the performance of the half-graph
depth and the generalized half-graph depth. The first example, introduced by Ramsay and
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Figure 12: Temperatures in different weather stations in Canada during one year. The curves
in red are the deepest curves using the half-graph depth.

Silverman (1997), consists on the temperature recorded along a year in thirty nine different
weather stations in Canada (Figure 12). These curves have been smoothed using a Fourier
basis.

Figure 13 shows another examble based on the one year rainfall in the same Canadian weather
stations.

The deepest curves (represented in red) have two shapes, thus suggesting that rain curves
follow two major patterns. Although with oscillations, on average some of the curves are in-
creasing the first two hundred days of the year and after reaching a maximum they decrease;
in contrast, other curves decrease during the first two hundred days and after a minimum they
increase.

A third real data example consists on the growth curves of a sample of girls (Figure 14).
The deepest curves obtained using the half-graph depth are represented in red.

Finally, we have applied the half-graph depth to analyze how the relative diameter of a
sample of Laricio trees changes with respect to their relative heights. The original data were
smoothed using a spline basis. Since the number of observations per tree is very irregular, in
those curves with fewer observations the smoothness procedure is less effective. The deepest
observation and the ten deepest curves are represented in figures 15 and 16, respectively.

The results of the analysis of all these real data examples using the generalized half-graph
depths are shown in figures 17 to 20.
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Figure 13: Representation of the rain fallen in thirty nine weather stations in Canada during
one year. The six deepest observations using SH are represented in red.
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Figure 14: Heights in cm of fifty four girls during their first ten years of life. The original curves
were smoothed using a spline basis. In red we have represented the deepest curves based on SH .
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Figure 15: Relative diameter versus relative height of a sample of three hundred and fifty four
Laricio trees. The original data was smoothed using a spline basis. The curve in blue is the
deepest curve.
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Figure 16: Representation of the ten deepest curves from the Laricio trees example.
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Figure 17: Temperatures in different weather stations in Canada during one year. The curves
in red are the deepest curves using the generalized half-graph depth.
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Figure 18: Rain fallen in thirty nine weather stations in Canada during one year. The six
deepest observations are represented in red.
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Figure 19: Heights in cm of fifty four girls during their first ten years of life. The original curves
were smoothed using a spline basis. In red we have represented the deepest curves based on GSH .
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Figure 20: Representation of the eight deepest curves based on GSH from the Laricio trees
example.
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