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1. INTRODUCTION

It is by now well established in the Financial Econometrics literature that high

frequency time series of financial returns are often uncorrelated but not independent

because there are non-linear transformations which are positively correlated. Fur-

thermore, Taylor (1986) analyses 40 series of returns and observes that the sample

autocorrelations of absolute returns seem to be larger than the sample autocorrela-

tions of squares. A similar phenomena is observed by Ding et al. (1993) who examine

daily returns of the S&P500 index and conclude that, for this particular series, the

autocorrelations of absolute returns raised to the power θ are maximized when θ

is around 1, that is, the largest autocorrelations are found in the absolute returns.

Granger and Ding (1995) denote this empirical property of financial returns as Tay-

lor effect. Therefore, if yt, t = 1, ..., T , is the series of returns and rθ(k) denotes the

sample autocorrelation of order k of |yt|θ, θ > 0, the Taylor effect can be defined as
follows

r1(k) > rθ(k) for any θ 9= 1. (1)

However, Granger and Ding (1994) and Ding and Granger (1996) analyze several

series of daily exchange rates and individual stock prices, and conclude that the ma-

ximum autocorrelation is not always obtained when θ = 1 but for smaller values of θ.

Nevertheless, they point out that the autocorrelations of absolute returns are always

larger than the autocorrelations of squares; see also Granger et al. (1999). Muller

et al. (1998) and Dacorogna et al. (2001) obtain similar results analyzing tick-by-

tick observations of exchange rates. Consequently, Malmsten and Teräsvirta (2004)

have recently considered a more restricted alternative definition of the Taylor effect

as follows

r1(k) > r2(k). (2)
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Anyhow, significant autocorrelations of power transformations of absolute returns

are often related with conditional heteroscedasticity and, therefore, with the dy-

namic evolution of volatilities; Luce (1980) uses axiomatic arguments to show that

|yt|θ is an appropriate class of risk measures. Two main types of models have been
usually fitted to represent this evolution: Generalized Conditionally Autoregressive

Heteroscedasticity (GARCH) models of Engle (1982) and Bollerslev (1986) and Sto-

chastic Volatility (SV) models of Taylor (1982); see Carnero et al. (2004a) for the

main differences between both alternatives.

In the GARCH framework, the autocorrelation function (acf) of |yt|θ is unknown,
except for θ = 2. Therefore, results on whether GARCH-type models are able to rep-

resent the Taylor effect are based on simulations. For example, Ding et al. (1993) uses

Monte Carlo simulations to show that one particular GARCH model with Gaussian

disturbances generates the Taylor effect. However, He and Teräsvirta (1999) extend

the Monte Carlo design to several Gaussian GARCH(1,1) models and conclude that

they do not always generate the Taylor property as defined in (2). They also analyze

the Taylor effect in the absolute-value GARCH (AVGARCH) model, where the ana-

lytical expressions of the autocorrelations of absolute and square returns are available,

and conclude that this model has the Taylor property if the kurtosis is sufficiently

large. However the difference between both autocorrelations is, in any case, very

small. Finally, Malmsten and Teräsvirta (2004) show, for the exponential-GARCH

(EGARCH) model, that the Taylor property holds for high values of the kurtosis.

However, looking at their results, it is possible to observe that for empirically rel-

evant values of the kurtosis, the difference between autocorrelations of squares and

absolute returns is very small.

The presence of the Taylor effect in conditionally heteroscedastic series can be

better analyzed in the context of SV models, because, in this case, the acf of |yt|θ

is known for any value of θ. Harvey (1998) derives the expression of this acf for
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a general SV model and suggests that it is not possible to obtain general results

on the value of θ that maximizes this function. On the other hand, Harvey and

Streibel (1998) show that, for some particular AutoRegressive SV (ARSV) models,

the larger the variance of the volatility, the smaller the value of θ that maximizes

the autocorrelations. Another important reason to analyze the Taylor effect in the

context of SV models is that they are close to the models often used in Financial

Theory; see Ghysels et al. (1996) and Shephard (1996).

As we mentioned before, the Taylor effect is a phenomena empirically observed

when comparing sample autocorrelations of different powers of absolute returns. How-

ever, in conditionally heteroscedastic models, these autocorrelations may have large

negative biases; see, for example, Bollerslev (1988), He and Teräsvirta (1999) and

Pérez and Ruiz (2003). If the sample autocorrelations associated with different va-

lues of θ have different biases, the Taylor property could turn out to be just a sample

effect. Consequently, it is important to distinguish whether this property is a popula-

tion effect or it is a consequence of the negative biases of the sample autocorrelations

of powers of absolute returns. In the former case, the model used to represent the

dynamic evolution of returns must be able to generate it while, if the Taylor effect is

an estimation problem, the model does not need to have this property.

The objective of this paper is two fold. First, we analyze whether the Taylor prop-

erty holds in ARSVmodels. Second, we perform exhaustive Monte Carlo experiments

to analyze, in the context of ARSV models, whether the Taylor effect could be at-

tributed to a sampling estimation problem or it is a characteristic of the model that

should be represented.

The paper is organized as follows. In section 2, we describe the main statistical

properties of ARSV models with special focus on the Taylor property. Section 3

presents the results of several simulation experiments to investigate whether the Tay-

lor effect could be attributed to estimation biases. Section 4 describes the empirical
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properties of several series of real financial returns in order to determine whether they

have the Taylor property. It also examines the influence of outliers on the presence

of such property. Finally, section 5 summarizes the main conclusions.

2. THE TAYLOR PROPERTY IN SV MODELS

Taylor (1982) proposed to represent the dynamic evolution of volatility using SV

models that specify the volatility as a latent process. One interpretation of the latent

volatility is that it represents the random arrival of new information into the market;

see, for example, Clark (1973) and Tauchen and Pitts (1983). In the simplest case, the

ARSV(1) model assumes that the log-volatility is an AR(1) process. Consequently,

the series of returns is given by

yt = σ∗εtσt (3)

log(σ2t ) = φ log(σ2t−1) + ηt

where σ∗ is a scale parameter that removes the necessity of introducing a constant

term in the equation of the log-volatility, εt is an independent white noise process

with unit variance and symmetric distribution, σ2t is the volatility at time t and ηt is a

Gaussian white noise with variance σ2η, distributed independently of εt. Although the

Gaussianity assumption of ηt may seem rather ad hoc, Andersen, Bollerslev, Diebold

and Ebens (2001) and Andersen, Bollerslev, Diebold and Labys (2001, 2003) show

that the empirical distribution of the log-volatility of several exchange rates and index

returns could be adequately approximated by the Normal distribution.

The main statistical properties of ARSV models have been reviewed by Ghysels

et al. (1996) and Shephard (1996). In particular, the series yt is stationary if the

autoregressive parameter, φ, satisfies the restriction |φ| < 1. Furthermore, it is well
known that ARSV(1) series are leptokurtic even if the noise εt is assumed to be
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Gaussian. In particular, the kurtosis of yt, is given by

κy = κε exp(σ
2
h) (4)

where σ2h = σ2η/(1 − φ2) is the variance of the log-volatility process and κε is the

kurtosis of the disturbance εt. Notice that if κε is finite, the kurtosis of yt is defined

as far as it is stationary, i.e. if |φ| < 1.
The dynamic properties of yt appear in the acf of |yt|θ, derived by Harvey (1998),

that is given by

ρθ(k) =
exp θ2

4
σ2hφ

k − 1
ωθ exp

θ2

4
σ2h − 1

, k ≥ 1 (5)

where ωθ =
E(|εt|2θ)
{E(|εt|θ)}2 . For example, if εt is Gaussian, ωθ is given by ωθ =

Γ(θ+ 1
2
)Γ( 1

2
)

{Γ( θ2+ 1
2
)}2 .

When θ = 2, ω2 is the kurtosis of εt given by 3 and if θ = 1, ω1 = π
2
. On the

other hand, if εt has a Student-t distribution with ν > 5 degrees of freedom, then

ωθ =
Γ(θ+ 1

2
)Γ(−θ+ ν

2
)Γ( 1

2
)Γ( ν

2
)

{Γ( θ2+ 1
2
)Γ(− θ

2
+ ν
2
)}2 , with θ < ν/2.1 In any case, the autocorrelations in (5),

whenever defined, are always positive and their rate of convergence towards zero is

controlled by the autoregressive parameter φ. Consequently, this parameter is often

related with the persistence of shocks to the volatility process.

Looking at expression (5), it is rather obvious that the value of θ that maximizes

ρθ(k) is a very complicated non-linear function of the lag k, the distribution of the

errors εt and the parameters that govern the volatility dynamics, i.e. φ and σ2η. Given

that it is not possible to obtain a general analytical expression of the value of θ that

maximizes ρθ(k), we simplify the problem by fixing the lag of the autocorrelations to

k = 1 and analyzing how the distribution of εt and the parameters values affect the

autocorrelation function. In order to do that, we have maximized numerically ρθ(1)

1Notice that when the errors have a Student-tν distribution, the autocorrelations of |yt|θ are only
defined if θ < ν/2.
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with respect to θ, for several ARSV(1) models with two distribution errors, namely

Gaussian and Student-7. Table 1 reports the results. This table illustrates that, for a

given kurtosis of the returns, κy, the value of θ that maximizes ρθ(1) depends on the

distribution of the errors. For example, in a model with κy ≈ 5, the value of θ that
maximizes ρθ(1) is approximately 1.3 when the errors are Gaussian while it is closer

to 1 when they are Student-7. In general, it seems that, given the kurtosis, the value

of θ that reaches the maximum is larger when the errors are Gaussian than when the

errors have a leptokurtic distribution as the Student-7.

On the other hand, Table 1 also shows that for a given distribution, the value of θ

that maximizes ρθ(1) decreases as the variance of the log-volatility process, σ
2
h, and,

consequently the kurtosis of returns, increases. When the errors are Gaussian and the

kurtosis of returns is close to three, i.e. returns are nearly Gaussian and homoscedas-

tic, the autocorrelation of order one is maximum for squares. The value of θ that

maximizes ρθ(1) decreases with κy and becomes approximately equal to one when the

kurtosis is between 5 and 37. When the errors are leptokurtic with a Student-7 dis-

tribution and the kurtosis is not unrealistically large, the autocorrelations are always

maximized for absolute returns. Another remarkable feature is that, for any of the

two distributions considered, the value of θ that maximizes ρθ(1) is only smaller than

1 when the kurtosis of returns is too large as to represent kurtosis of interest from an

empirical point of view.

In order to analyze whether the behavior of ρθ(1) keeps the same for other lags,

Figures 1 and 2 plot ρθ(k) as a function of θ, for k = 1, 5, 10, 20 and 50 and for

different ARSV(1) models with Gaussian and Student-7 errors, respectively. In these

figures, the maxima of the autocorrelations of a given order are shown by the bullet

sign. These figures illustrate that, for a given model, the value of θ that maximizes

ρθ(k) is approximately the same for different lags. Therefore, maximization of ρθ(k)

will mainly depend on the parameter values of (φ,σ2η) and the distribution of εt.
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Regarding the parameter values, it is possible to observe that, for any of the two

distributions considered, if σ2η is fixed, increasing the corresponding value of φ shifts

the peak of the autocorrelation to the left, i.e. the value of θ that maximizes the

autocorrelations decreases as φ increases; compare with the results in Maslmten and

Teräsvirta (2004). On the other hand, for fixed φ increasing σ2η also decreases the

value of θ. Comparison of both figures confirms our previous result that ρθ(k) reaches

its maximum at a smaller value when the distribution error is Student-7 than when

it is Gaussian. Moreover, it also confirms that, in both cases, the ARSV(1) model is

able to generate Taylor effect for the more realistic parameter specifications. Finally,

notice that in the models with less persistence of the volatility (φ = 0.9 or 0.95)

and/or smoothest evolution of the volatility (σ2η = 0.01) the curves plotted in Figures

1 and 2 are rather flat. Consequently, the autocorrelations are approximately equal

whatever power transformation we consider.

We now focus on the Taylor property as defined in (2). We have tick-marked in

Table 1 the models that produce this Taylor effect on the first order autocorrelations,

i.e. those where the first order autocorrelation of absolute values is larger than the

corresponding autocorrelation of squares. This allow us to highlight that, if κy is

relatively small, the ARSV(1) model does not have the Taylor effect, while it appears

if κy is approximately larger than 4, as it is often the case in empirical applications. To

further illustrate this result, Figure 3 plots the autocorrelations of order 1 of absolute

and squared returns as a function of the parameters φ and σ2η when the errors are

Gaussian and Student-7. This plot clearly shows that, for the more realistic models,

with φ close to one and σ2η small, correlations of absolute values are always larger

than those of the squared transformation. Moreover, for the same parameter values,

the differences between both autocorrelations are larger the larger the kurtosis of the

distribution errors. On the other hand, for a given persistence of shocks to volatility,

measured by φ, this difference is larger the larger the variance σ2η. If σ
2
η is close to zero,
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i.e. returns are nearly homoscedastic, the autocorrelations of absolute and squared

observations are nearly the same. Finally, if σ2η is fixed, the difference between both

autocorrelations increases as φ approaches one.

3. FINITE SAMPLE TAYLOR EFFECT

In previous section, we have seen that the stationary ARSV(1) model does not

always satisfy the Taylor property as defined in (1) or (2). However, it is not clear

yet whether it should do it, even if this property is empirically observed. As we

mentioned in the Introduction, the sample autocorrelations of powers of absolute ob-

servations may have severe biases in series generated by SV models. If the biases

associated with different transformations were different, it could be possible to em-

pirically observe the Taylor effect even if it is not a population effect and viceversa.

Consider, for example, that, as pointed out by Pérez and Ruiz (2003), the biases of

the sample autocorrelations of squared returns are negative and larger in magnitude

than the biases of absolute returns. In this case, it could be possible that, even if

the population autocorrelations of squared and absolute observations were equal, the

sample autocorrelations of squares are smaller than the sample autocorrelations of

absolute returns.

In order to analyze whether the ARSV(1) model should represent the Taylor

effect once it has been empirically observed, we have carried out extensive Monte

Carlo experiments, that are summarized in this section. All the results are based on

1000 replicates of series generated by ARSV(1) models with autoregressive parameter

φ = {0.9, 0.95, 0.98, 0.99} and variance σ2η = {0.01, 0.05, 0.1}. In all cases, the scale
parameter has been fixed to one, i.e. σ∗ = 1 and the distribution of the errors is

assumed to be Gaussian or Student-7. The sample sizes are T = 500, 1000 and 5000.

For each series, we have computed the autocorrelations ρθ(k) for θ = 0.5, 1, 1.5 and

2 and k = 1, 10, 20 and 50. Tables 2 and 3 report the Monte Carlo results when
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φ = 0.98, σ2η = {0.01, 0.05} and the errors are Gaussian and Student-7 respectively2.
These tables report, for each model, lag and exponent, the sample mean and standard

deviation (in parenthesis) of the estimated autocorrelations through the Monte Carlo

replicates together with the corresponding population values.

The first conclusion from Table 2 is that, regardless of the transformation para-

meter θ, the sample autocorrelations are always negatively biased and their biases

converge asymptotically to zero. Nevertheless, if we focus on relative biases, im-

portant differences arise for different values of θ. For moderate sample sizes, the

relative biases are larger the larger is θ. For example, if T = 500 and σ2η = 0.05, it

can be easily checked that the relative biases of the first order autocorrelations are

−19.31%, −21.02%, −23.23% and −23.92% when θ is 0.5, 1, 1.5 and 2, respectively.

On the other hand, it is important to notice that, for the two largest sample sizes,

the relationship between autocorrelations of a fixed order k for different values of θ is

generally the same in the population and in the sample. In Table 2, there is only one

exception to this result when T = 500 and σ2η = 0.01. In this case, ρ2(1) = 0.098 is

slightly larger than ρ1(1) = 0.095, while the Monte Carlo mean of the sample auto-

correlations is 0.071 for squares and slightly larger, 0.075, for absolute observations.

Therefore, in this particular case, the Taylor effect is not a population effect and it

could be attributed to sample biases. However, sample sizes as small as T = 500 are

not very common in financial applications.

Finally, although it is not a main goal of this paper, Table 2 also shows that the

standard deviation of the sample autocorrelations increases with the transformation

parameter, specially for small lags. Furthermore, the convergence of the autocorrela-

tions is
√
T when θ = 0.5 and it is slower as θ increases.

Comparing Tables 2 and 3, we can observe that the theoretical autocorrelations

2Results for other values of φ and σ2η are very similar and they are not reported to save space.

They can be obtained from the authors upon request.
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are smaller when the errors are Student-7 than when they are Gaussian and that

the relative difference between the autocorrelations in both cases is larger the larger

is the transformation parameter. Furthermore, when σ2η = 0.05, the Taylor effect,

as defined in (2), is more pronounced in Table 3. However, notice that when the

errors are Student-t the autocorrelations could be maximized for values of θ smaller

than 1. So, the Taylor effect as defined in (1) does not hold. With respect to the

estimated autocorrelations, it turns out that, as in Table 2, they keep the same

order relationship observed among the population autocorrelations. Finally, notice

that although the sample autocorrelations are smaller than in the Gaussian case, the

Monte Carlo standard deviations are similar. Therefore, the relative precision of the

estimated autocorrelations is smaller when the errors are Student-7 than when they

are Gaussian.

To summarize, we can conclude that the sample properties of the estimated au-

tocorrelations of powers of absolute returns are more appropriate than those of the

squares, in the sense that the relative biases and standard deviations are smaller, the

smaller the exponent θ. This is important if we take into account that in empirical

applications, the usual practice is to chose between θ = 1 or θ = 2. To this respect,

the results in this paper agree with previous papers by Harvey and Streibel (1998)

and Pérez and Ruiz (2003).

Figure 4 plots, in the top panel, the population acf for an ARSV(1) model with

φ = 0.98,σ2η = 0.05 for the four transformations considered and, in the bottom

panels, the corresponding mean correlograms for three sample sizes, T = 500, 1000

and T = 5000. Left hand-side panels correspond to Normal errors while the panels on

the right come from Student-7 errors. This figure shows that sample autocorrelations

keep the same order, as functions of θ, as the theoretical ones, in spite of being

negatively biased. When T = 500 or 1000, the bias can be remarkable at some lags,

but it never contributes to mask the Taylor effect when this exits.
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4. EMPIRICAL APPLICATION

In this section, we describe the empirical properties of several daily series of fi-

nancial returns with the goal of determining whether they have the Taylor property.

We also analyze whether the ARSV(1) model is able to represent the pattern of the

sample autocorrelations of these real data. Finally, we examine empirically the effect

of outliers on the Taylor property.

4.1. Empirical analysis of Taylor effects on financial returns

The data set we analyze in this paper includes four daily exchange rates against

the US Dollar (USD): the Euro (EU), from the 4th of January 1993 to the 31st

December 2002, British Pound (BP) and Yen, from the 5th and 15th of January

1979, respectively, to the 31st December 2002 and Canadian Dollar (CAN), from the

4th of January 1971 to the 31st December 2002. We also consider four indexes of

stock exchange markets of New York (SP500), Tokyo (Nikkei225), London (FTSE100)

and Madrid (IBEX35). These series span from the 6th of June 1960, 4th of January

1984, 2nd of April 1984 and 5th of January 1987, respectively, and end up the 31st

December 20023. The sample sizes appear in the first row of Table 4.

The series of daily closing prices, pt, t = 1, .., T , have been transformed into returns

as usual, leading to the series yt = 100 ∗ log(pt/pt−1), which have been plotted in
Figure 5. This figure shows that all the returns move around a zero mean and

display volatility clustering, and some of them are affected by very large outliers. For

example, the SP500, Nikkei and FTSE100 returns have a large negative observation

dated on the Black Monday’s crash in October 1987. We have also found that some

of the series (BP, CAN, SP500 and IBEX35) have a very small although significant

autocorrelation of order one. Therefore, previous to the analysis on conditional second

3We are very grateful to C. Chatfield and A. Trapletti for their help to obtain these series.
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order moments, we have filtered these series by fitting MA(1) models. Here onwards,

when we refer to these four series, we will be working with the residuals from those

estimated models. The rest of returns series have been centered with their sample

mean.

Table 4 reports, in panel a), several summary statistics describing the main dynamic

and distributional properties of the eight series. In this table, we first notice that all

the returns have kurtosis significantly larger than 3 and the Jarque-Bera test for

Normality always rejects the null. Furthermore, the autocorrelations of squares and

absolute returns up to order 10 and 50 are always significant when tested using the

Box-Ljung statistics. Therefore, as expected, there is strong evidence favoring the

presence of conditional heteroscedasticity. Furthermore, notice that the Box-Ljung

statistics for absolute returns, Q1(k), are always larger than those for squares, Q2(k),

supporting the presence of the Taylor effect as defined in (2). This feature is specially

remarkable in the stock indexes. Finally, Table 4 also reports the autocorrelations

of order 1 of absolute and squared returns. As postulated by the Taylor property,

r1(1) is larger than r2(1) for EU, BP, CAN, SP500 and IBEX while this relationship

is reversed for the other three series.

Figure 6 plots the correlograms of absolute and squared returns of the eight series

up to lag 100. Looking at this figure, it is obvious that, with few exceptions for the

very small lags, the autocorrelations of |yt| are always above those of y2t for all the
series considered, in agreement with property (2). The difference is more remarkable

in the stock indexes and the CAN/USD exchange rate. Moreover, with the exception

of Euro, the autocorrelations of both the squared and absolute returns are all positive

even for very long lags.

In order to examine the Taylor property as defined in (1), Figure 7 plots, for the

eight series considered, the sample autocorrelations of |yt|θ as a function of θ, for lags
k = 1, 5, 10, 20 and 50. This figure shows that the behavior of these functions depends
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on the particular series analyzed. For example, the pattern of the Euro, CAN, SP500

and IBEX35 is similar to the one observed in Figures 1 and 2 for the theoretical

ARSV(1) models, with the autocorrelations of all lags maximized at values close to

or less than one. However, for the other series, the patterns are slightly different. In

the BP exchange rate, the autocorrelation of order 20 is nearly constant for all values

of the power transformation parameter, while the other lags are clearly maximized at

values of θ close to one. On the other hand, the Nikkei and FTSE100 indexes behave

quite similarly, with the first order autocorrelation being maximized for the squares

while the others are maximized at values around one. Finally, Figure 7 illustrates the

very peculiar behavior of the Yen autocorrelations with the autocorrelation of order

1 maximized at θ > 3 and the autocorrelation of order 20 at θ = 2.5. Later in this

paper, we will examine whether these unexpected patterns can be attributed to the

presence of outliers.

To analyze whether the ARSV(1) model is able to explain the features observed in

Table 4 and Figures 6 and 7, we have fitted such model to each of the eight series of

returns considered in this paper. There are several alternative methods proposed in

the literature to estimate the parameters of the ARSV(1) model. The results in Broto

and Ruiz (2004) suggest that, for large sample sizes, the estimates obtained using

the Quasi Maximum Likelihood (QML) estimator of Harvey et al. (1994), although

not efficient, are very similar to the ones obtained using the more computationally

complicated alternative methods. Therefore, we estimate the parameters by the QML

estimator. This estimator is based on linearizing the ARSV(1) in (3) by taking

logarithms of squared returns, as follows

log y2t = µ+ log σ2t + ξt (6)

log σ2t = φ log σ2t−1 + ηt

where µ = log σ2∗+E(log ε
2
t ) and ξt = ε2t −E(log ε2t ). If εt has a Student-t distribution
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with ν degrees of freedom then E(log ε2t ) ∼= −1.27−ψ(ν/2)+log(ν/2) and σ2ξ = π2/2+

ψ�(ν/2) where ψ(·) and ψ�(·) are the digamma and trigamma functions respectively.
When εt is a Gaussian process these moments are E(log ε2t ) ∼= −1.27 and σ2ξ = π2/2.

Expression (6) is a non-Gaussian state space model and the QML estimator is based

on obtaining the prediction error decomposition form of the likelihood through the

Kalman filter by treating ξt as if it were Gaussian.

The estimation results are reported in panel a) of Table 5, where it is possible to

observe that all the estimates of σ2η are significant. Therefore, as expected from the

results in Table 4 and Figure 6, there is evidence of conditional heteroscedasticity. We

can also observe that, as it is often the case in high frequency financial returns, the

estimates of the persistence parameter, φ, are very close to unity. Table 5 also reports

the degrees of freedom of the Student-tυ distribution implied by the estimates of σ2ξ.

Carrying out a Wald test for the null H0 : σ2ξ = π2/2, it is possible to conclude that

the assumption of Gaussianity of εt seems adequate for Euro, CAN, Nikkei, FTSE and

IBEX while BP and Yen are better represented assuming leptokurtic distributions.

Finally, the evidence on SP500 is not conclusive.

Figure 8 plots the theoretical autocorrelations of |yt|θ in (5), calculated with the
estimated parameters, as a function of θ, for lags k = 1, 5, 10, 20 and 50. Comparing

Figures 7 and 8 it is possible to conclude that the sample and the theoretical patterns

implied by the estimated ARSV(1) models are very similar for the Euro, SP500, BP,

CAN and IBEX. In these series, the autocorrelations are maximized in both cases for

values of θ closed to one. However, the first order sample autocorrelation of the Nikkei

and FTSE in Figure 7 is maximized at θ = 2, while the implied autocorrelations in

Figure 8 are maximized for θ around one. With respect to the Yen returns, the sample

behavior of their autocorrelations is very peculiar, as we noted before, and does not

agree with that of the implied autocorrelations.

Finally, Table 5 reports at the bottom rows of panel a), some diagnostics based
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on the standardized observations, εt = yt/σt/T , where σt/T is the smoothed estimate

of the volatility at time t. The first conclusion from these diagnostics is that the

ARSV(1) model explains part of the excess kurtosis observed in the series of returns,

with the exception of the IBEX. For this index, it is rather surprising that the kurtosis

of the standardized observations (11.489) is larger than the kurtosis of the correspon-

ding original series (7.019). This could be attributed to the presence of outliers. On

the other hand, the Box-Pierce statistic for remaining autocorrelation in the squared

residuals, Qε
2(10), is still significant for CAN, SP500, Nikkei, FTSE and IBEX. This

could also be due to the presence of outliers, as suggested by the results in Carnero

et al. (2004b) about the effects of consecutive outliers on the autocorrelations of

squares.

4.2. Sensitivity analysis to the presence of outliers

As there is a concern that outliers would have an undue influence on the presence of

Taylor effect and the estimation results, outlier-corrected series have been produced

and are forward analyzed in this section. There is not consensus about how to deal

with outliers in the context of conditionally heteroscedastic models. In the GARCH

framework, Hotta and Tsay (1998), Franses and van Dijk (1999) and Doornik and

Ooms (2002) have proposed different alternatives to identify outliers. However, as

far as we know, there are not results about the treatment of outliers in the context

of SV models. In this paper, following the proposal of Doornik and Ooms (2002),

we identify as an outlier any observation that is larger than m times its estimated

conditional standard deviation, i.e. yt > mσt/T , for some given m. We have chosen

three alternative values for m, m = 5, 6 and 7. Given that we are modelling the

conditional variance of the series, once an observation is identified as an outlier,

instead of substituting it by its estimated conditional mean, we substitute y2t by the

estimated conditional variance. In particular, it turns out from (6) that y2t is replaced
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by y2t = exp{µ+ log σ2t/T}.4
Table 4 reports, in panels b), c) and d), several summary statistics of the outlier-

corrected returns for the three values of m considered. The Euro and BP series do

not have any observation larger than 7 or 6 conditional standard deviations, so only

correction by outliers greater than 5σt/T is performed. The Yen and FTSE100 series

do not have observations larger than 7σt/T either, and the FTSE100 have the same

observations larger than 6 and 5 standard deviations. Therefore, panel d) does not

display results for this index.

Comparing the results from the original and the outlier-corrected series, we first

notice that, as expected, lower kurtosis are usually achieved if outliers are removed,

with values that span from 4.393 for the Euro to 38.743 for the SP500 in the original

series to a range that comes from 4.384 to 8.161 for the same returns in the 5σt/T -

outlier-corrected series; see Kim and White (2004) for a Monte Carlo study on the

influence of outliers on the estimated coefficients of skewness and kurtosis. The other

general conclusion that emerges from the results in Table 4 is that removing outliers

steadily increases the correlations in both absolute and squared returns, though the

first order autocorrelation sometimes decreases; see Carnero et al. (2004b) for an

explanation of these results. The increase in the autocorrelations of absolute returns

is usually very low, but the increase in the Box-Ljung statistics for the squares is quite

remarkable, specially in those series where a big outlier, such as the Black Monday

October 1987, has been removed; see, for example, the results on SP500 index. This

means that the differences between the autocorrelations of |yt| and y2t become smaller
4Granger et al. (1999) correct by outliers replacing any observation outside the interval ±4σ by

4σ or −44σ as appropriate, where σ is the sample standard deviation estimated from the raw data.

However, the results in Carnero et al. (2004b) show that, using this strategy, it is possible to miss

truly outliers and to identify as outliers observations corresponding to periods of high conditional

variance.
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as the outliers are reduced. This feature is clearly shown in Figure 9, that displays

such differences for the original and the three outlier-corrected series for the eight

returns considered.

If we look further at the behavior of any particular series, we can conclude the

following. In the Euro, BP and Yen exchange rates, the difference between the au-

tocorrelations of absolute and squared returns are very similar for the original and

corrected series, and are also very small. Notice also that, for these returns, the values

of the Box-Ljung statistics in Table 4 hardly change from the original to the corrected

data. As we have seen before, the Taylor effect, as defined in (2), is very weak in

these three series. Similar conclusions are obtained when looking at the results for

the Canada exchange and IBEX returns, where the differences between the original

and the outlier-corrected series are again negligible. However, it is worth noting that,

in these two series, the differences displayed in Figure 9, although very similar to

one another, are all positive, indicating that absolute returns are more correlated

than squares, in agreement with Taylor property (2). If we now focus on the SP500

returns, we first observe that the kurtosis reported in Table 4 decreases from 38.74

in the original data to 8.92 when observations larger than 7σt/T are corrected. On

the other hand, although the Box-Ljung statistics of absolute returns are similar be-

fore and after removing outliers, there is a large increase in the statistics for squares

after removing the outliers larger than 7σt/T . Furthermore, Figure 9 shows that the

differences between the autocorrelations of absolute and squared observations are all

positive and large in the original series but become smaller once the outliers are taken

into account. Therefore, the magnitude of the Taylor effect in the original SP500 re-

turns can be mainly attributed to the very large outliers. Also notice that, in this

case, the results obtained for the three outlier-reduced series are again very similar

to one another. Similar conclusions can be drawn when looking at the results for the

NIKKEI and FTSE100 returns. The only remarkable difference in the FTSE100 in-
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dex is that, in this case, the first order autocorrelation of the squared original returns

is larger than that of the absolute returns. However, after taking into account the

outliers, both autocorrelations are similar and so are the autocorrelations at other

lags. Notice that the difference between the correlations of |yt| and y2t in the corrected
series, displayed in Figure 9, are negative at first lags and then become positive but

very close to zero. Therefore, it seems that the strong Taylor effect observed in the

original series can also be due to the presence of outliers.

As a by-product of this analysis, we can also conclude that the sample autocor-

relations of absolute observations are more robust against outliers than the sample

autocorrelations of squared observations. Furthermore, it should also be remarked

that the results for the series considered in this paper are similar regardless of whether

we define as outliers observations larger than 7, 6 or 5 conditional standard deviations.

In order to analyze the influence of outliers in the Taylor property as defined in

(1), Figure 10 plots, for the 5σt/T -corrected series, the sample autocorrelations of

|yt|θ as a function of θ, for lags k = 1, 5, 10, 20 and 50. The results obtained for the
other two outliers corrections are very similar and are not displayed here. Comparing

this figure with Figure 7, where the autocorrelations were computed for the original

observations, we can observe that the plots corresponding to the Euro, BP, CAN,

Yen and IBEX are very similar before and after correcting the large observations;

this confirms our previous results in Table 4 and Figure 9. With respect to the

Nikkei index, it is worth to highlight that the first order autocorrelations of |yt|θ,
that were maximized for a value of θ over two in the original series (see Figure 7), are

maximized at θ close to one after correcting the outliers. Therefore, in this particular

case, correcting the outliers has contributed to magnify the Taylor property. Finally,

notice that the peculiar behavior of the first order autocorrelation of the Yen shown

in Figure 7, still remains in the 5σt/T -corrected series. Furthermore, after taking into

account the outliers, the pattern of the first order autocorrelation of the Yen, SP500
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and FTSE100, displayed in Figure 10, is similar and unexpected: this autocorrelation

is maximized for values of θ larger than 2 in all cases. We do not have any plausible

explanation for this fact, though it could be due to the presence of long-memory or

changes in the marginal variance. Anyhow, the effect of these features on the Taylor

property is beyond the objectives of this paper. Our results show up that the first

order autocorrelation is strongly affected by outliers. Therefore, it seems that it could

be very risky to analyze the Taylor effect using only this autocorrelation.

We finally examine the influence of outliers on the estimation results. Table 5

reports, in the panels b), c) and d), the estimated parameter values and some diag-

nostic statistics for outliers-corrected returns. Looking at these values, it is rather

surprising to observe that the estimates of σ∗, φ and σ2η are very similar regardless of

whether we estimate the ARSV(1) model using the original data (panel a) or any of

the three corrected series. The only worth mentioning difference appears in the esti-

mates of the parameter σ2ξ , which is related to the distribution of εt. Therefore, our

results suggest that the dynamics of the underlying volatilities are robustly estimated

by QML while the estimated distribution of εt depends on whether or not outliers

are taken into account; compare this result with those in Carnero et al. (2004b) for

GARCH models.

On the other hand, Table 5 shows that correcting outliers clearly improves the

diagnostics of the standardized observations. The kurtosis is reduced towards 3 and

the Box-Pierce statistics for the squares of the Nikkei, FTSE and IBEX residuals, that

were significant in the original series, are no longer significant. However, the statistics

of the CAN and SP500 residuals, although smaller, are still significant. This could

be suggesting the presence of long-memory in the volatility of these returns, but, as

we said before, we do not pursue this issue in this paper.

20



5. CONCLUSIONS

In this paper we have analyzed the Taylor effect in the SV framework. We have

seen that, in stationary ARSV(1) models, the value of θ that maximizes the autocor-

relations of |yt|θ depends mainly on the distribution of the errors and the kurtosis of
returns. If the errors are Gaussian and the kurtosis of the series is relatively close to

3, the maximum autocorrelations are found in the squares. However, as the kurtosis

increases, the value of the exponent that maximizes the autocorrelations decreases

and, only for very large and unrealistic values of the kurtosis, θ is smaller than 1. If

the distribution of the errors is leptokurtic, for example, a Student-tν distribution,

the value of θ that maximizes the autocorrelations is never greater than one when

ν = 7 and is approximately equal to one in most cases. Once more, if the kurtosis is

extremely large, the maximum is reached at values of θ smaller than one. We have

also seen that the autocorrelations are maximized approximately at the same value

of θ regardless the lag considered.

On the other hand, our Monte Carlo experiments have shown that, for moderately

large sample sizes and the more realistic parameter specifications, Taylor effect is not

a sample problem due to the biases of the estimated autocorrelations. Therefore, if the

sample size is large and the Taylor effect is observed in the sample autocorrelations,

the model fitted to the series should be able to generate this effect. However, for

relatively small sample sizes and exceptionally low variance and low persistent models,

this could be not the case.

Finally, we have illustrated the results with an empirical application to eight se-

ries of daily financial returns. Analyzing these series, we have observed that large

outliers may have a fundamental influence on whether the Taylor effect holds. This

is especially the case when the autocorrelations of order one of squares and absolute

returns are compared. We have also illustrated that with the exception of the Yen,
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SP500 and FTSE100 returns, the ARSV(1) model is able to represent the pattern of

the autocorrelations observed in real data.

The results in this paper shows that when the Taylor effect is observed empirically in

a financial series, the theoretical model implemented to explain the dynamic behavior

of this series should be able to represent such property. However, this requirement

is not very strong because, as we have seen, the Taylor effect is rather weak in most

cases of empirical interest.
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Table 1. Value of the power parameter, θ, that maximizes the first
order autocorrelation of |yt|θ in ARSV(1) models

Gaussian Errors Student-7 Errors
σ2η φ 0.80 0.85 0.90 0.95 0.98 0.99 0.80 0.85 0.90 0.95 0.98 0.99

TE∗ X X X X X X X X X X X
0.1 θ 1.5 1.4 1.3 1.1 1 0.5 1 0.9 0.9 0.8 0.6 0.5

σ2h 0.28 0.36 0.53 1.03 2.53 5.03 0.28 0.36 0.53 1.03 2.53 5.03
κy 3.96 4.30 5.08 8.37 37.5 457 6.62 7.17 8.49 14.01 62.77 747
TE X X X X X X X X X

0.05 θ 1.8 1.7 1.5 1.3 1 0.8 1 1 1 0.9 0.7 0.6
σ2h 0.14 0.18 0.26 0.51 1.26 2.51 0.14 0.18 0.26 0.51 1.26 2.51
κy 3.45 3.59 3.90 5.01 10.6 37.0 5.75 5.99 6.48 8.33 17.63 62
TE X X X X X X X X

0.01 θ 2 1.9 1.9 1.8 1.6 1.4 1 1 1 1 1 0.9
σ2h 0.03 0.04 0.05 0.10 0.25 0.50 0.03 0.04 0.05 0.10 0.25 0.50
κy 3.08 3.11 3.16 3.32 3.86 4.96 5.15 5.20 5.26 5.53 6.42 8.24

∗ TE means that the first order autocorrelation of absolute values is larger
than that of squares
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Table 2. Monte Carlo results on sample autocorrelations of |yt|θ
in ARSV(1) models with φ = 0.98 and Gaussian errors

σ2η = 0.01 σ2η = 0.05
θ k ρθ(k) 500 1000 5000 ρθ(k) 500 1000 5000
0.5 1 0.078 0.061

(0.051)
0.068
(0.039)

0.076
(0.019)

0.290 0.234
(0.087)

0.256
(0.068)

0.283
(0.033)

10 0.065 0.043
(0.052)

0.056
(0.037)

0.064
(0.018)

0.240 0.178
(0.085)

0.204
(0.069)

0.232
(0.034)

20 0.053 0.031
(0.048)

0.041
(0.037)

0.052
(0.017)

0.195 0.129
(0.084)

0.157
(0.068)

0.187
(0.034)

50 0.029 0.008
(0.048)

0.017
(0.035)

0.027
(0.016)

0.105 0.039
(0.070)

0.067
(0.062)

0.098
(0.033)

1 1 0.095 0.072
(0.055)

0.081
(0.043)

0.092
(0.021)

0.314 0.248
(0.088)

0.272
(0.072)

0.305
(0.038)

10 0.079 0.052
(0.055)

0.067
(0.041)

0.077
(0.021)

0.255 0.183
(0.085)

0.210
(0.070)

0.244
(0.038)

20 0.064 0.037
(0.052)

0.049
(0.040)

0.062
(0.019)

0.203 0.129
(0.081)

0.157
(0.067)

0.192
(0.037)

50 0.035 0.010
(0.049)

0.020
(0.037)

0.032
(0.017)

0.106 0.035
(0.067)

0.062
(0.060)

0.098
(0.035)

1.5 1 0.100 0.075
(0.058)

0.085
(0.045)

0.097
(0.023)

0.297 0.228
(0.088)

0.250
(0.075)

0.284
(0.044)

10 0.083 0.053
(0.056)

0.069
(0.044)

0.080
(0.023)

0.232 0.160
(0.082)

0.185
(0.069)

0.218
(0.041)

20 0.067 0.038
(0.055)

0.050
(0.041)

0.065
(0.021)

0.179 0.109
(0.075)

0.132
(0.063)

0.167
(0.038)

50 0.036 0.010
(0.049)

0.020
(0.038)

0.033
(0.018)

0.087 0.026
(0.060)

0.048
(0.053)

0.080
(0.034)

2 1 0.098 0.071
(0.061)

0.081
(0.048)

0.095
(0.026)

0.255 0.194
(0.091)

0.213
(0.081)

0.242
(0.054)

10 0.080 0.050
(0.057)

0.066
(0.046)

0.077
(0.025)

0.188 0.130
(0.080)

0.149
(0.070)

0.176
(0.048)

20 0.064 0.036
(0.056)

0.047
(0.042)

0.061
(0.024)

0.138 0.084
(0.070)

0.101
(0.059)

0.128
(0.041)

50 0.034 0.009
(0.048)

0.018
(0.038)

0.030
(0.019)

0.061 0.018
(0.053)

0.034
(0.046)

0.058
(0.032)

* Monte Carlo standard deviations in parenthesis
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Table 3. Monte Carlo results on sample autocorrelations of |yt|θ
in ARSV(1) models with φ = 0.98 and Student-7 errors

σ2η = 0.01 σ2η = 0.05
θ k ρθ(k) 500 1000 5000 ρθ(k) 500 1000 5000
0.5 1 0.069 0.053

(0.051)
0.062
(0.039)

0.067
(0.017)

0.262 0.211
(0.083)

0.235
(0.065)

0.255
(0.031)

10 0.057 0.040
(0.052)

0.048
(0.037)

0.056
(0.017)

0.217 0.159
(0.084)

0.186
(0.064)

0.211
(0.031)

20 0.047 0.031
(0.049)

0.038
(0.036)

0.044
(0.017)

0.177 0.118
(0.080)

0.145
(0.063)

0.169
(0.031)

50 0.025 0.009
(0.045)

0.017
(0.034)

0.023
(0.016)

0.095 0.035
(0.066)

0.062
(0.057)

0.087
(0.030)

1 1 0.075 0.058
(0.054)

0.066
(0.042)

0.072
(0.019)

0.263 0.206
(0.084)

0.228
(0.067)

0.254
(0.037)

10 0.062 0.042
(0.054)

0.052
(0.039)

0.060
(0.018)

0.213 0.149
(0.082)

0.176
(0.064)

0.205
(0.035)

20 0.051 0.033
(0.050)

0.041
(0.038)

0.048
(0.018)

0.170 0.108
(0.074)

0.134
(0.061)

0.161
(0.034)

50 0.027 0.010
(0.045)

0.018
(0.035)

0.025
(0.017)

0.088 0.029
(0.061)

0.054
(0.054)

0.079
(0.031)

1.5 1 0.068 0.052
(0.055)

0.060
(0.043)

0.065
(0.021)

0.217 0.171
(0.086)

0.185
(0.070)

0.209
(0.048)

10 0.056 0.037
(0.054)

0.047
(0.041)

0.054
(0.019)

0.170 0.117
(0.078)

0.137
(0.063)

0.162
(0.042)

20 0.045 0.029
(0.049)

0.036
(0.038)

0.043
(0.018)

0.131 0.081
(0.066)

0.101
(0.056)

0.124
(0.036)

50 0.024 0.009
(0.045)

0.016
(0.035)

0.022
(0.017)

0.064 0.019
(0.053)

0.038
(0.045)

0.057
(0.030)

2 1 0.052 0.043
(0.056)

0.047
(0.044)

0.051
(0.023)

0.147 0.132
(0.089)

0.138
(0.075)

0.153
(0.059)

10 0.042 0.030
(0.052)

0.037
(0.041)

0.042
(0.021)

0.108 0.085
(0.074)

0.097
(0.063)

0.113
(0.048)

20 0.034 0.022
(0.048)

0.029
(0.038)

0.033
(0.019)

0.079 0.055
(0.059)

0.069
(0.054)

0.083
(0.038)

50 0.018 0.007
(0.042)

0.012
(0.034)

0.016
(0.016)

0.035 0.011
(0.047)

0.023
(0.038)

0.035
(0.027)

* Monte Carlo standard deviations in parenthesis
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Table 4. Summary descriptive statistics of returns
a) Original series

EU BP CAN Yen SP500 Nikkei FTSE IBEX
Size 2512 6047 8053 6041 10778 4676 4735 3991
Kurtosis 4.393 6.001 6.988 6.603 38.743 11.106 11.162 7.019
J.-Bera 222.3 2272 5348.1 3532.7 576804 12807 13428 2718.3
r1(1) 0.069 0.136 0.218 0.138 0.254 0.235 0.245 0.229
Q1(10) 144.5 1055.2 2447.9 648.8 4939.8 1846.4 2492.4 2264.3
Q1(50) 458.3 3213.5 6530.4 1578.4 14109 4600.6 5378.1 5956.9
r2(1) 0.051 0.102 0.192 0.188 0.173 0.258 0.381 0.181
Q2(10) 74.9 738.6 1194.9 626.9 1013.5 617.3 2258.9 1555.1
Q2(50) 243.9 2265.9 2469.5 1221.6 1225.9 917.2 3061.6 2734

b) Series corrected by observations larger than 7bσt/T
EU BP CAN Yen SP500 Nikkei FTSE IBEX

Kurtosis - - 6.835 - 8.924 7.810 - 6.639
J.-Bera - - 4938.5 - 15760 4556.9 - 2212.3
r1(1) - - 0.217 - 0.224 0.208 - 0.229
Q1(10) - - 2492.9 - 5052.3 1874.5 - 2480.2
Q1(50) - - 6670.1 - 15993 4928.6 - 6674
r2(1) - - 0.196 - 0.263 0.143 - 0.179
Q2(10) - - 1289.4 - 2952.8 683.5 - 1958.8
Q2(50) - - 2686.2 - 7641.9 1391.3 - 3588.5

c) Series corrected by observations larger than 6bσt/T
EU BP CAN Yen SP500 Nikkei FTSE IBEX

Kurtosis - - 6.812 6.615 8.899 7.210 6.503 6.637
J.-Bera - - 4882 3550.2 15627.3 3472.7 2468.3 2211.7
r1(1) - - 0.216 0.139 0.225 0.204 0.195 0.229
Q1(10) - - 2511.4 670.9 5112.1 1888.1 2377.1 2521.3
Q1(50) - - 6774.8 1653.8 16228 5071.9 5600.4 6814
r2(1) - - 0.195 0.188 0.266 0.136 0.239 0.179
Q2(10) - - 1314.4 637.7 4039 776.2 3261.8 2000.1
Q2(50) - - 2764 1259.2 7822.6 1658.1 5890.5 3684.6

d) Series corrected by observations larger than 5bσt/T
EU BP CAN Yen SP500 Nikkei FTSE IBEX

Kurtosis 4.384 5.760 6.499 6.509 8.161 7.192 - 6.639
J.-Bera 218.2 1929.6 4110.8 3313.8 11997.8 3444.2 - 2215.7
r1(1) 0.073 0.134 0.202 0.142 0.214 0.205 - 0.231
Q1(10) 153.7 1058.9 2505.1 716.7 5204.9 1940.5 - 2560.2
Q1(50) 491.9 3229 6964.7 1770.5 16676 5192.1 - 6937.9
r2(1) 0.054 0.097 0.163 0.198 0.246 0.139 - 0.181
Q2(10) 82.5 786.8 1330.9 702.8 4706.0 808.8 - 2038.1
Q2(50) 268.9 2437.3 3033.3 1409.3 9293.9 1726.6 - 3765.1
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Table 5. Estimation results
a) Original series

EU BP CAN Yen SP500 Nikkei FTSE IBEX
σ∗ 0.322 0.318 0.049 0.403 0.596 1.336 0.806 1.285
φ 0.993

(0.004)
0.988
(0.003)

0.988
(0.004)

0.980
(0.005)

0.994
(0.002)

0.990
(0.004)

0.986
(0.004)

0.991
(0.004)

σ2η 0.003
(0.002)

0.012
(0.003)

0.023
(0.002)

0.015
(0.005)

0.009
(0.001)

0.016
(0.003)

0.014
(0.004)

0.015
(0.003)

σ2ξ 5.200
(0.247)

5.412
(0.164)

5.203
(0.139)

5.542
(0.165)

5.214
(0.120)

5.289
(0.183)

4.709
(0.179)

4.658
(0.194)

υ 8.5 4.13 8.4 4.2 8.1 6.6 ∞ ∞
κbε 4.168 4.080 5.151 5.283 7.944 5.888 3.939 11.489
Qbε
2(10) 6.23 16.58 119.58 27.23 484.4 134.70 90.58 91.86

b) Series corrected by observations larger than 7bσt/T
EU BP CAN Yen SP500 Nikkei FTSE IBEX

σ∗ - - 0.049 - 0.572 1.319 - 1.194
φ - - 0.988

(0.004)
- 0.994

(0.001)
0.991
(0.004)

- 0.991
(0.003)

σ2η - - 0.023
(0.003)

- 0.009
(0.001)

0.015
(0.003)

- 0.016
(0.004)

σ2ξ - - 5.260
(0.140)

- 5.172
(0.120)

5.364
(0.184)

- 4.730
(0.195)

υ - - 7.1 - 9.5 5.6 - ∞
κbε - - 4.713 - 4.322 4.733 - 4.207
Qbε
2(10) - - 148.09 - 110.16 38.48 - 40.44

c) Series corrected by observations larger than 6bσt/T
EU BP CAN Yen SP500 Nikkei FTSE IBEX

σ∗ - - 0.048 0.398 0.568 1.307 0.793 1.178
φ - - 0.988

(0.002)
0.980
(0.005)

0.994
(0.001)

0.991
(0.003)

0.986
(0.004)

0.991
(0.003)

σ2η - - 0.023
(0.004)

0.015
(0.005)

0.009
(0.002)

0.015
(0.004)

0.013
(0.004)

0.016
(0.004)

σ2ξ - - 5.223
(0.140)

5.516
(0.166)

5.177
(0.119)

5.177
(0.182)

4.635
(0.178)

4.684
(0.194)

υ - - 7.9 3.95 9.25 9.25 ∞ ∞
κbε - - 4.55 4.979 4.061 4.398 3.301 3.728
Qbε
2(10) - - 134.18 10.01 98.77 27.57 43.28 29.28

d) Series corrected by observations larger than 5bσt/T
EU BP CAN Yen SP500 Nikkei FTSE IBEX

σ∗ 0.318 0.317 0.048 0.388 0.560 1.292 - 1.171
φ 0.992

(0.005)
0.988
(0.003)

0.988
(0.002)

0.979
(0.005)

0.994
(0.001)

0.991
(0.003)

- 0.991
(0.003)

σ2η 0.003
(0.002)

0.011
(0.003)

0.022
(0.004)

0.017
(0.005)

0.009
(0.002)

0.015
(0.004)

- 0.016
(0.004)

σ2ξ 5.247
(0.248)

5.501
(0.164)

5.163
(0.139)

5.471
(0.164)

5.154
(0.119)

5.170
(0.182)

- 4.770
(0.194)

υ 7.35 4.45 9.75 4.65 10.1 9.45 - ∞
κbε 3.890 3.994 4.316 4.560 3.810 4.214 - 3.576
Qbε
2(10) 8.50 17.43 72.03 8.42 73.00 23.89 - 38.90
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Figure 1: Autocorrelation function of |yt|θ against θ for different lags: k = 1
(solid), k = 5 (dots and dashes), k = 10 (short dashes), k = 20 (dots) and
k = 50 (dashed) and Gaussian errors
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Figure 2: Autocorrelation function of |yt|θ against θ for different lags: k = 1
(solid), k = 5 (dots and dashes), k = 10 (short dashes), k = 20 (dots) and
k = 50 (dashed) and Student-7 errors
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Figure 3: First order autocorrelation of absolute and squared observations
against (φ, σ2η) with Gaussian and Student-7 errors
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Figure 4: True ACF and mean correlogram of |yt|θ in an ARSV(1) model with
{φ = 0.98, σ2η = 0.05} and θ = 0.5 (dashed), θ = 1 (solid), θ = 1.5 (dots and
dashes) and θ = 2 (dots)
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Figure 5: Daily returns
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Figure 6: Correlograms of absolute (dashed) and squared (solid) returns
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Figure 7: Sample autocorrelations of |yt|θ against θ for different lags: k = 1
(solid), k = 5 (dots and dashes), k = 10 (short dashes), k = 20 (dots) and
k = 50 (dashed)
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Figure 8: Implied autocorrelations of |yt|θ against θ from estimated ARSV(1)
models and for different lags: k = 1 (solid), k = 5 (dots and dashes), k = 10
(short dashes), k = 20 (dots) and k = 50 (dashed)
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Figure 9: Differences between correlations of |yt| and y2t for the original (solid)
and the 7bσt/T (dashed), 6bσt/T (dots and dashes) and 5bσt/T (dots) outlier-
corrected series
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Figure 10: Sample autocorrelations of |yt|θ against θ for the 5bσt/T -outlier-
corrected series at different lags: k = 1 (solid), k = 5 (dots and dashes), k = 10
(short dashes), k = 20 (dots) and k = 50 (dashed)
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