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Abstract 
 
In this paper, unobserved component models with GARCH disturbances are extended to 

allow for asymmetric responses of conditional variances to positive and negative shocks. 

The asymmetric conditional variance is represented by a member of the QARCH class of 

models. The proposed model allows to distinguish whether the possibly asymmetric 

conditional heteroscedasticity affects the short run or the long-run disturbances or both. We 

analyse the statistical properties of the new model and derive the asymptotic and finite 

sample properties of a QML estimator of the parameters. We propose to identify the 

conditional heteroscedasticity using the correlogram of the squared auxiliary residuals. Its 

finite sample properties are also analysed. Finally, we ilustrate the results fitting the model 

to represent the dynamic evolution of daily series of financial returns and gold prices, as 

well as of monthly series of inflation. The behaviour of volatility in both types of series is 

different. The conditional heteroscedasticity mainly affects the short run component in 

financial returns while in the inflation series, the heteroscedastic ity appears in the long-run 

component. We find asymmetric effects in both types of variables. 
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1 Introduction

Economic time series can often be decomposed into components that have a direct

interpretation, for example, trend, seasonal and transitory components; see Harvey

(1989) for a detailed description of unobserved component models. In the simplest case,

the series of interest, yt, can be decomposed in a long-run component, representing an

evolving level, �t, and a transitory component, "t. If the level follows a random walk

and the transitory component is white noise, the resulting model is given by

yt = �t + "t

�t = �t�1 + �t (1)

where "t and �t are mutually independent Gaussian white noise processes with vari-

ances h and q respectively. Model (1), known as random walk plus noise, has been

very useful to represent the dynamic dependence of a large number of economic time

series; see, for example, Durbin and Koopman (2001) for a recent reference containing

several applications concerning this model.

The random walk plus noise model was extended by Harvey et al. (1992) to allow

the variances of both, the short and the long-run components, to evolve over time

following GARCH(1,1) models. In particular, the disturbances are de�ned by "t =

"
y

th
1=2
t and �t = �

y

t q
1=2
t where "

y

t and �
y

t are mutually independent Gaussian white noise

processes and ht and qt are given by

ht = �0 + �1"
2
t�1 + �2ht�1

qt = 0 + 1�
2
t�1 + 2qt�1 (2)

where the parameters �0, �1, �2, 0, 1 and 2 satisfy the usual conditions to guarantee

the positivity and stationarity of ht and qt.

Model (1) with the variances de�ned as in (2) is a Structural ARCH (STARCH)

model. The main attractive of STARCH models is that they are able to distinguish

whether the ARCH e�ects appear in the permanent and/or in the transitory compo-

nent1. Unobserved component models with GARCH disturbances have been applied in

1Ord et al. (1997) propose an alternative unobserved component model with heteroscedastic

errors where, instead of considering di�erent disturbance processes for each component, the source of

randomness is unique.

3



�elds like macroeconomics and �nance. For example, Evans and Wachtel (1989), Ball

and Cechetti (1990) and Evans (1991) analyze ination, Kim (1993) analyzes ination

and interest rates, Fiorentini and Maravall (1996) analyze the Spanish money supply

and Bos et al. (2000) study series of returns.

The variances in equations (2) are speci�ed in such a way that their responses

to positive and negative changes in the corresponding disturbances are symmetric.

However, in some cases, the empirical evidence suggests that the conditional variance

may have a di�erent response to shocks of the same magnitude but di�erent sign. This

phenomenon, known as \leverage e�ect" in the Financial Econometrics literature, has

often been observed in high frequency �nancial data; see, for example, Shephard (1996)

and the references therein. In the context of macroeconomic time series, Brunner

and Hess (1993) point out the importance of considering the \leverage e�ect" in the

modelization of ination.

There are several alternative models proposed in the literature to represent asym-

metric responses of volatility to positive and negative shocks; see Hentschel (1995)

and He and Ter�asvirta (1999) for two asymmetric models that encompass many of the

most popular alternatives. In this paper, we consider the Generalized Quadratic ARCH

(GQARCH) model originally proposed by Sentana (1995) because of its tractability.

If the disturbances "t and �t follow GQARCH(1,1) processes, their variances are given

by,

ht = �0 + �1"
2
t�1 + �"t�1 + �2ht�1

qt = 0 + 1�
2
t�1 + Æ�t�1 + 2qt�1 (3)

respectively. The parameters in (3) should be restricted for the variances to be positive.

In particular �0; �1; �2 > 0 and �
2 � 4�1�0: Similar restrictions are imposed on 0;

1; Æ and 2. On the other hand, "t is covariance stationary if �1 + �2 < 1: Similarly,

if 1 + 2 < 1; �t is covariance stationary; see He and Ter�asvirta (1999). Notice that

the covariance stationarity of "t and �t does not depend on the parameters � and Æ

that measure the asymmetry.

Sentana (1995) analyzes the properties of the GQARCH(1,1) model and points

out that it is very similar to the GARCH(1,1) model. For example, the GARCH(1,1)

and GQARCH(1,1) models for "t, in equations (2) and (3) respectively have the same
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unconditional mean and variance equal to zero and �
2
" = �0

1��1��2
respectively. Fur-

thermore, in both models, the odd moments are zero, the series "t is uncorrelated

and the cross-correlations between "
2
t and "t�h are zero for all h � 2. When h = 1,

Cov("2t ; "t�1) = ��
2
" in the GQARCH(1,1) model and zero in the GARCH(1,1) model.

Using the results of He and Ter�asvirta (1999), it is possible to derive the following

expressions for the kurtosis of "t and autocorrelation function (acf) of "2t

�" =
3(1� (�1 + �2)

2)

(1� 3�21 � �
2
2 � 2�1�2)

+ 3
A

�

(1� 3�21 � �
2
2 � 2�1�2)

(4)

�"2(�) =

8>>><>>>:
2�1(1��1�2��2

2
)+A�(3�1+�2)

2(1�2�1�2��2
2
)+3A�

; � = 1

(�1 + �2)
��1

�"2(1); � > 1

(5)

where A� = (�=�")
2
: Notice that the kurtosis of "t is larger than in the symmetric

GARCH model. For example, if �0 = 0:05; �1 = 0:15; �2 = 0:8 and � = 0, the kurtosis

is 5.57 while if, for the same parameter values, j�j = 0:1, the kurtosis is 6.14. On the

other hand, the autocorrelation function of the squares of a GQARCH(1,1) model

decays at the same rate as in the GARCH(1,1) model. Furthermore, if � is small

relative to �
2
" , as it is usually the case in empirical applications, the autocorrelation

of order one is almost the same in both models. For example, for the same parameter

values considered before, if � = 0; then �"2(1) = 0:3 while if j�j = 0:1; then �"2(1) =

0:31. Therefore, it seems that incorporating the leverage e�ect into the conditional

variance increases the kurtosis of the process without increasing the autocorrelations

of squares.

The asymmetry of the GQARCH(1,1) model is reected in the corresponding

\News Impact Curve" that is a shifted parabola. Consequently, these models pick

up asymmetric e�ects in the presence of small shocks while models with a rotated

parabola will capture the e�ects of large ones2. Furthermore, GQARCH models pick

up the \leverage e�ect" in an additive way. Consequently, the estimation of these mod-

els is easier than in models that use a multiplicative speci�cation like, for example,

the EGARCH model of Nelson (1991).

2Hentschel (1995) point out that a model combining these two aspects in the \News Impact Curve"

may give as a result either a cancellation of the asymmetric e�ect or an overestimation.
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The objective of this paper is to extend the STARCH model by allowing the vari-

ances of the disturbances "t and �t to follow GQARCH models. Hereafter, we call

this new family of models Quadratic STARCH (Q-STARCH). These models are able

to represent asymmetric responses of conditional variances to positive and negative

disturbances distinguishing whether the asymmetry appears in the short or in the

long-run components. Secondly, we will show how the autocorrelations of the squared

auxiliary residuals corresponding to the long-run and transitory components can be

used to identify which of these components is conditionally heteroscedastic.

The paper is organized as follows. Section 2 introduces the Q-STARCH model and

describes its properties. Section 3 contains �nite sample properties of the autocor-

relations of squared observations and squared auxiliary residuals, which are useful to

identify the presence of heteroscedastic asymmetric variances. In section 4, we analyze

the asymptotic properties of a Quasi-Maximum Likelihood (QML) estimator of the

parameters of the Q-STARCH model based on the prediction error decomposition of

the Gaussian log-likelihood, while in section 5 we study its �nite sample properties.

In section 6, the Q-STARCH model is �tted to daily gold prices and �nancial returns

and to monthly series of ination. Finally, section 7 concludes the paper.

2 Q-STARCH model

In this section, we analyze the statistical properties of the Q-STARCH model de�ned

by equations (1) and (3). Although the random walk plus noise model with GQARCH

(1,1) disturbances is not stationary, it is possible to obtain a stationary series by taking

�rst di�erences. Therefore, the stationary form is given by

�yt = �t +�"t: (6)

From (6) it can be easily seen that yt follows an ARIMA(0,1,1) with non-Gaussian

innovations; see Harvey (1989). Furthermore, notice that the innovations of this model

are uncorrelated although not independent; see Breidt and Davis (1992). The mean,

variance and autocorrelation function of �yt are the same as in the homoscedastic

random walk plus noise model; see, for example, Harvey (1989). The presence of
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asymmetric ARCH e�ects is reected in the kurtosis of �yt given by

�(�yt) =
3

(q + 2)2
f4q + q

2 1� (1 + 2)
2 +B

�

1� 321 � 212 � 22

(7)

+
4(1� (�1 + �2)

2 + �1(1� �1 � �1�2 � �
2
2)) + 2A�(1 + 3�1 + �2)

1� 3�21 � 2�1�2 � �22

g:

where q =
�2
�

�2
"

, �2� =
0

1�1�2
and B

� = ( Æ
��
)2. Notice that, in the homoscedastic case,

when �1 = 1 = � = Æ = 0; the kurtosis is, as expected, 3. The presence of ARCH

e�ects, �1 6= 0 or 1 6= 0, causes excess kurtosis. Besides, in the asymmetric case,

when � 6= 0 or Æ 6= 0; the excess kurtosis is even greater. Therefore, the kurtosis of a

Q-STARCH model is bounded from bellow by the kurtosis of a symmetric STARCH

model independently of the sign of � or Æ. The kurtosis is, in general, a complicated

function of the signal to noise ratio, q, and of the ARCH parameters. For example,

assuming that the ARCH e�ects of the long and short run disturbances are identical,

i.e. 0 = �0, 1 = �1 and 2 = �2, the kurtosis increases more when the asymmetry

of the transitory component increases (�) than when the asymmetry of the long-run

disturbance increases (Æ).

Furthermore, the skewness of �yt is given by

SK(�yt) =
�3�

�" (q + 2)
3=2

: (8)

Note that only the asymmetry of the transitory component, �; a�ects the skewness

coeÆcient. Looking at expressions (7) and (8), it seems that, indenpendently of the

signal to noise ratio, q, the asymmetry of the transitory noise is more inuential than

the asymmetry of the long-run noise on the statistical properties of �yt. In any case,

the main dynamic properties of (�yt) appear in the squares. After some tedious

algebra, it is possible to derive the following expression of the autocovariance function

of (�yt)
2

(�yt)2(�) =

8>>>>>>>>><>>>>>>>>>:

�
4
" (q + 2)2(�(�yt)� 1); � = 0

�
4
"fq2(�� � 1)��2(1) + (�" � 1)[1 + (2 + �1 + �2)�"2(1)]g � = 1

(�1 + �2)(�yt)2(� � 1) + [(1 + 2)� (�1 + �2)](1 + 2)
��2

�2(1); � � 2

(9)
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where �(�yt) is given in (7) and ��2(1) and �2(1) are the acf and autocovariance of

order one of �2t ; respectively. From (9), it is straightforward to obtain the acf of (�yt)
2.

Notice that the decay in the correlogram of the squared �rst di�erences is the same as

for the symmetric STARCH model. Furthermore, when the persistence of the variances

of the short and long-run components is similar, the decay of the autocorrelations is

exponential with parameter �1 + �2. As expected, in the homoscedastic case, when

�1 = 1 = � = Æ = 0; all the autocorrelations for (�yt)
2 are zero for lags greater than

one and the autocorrelation at lag one is
�

1
q+2

�2
= [��yt(1)]

2
; where ��yt(1) is the lag

one autocorrelation of �yt. Therefore, the autocorrelations of the squared observations

are equal to the squared autocorrelations of the row observations; see Maravall (1983).

As an illustration, Figure 1 plots the acf of the squared �rst di�erences of three Q-

STARCH models with parameters f�0 = 0:05, �1 = 0:15, �2 = 0:8; 0 = 0:05; 1 =

2 = 0g; f�0 = 0:05; �1 = �2 = 0; 0 = 0:05, 1 = 0:15 , 2 = 0:8g and f�0 = 0 =

0:05; �1 = 1 = 0:15; �2 = 2 = 0:8g respectively. Given that, as we have seen before,

the presence of asymmetries only a�ects slightly the autocorrelations of squares, we

have �xed � = Æ = 0 in all models. In Figure 1, it is possible to observe that the shape

of the acf of squares depends on whether the conditional heteroscedasticity a�ects the

short-run, the long-run or both components.

The information about the asymmetric response of the variances to positive and

negative innovations is more evident in the cross-correlations between (�yt)
2 and

(�yt�� ) that are given by

Corr
�
(�yt)

2
; (�yt�� )

�
=

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

0; 8 � < �1

2�

�"(q+2)3=2(�(�yt)�1)1=2
; � = �1

�3�

�"(q+2)3=2(�(�yt)�1)1=2
� = 0

Æq��(�1+�2)

�"(q+2)3=2(�(�yt)�1)1=2
; � = 1

Æ(1+2)
��1q+�((�1+�2)

��2
�(�1+�2)

� )

�"(q+2)3=2(�(�yt)�1)1=2
� � 2

(10)

Note that in the symmetric STARCH case these third order moments are always zero.
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Figure 2 plots the cross-correlation function in (10) for the same Q-STARCH models

previously considered in Figure 1 with the parameters � = 0:17 in the �rst and third

models and Æ = 0:17 in the second and third models. It is possible to observe that

the shape of the cross-correlograms depends on whether the asymmetry appears in

the transitory, in the long-run or in both components. In the �rst case, when the

asymmetry only appears in the transitory component, all the cross-correlations are

zero except for lags between -1 and 1. However, when the permanent component

follows a GQARCH(1,1) model, there is an exponential decay of the cross-correlations

of negative order towards zero. Finally, if both components have similar asymmetric

e�ects, the dominant e�ect is the corresponding to the transitory component. In

general, the magnitude of the cross-correlations is so small that they are not an useful

instrument to identify the presence of asymmetries in the variances of unobserved

component models.

In unobserved component models, it can also be useful to analyze the auxiliary

residuals, that estimate the disturbances of each component; see Maravall (1987) and

Harvey and Koopman (1992). The latter authors show that the MinimumMean Square

Linear (MMSL) estimators of "t and �t are given by

b�t = (1 + �)2�yt

(1� �L)(1 + �F )
(11)

b"t = �

1 + �2
(b�t+1 � b�t) (12)

where F is the lead operator such that Fxt = xt+1, L is the lag operator such that

Lxt = xt�1 and � is the moving average parameter of the reduced form of �yt given

by � =
�q�2+

p
q2+4q

2
. Harvey and Koopman (1992) show that, if time is reversed, b�t

follows an AR(1) model with parameter � whereas b"t follows a strictly noninvertible

ARMA(1,1) process with autoregressive parameter �. The �rst order autocorrelation

of b"t is then given by �b"(1) = �0:5(�+ 1).

Finally, the variances of b�t and b"t are given by

V ar(b�t) = (��q)2(q + 2)�2"
(1� �4)

(13)

V ar(b"t) = � 2��2"
1� �

(14)
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3 Finite sample properties of autocorrelations of squares

The properties of the Q-STARCH model described before suggest to identify the pres-

ence of conditional heteroscedasticity by using the correlogram of (�yt)
2 as well as

the corresponding correlogram of the squared auxiliary residuals.

In this section, the �nite sample properties of these correlations in the random

walk plus noise model with GQARCH disturbances are analyzed by means of extensive

Monte Carlo experiments. The series have been generated with sample sizes T = 300,

T = 1000 and T = 3000; by the following four Q-STARCH models3

�0 �1 �2 � 0 1 2 Æ

M1 0:25 0 0 0 0:05 0:15 0:8 �0:17
M2 0:05 0:15 0:8 �0:17 4:0 0 0 0

M3 0:05 0:15 0:8 �0:17 0:2 0:15 0:8 �0:17
M4 4:0 0 0 0 0:05 0:15 0:8 �0:17
M5 0:05 0:15 0:8 �0:17 0:25 0 0 0

M6 0:2 0:15 0:8 �0:17 0:5 0:15 0:8 �0:17

The �rst three models have q = 4:0, while q = 0:25 for the rest of the models.

Models M1 and M4 have an homoscedastic short-run noise while the long-run com-

ponent is heteroscedastic. On the other hand, the short-run disturbances of models

M2 and M5 are heteroscedastic while the long-run variances are constant. In M3 and

M6 both components are conditionally heteroscedastic. The asymmetry parameter

�0:17 has been chosen as it is the largest to guarantee the positivity of the conditional

variances.

For each model, we generate 1000 replicates and for each replicate, we compute the

sample autocorrelations of (�yt)
2, b"2t and b�2t for lags up to 36: Then, we compute the

average mean and standard deviation of the estimates through all replicates4.

The Monte Carlo results on the estimated �(�yt)2(�) = Corr
�
(�yt)

2
; (�yt�� )

2
�

have been reported in Table 1 for � = 1 and 10. Correlations of �yt have a large

3Results for other designs are not reported here to save space but are available from the authors

upon request.
4All simulations have been carried out on a Pentium desktop computer using our own FORTRAN

codes.
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negative bias. The bias is larger in those models with q = 4; than when q = 0:25 and

decreases with the sample size. On the other hand, the empirical standard deviation

decrease with the sample size at an approximate rate of
p
T while for M1, M2 and

M3 , in which q = 4, this rate is lower.

Table 1 also reports Monte Carlo results on the sample autocorrelations of the

squares of b"2t and b�2t . In this case, same conclusion can be obtained about the empirical
standard deviation decrease, that is lower than

p
T :

The results are illustrated in Figure 3, that plots in the �rst row, for models M1,

M2,M4 and M5, the mean autocorrelation function of (�yt)
2 when T = 1000 together

with the corresponding acf derived in previous section. In this Figure, it can be ob-

served that the bias is huge specially when q is large and the transitory component is

conditionally heteroscedastic or when q is small and the conditional heteroscedasticity

appears in the long-run noise. In these cases, it seems that the sample autocorrela-

tions of (�yt)
2 are not useful to identify the presence of conditionally heteroscedastic

unobserved noises. The second and third rows of Figure 3 plot the mean of the sample

autocorrelations of the squared auxiliary residuals, b"t and b�t; together with the corre-

sponding acf's obtained assuming homoscedasticity. First, notice that the autocorre-

lations are larger than expected if the corresponding component were homoscedastic.

Therefore, the autocorrelations of squared auxiliary residuals can be a useful instru-

ment to detect conditional heteroscedasticity. Furthermore, in the �rst two models,

the autocorrelations of squares are larger in b�t than in b"t: On the other hand, for the

last two models, the autocorrelations of b"2t are larger than the autocorrelations of b�2t .

Notice that, this is a rather useful result because it allows to identify the component

that is conditionally heteroscedastic. Finally, it is also important to notice that, as

expected, when the transitory noise, "t; is heteroscedastic, the autocorrelations of b"2t
are larger the smaller is q. However, when the conditional heteroscedasticity a�ects

the long-run noise, �t, the autocorrelations of b�2t are larger the larger is q.

It may also seem rather natural to use the cross-correlations of the auxiliary resid-

uals to conclude whether the conditional variances of the noises of the unobserved

components are asymmetric. However, as we have pointed out before for �yt; the

magnitudes of the cross-correlations are so small that they are not going to be useful
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in that sense. Consequently, it is not worth to try to derive the analytical expressions

of the corresponding cross-correlations.

4 Estimation of Q-STARCH model

Harvey et al. (1992) proposed a QML estimator of the parameters of the STARCH

model based on expressing the local level model in an augmented state space form.

The state vector is augmented by lags of �t in such a way that it is possible to

get estimations of both disturbances and their associated correction factors. The

measurement and transition equations are respectively given by

yt = �t + "t =
h
1 0 0

i
�t + "t

�t =

26664
�t

�t�1

�t

37775 =

26664
1 0 0

1 0 0

0 0 0

37775
26664

�t�1

�t�2

�t�1

37775+

26664
1

0

1

37775 �t: (15)

Even if "
y

t and �
y

t are assumed to be Gaussian processes, STARCH models are not

conditionally Gaussian, since knowledge of past observations does not imply knowledge

of past disturbances. Consequently, the QML estimator is based on treating the model

as if it were conditionally Gaussian and running the Kalman �lter to obtain the one-

step ahead prediction errors and their variances to be used in the expression of the

Gaussian likelihood given by

logL = �T

2
log(2�)� 1

2

TX
t=1

logFt �
1

2

TX
t=1

�
2
t

Ft
; (16)

where �t, t = 1; :::; T are the innovations and Ft their corresponding variances. The

QML estimator, b	, is obtained by maximizing the Gaussian likelihood in (16) with

respect to the unknown parameters. Harvey et al. (1992) give a detailed description

of the Kalman �lter for the random walk plus noise model with GARCH disturbances.

In this section, we extend the QML estimator proposed by Harvey et al. (1992) to

the estimation of the random walk plus white noise model with GQARCH(1,1) distur-

bances. Estimation of GQARCH models is easier using the following reparametrization

proposed by Sentana (1995) to guarantee the positivity of the variances ht and qt.

ht = a0 + a
2
1("t�1 � b)2 + a

2
2ht�1
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qt = g0 + g
2
1(�t�1 � d)2 + g

2
2qt�1 (17)

where the parameters of interest are �0 = a0+a
2
1b

2, �1 = a
2
1; �2 = a

2
2 and � = �2ba21:

Similar transformations apply to the parameters of qt. After estimating the parameter

vector, 	 = (a0; a1; a2; b; g0; g1; g2; d); these transformations can be used to obtain the

original parameters of the model.

When the disturbances are GQARCH processes, some of the equations of the

Kalman �lter should be modi�ed. In particular, the �lter requires expressions of

the following estimates of "t and �t

"̂t = yt �mt;

b�t = mt �mt�1jt; (18)

where mt = E
t
�t and mt�1jt = E

t
�t�1 are MMSL updated estimates of �t and

�t�1 obtained in a natural way by the augmentation of the state vector by �t�1 in

(15). The t under the expectation operator means that the expectation is conditional

on the information available at time t. Note that there is no need to include "t in the

state vector in order to get an expression of its estimate and corresponding variance.

The �lter also requires expressions of the conditional variances of the disturbances "t

and �t. For simplicity, we consider �rst the Q-STARCH model with the parameters �2

and 2 �xed to zero. In this case, the conditional mean of "t is zero and its conditional

variance is given by

Ht = E
t� 1

"
2
t = a0 + a

2
1("̂t�1 � b)2 + a

2
1Pt�1 (19)

where Pt = E
t
(�t �mt): Similarly, the conditional mean of the disturbance of the

permanent component, �t; is zero and its conditional variance is given by

Qt = E
t� 1

�
2
t = g0 + g

2
1(�̂t�1 � d)2 + g

2
1P

�
t�1 (20)

where P
�
t�1 = Pt + Pt�1jt � 2Pt;t�1jt, Pt�1jt = E

t
(�t�1 � mt�1=t)

2 and Pt;t�1=t =

E
t
(�t �mt)(�t�1 �mt�1=t): The required Pt, Pt�1jt and Pt;t�1jt are also provided

by the Kalman �lter.
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In order to carry out the initialization of the �lter, we set m1 = y1 and P1 =

E
0
"1 = �

2
" =

a0+a2
1
b2

1�a2
1

: In the framework of a random walk plus white noise this is

equivalent to use a di�use prior. Furthermore, if the conditional variance of �t at time

t � 1 is also set equal to its unconditional variance, the Kalman �lter can be started

with E
t � 1

("22) = �
2
" and E

t� 1
(�22) = �

2
� .

If the parameters �2 and 2 are di�erent from zero, Harvey et al. (1992) suggest

to consider the following alternative de�nitions of ht and qt

ht = a0 + a
2
1("t�1 � b)2 + a

2
2 E

t� 2
(ht�1);

qt = g0 + g
2
1(�t�1 � d)2 + g

2
2 E

t� 2
(qt�1): (21)

Notice that E
t� 1

("2t ) = E
t� 1

(ht) and E
t� 1

(�2t ) = E
t � 1

(qt). Consequently,

using equations (19) and (20), the following expressions are obtained

Ht = a0 + a
2
1("̂t�1 � b)2 + a

2
1Pt�1 + a

2
2Ht�1

Qt = g0 + g
2
1(�̂t�1 � d)2 + g

2
1P

�
t�1 + g

2
2Qt�1: (22)

In order to obtain the asymptotic distribution of the QML estimator, Harvey et al.

(1992) suggest to consider that the variances ht and qt are given by equations (22).

In this case, the Kalman �lter is exactly the same as the one previously described

but the model is conditionally Gaussian. Consequently, the �lter and the likelihood

in (16) are exact and the usual asymptotic theory can be applied. Under very general

conditions, the asymptotic distribution of b	 can be approximated by a multivariate

normal distribution with mean 	 and covariance matrix (Avar)�1. The ij0th element

of the matrix Avar is given by

IAij(	) =
1

2
E

"
TX
t=1

1

F
2
t

@Ft

@	

@Ft

@	0
+

TX
t=1

1

Ft

@�t

@	

@�t

@	0

#
: (23)

see, for example, Harvey (1989). The derivatives in expression (23) can be numerically

evaluated as explained by Harvey (1989).
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Once, the matrix Avar has been computed, the delta method can be used to obtain

the covariance matrix of the parameters of interest.

5 Finite sample properties of QML estimator

In this section, we analyze the �nite sample properties of the QML estimator by means

of Monte Carlo experiments. The series are simulated by the following alternative Q-

STARCH models with parameters (�0; �1; �2; �; 0; 1; 2; Æ)
5 given by

�0 �1 �2 � 0 1 2 Æ

M1 0:01 0:2 0 �0:05 0:01 0:1 0 �0:05
M2 0:01 0:2 0:5 �0:05 0:01 0:1 0:7 �0:05
M3 0:25 0 0 0 0:05 0:15 0:8 0

M4 0:05 0:15 0:8 0 4 0 0 0

M5 4 0 0 0 0:05 0:15 0:8 0

M6 0:05 0:15 0:8 0 0:25 0 0 0

The sample sizes considered are T = 300; 1000 and 3000. The numerical opti-

mization of the likelihood has been performed using the IMSL subroutine DBCPOL

with the parameters �0 and 0 restricted to be nonnegative, and �1 + �2 and 1 + 2

restricted to be between 0 and 1:

Table 2 reports the Monte Carlo means and standard deviations (brackets) for

models M1 and M2. This table also shows, in squared brackets, the corresponding

approximated asymptotic standard deviation computed using expression (22). The

results for model M1 show that, the biases of all the parameters are rather small even

when T = 300. However, the asymptotic standard deviations of the ARCH parameters

provide an adequate approximation to the empirical standard deviations only for the

biggest sample size. In general, the asymptotic standard deviation is larger than the

empirical standard deviation that decreases with the sample size at rate
p
T , approx-

imately. Figure 4 plots kernel estimates of the densities of the parameter estimates of

this model. This �gure illustrates that the asymptotic Normal approximation of the

QML estimator is adequate for relatively large sample sizes as, for example, T = 3000.

5Results for other parameter designs are available by the authors upon request.
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The results for model M2 are, in general, similar to the previous ones. However, it

is possible to observe that it seems to be a negative correlation between the parameters

�1 and �2. The parameter �1 is overestimated while �2 is underestimated. The same

e�ect can be observed with respect to the parameters 1 and 2. For example, when

T = 300, the empirical correlations between �1 and �2 and between 1 and 2 are

-0.57 and -0.61, respectively. When the sample size is T = 3000, these correlations are

even bigger, -0.73 and -0.88 respectively. Notice that these high correlations could be

expected since we are estimating imposing the stationarity restrictions, �1 + �2 < 1

and 1 + 2 < 1 and the parameters chosen are very close to these boundaries. On

top of that, we can observe that the presence of the GARCH parameters worsens the

estimation of the asymmetry parameter, specially if such asymmetry appears in the

short run variance. Figure 5 plots the corresponding kernel densities for the parameters

of model M2. It can be observed that the parameters of the variance of the transitory

component are estimated with worse properties than the parameters of the long-run

component. This is specially clear in the case of the estimates of the parameter �2,

which have rather unpleasant properties even when T = 3000:

To illustrate the problems faced when the Quasi-likelihood is maximized, Figure

6 plots the Gaussian likelihood in (16) for series simulated by Q-STARCH processes

with asymmetry and conditional heteroscedasticity in the transitory component and

four di�erent speci�cations in the permanent one as a function of the parameters a1

and b. Note that the function becomes atter as the number of parameters increases.

On the other hand, Figure 6 shows that the log-likelihood has local maximum, and

consequently, the performance of any optimization algorithm strongly depends on the

initial values provided. Finally, it is important to realize that the diÆculties estimating

the parameter �1 = a
2
1 could be due to the fact that the log-likelihood is rather at

when b is in its maximum.

Finally, Figure 7 plots kernel estimates of the densities of the Monte Carlo of the

estimates of the parameters � and Æ of models M3 to M6, which are actually zero.

The main objective of these experiments is to analyze whether the sample distribution

of the QML estimators of the parameters � and Æ can be used to infer whether the

transitory or the long-run conditional variances are asymmetric. Looking at the kernel
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densities plotted in Figure 7, it seems that the null hypothesis H0 : � = 0 can be

tested using standard results.

6 Empirical application

In this section we �t the Q-STARCH model to three daily �nancial series of returns,

a daily series of gold prices and four monthly ination series.

6.1 Daily series of gold prices and �nancial returns

In this subsection, we analyze empirically three �nancial time series of daily prices of

the Nikkei 225 index observed from January 3, 1994 to December, 29, 2000 with a

sample size of T = 18256 and of the Hewlett-Packard and Exxon stocks observed from

January 3, 1994 to May 20, 2003 with T = 23627. Finally, we also analyze a daily series

of the logarithm of gold prices in US also observed from January 1, 1985 to December,

3, 1989 with T = 10748. Several descriptive sample moments of the �rst di�erences

of these series are reported in Table 3. Figure 8 plots the correlograms of �yt and

(�yt)
2 for the four series. All the series show excess kurtosis and autocorrelations of

squares larger than expected if they were linear.

The estimates of the parameters of the homoscedastic random walk plus noise

model are shown in Table 4.9 Note that in all cases q̂ is rather large, meaning that

in these series the variability of the permanent component dominates. Table 5 also

shows several diagnostic statistics of the estimated innovations, �t; and the auxiliary

residuals, "̂t and �̂t. In particular, for each of these series, we report the Box-Ljung

statistics of order 10 for the original series and their squares. With respect to the

innovations, the Box-Ljung statistic, Q(10), does not show a strong evidence of au-

tocorrelation. However, the corresponding statistic for the squares, Q2(10); is highly

signi�cant at any usual level. Consequently, the series of innovations may exhibit

6The series can be obtained from the Journal of Applied Econometrics data archive at:

http://qed.econ.queensu.ca/jae/. The series is extracted from the �le index.data belonging to Franses

et al. (2002).
7Both Hewlett-Packard and Exxon series can be obtained from http://�nance.yahoo.com/.
8The series can be obtained from: http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
9These estimates have been obtained using the program STAMP 6.20 of Koopman et al. (2000).
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some kind of conditional heteroscedasticity. With respect to the auxiliary residuals,

remember that they are serially correlated. For instance, the theoretical autocorrela-

tion of order one for the Nikkei of b"t is �"(1) = �0:4671 and the theoretical acf of b�t is
��(�) = 0:066�(� � 1), � = 2; 3:::; with ��(1) = 0:66. Observe that the estimated au-

tocorrelations in Table 4 are very close to their theoretical counterparts. If the noises

were homoscedastic, the autocorrelations of the squared residuals are expected to be

equal to the squared autocorrelations of the original residuals. However, in Table 4,

it is possible to observe that the autocorrelations of squares are clearly larger than

the squared autocorrelations, suggesting the presence of conditional heteroscedastic-

ity. Finally, the Box-Ljung statistics for the squared residuals of the transitory, b"t and
permanent component, b�t; reject clearly the null of homoscedasticity. Therefore, it

seems that both components may be conditionally heteroscedastic.

The preferred Q-STARCH model consists in a GQARCH(1,1) model for the per-

manent component, and no ARCH e�ect in the transitory component disturbance,

that is, a model of the form,

ĥt = �̂0

q̂t = ̂0 + ̂1�
2
t�1 + Æ̂�t�1 + ̂2q̂t�1 (24)

Table 5 reports the estimation results, where values between brackets are t -

statistics. Note that the estimate of Æ is signi�cant and negative for the Nikkei 225,

Hewlett-Packard and Exxon, meaning that the only asymmetric e�ect is produced

in the permanent component and that a negative shock a�ects more the conditional

variance than a positive one. The estimate Æ for the gold series is positive, that is, a

positive shock a�ects the conditional variance more than a negative one.

6.2 Ination time series

In this subsection, we analyze empirically monthly series of ination corresponding to

Japan and three European countries (Germany, Italy and United Kingdom). Ination

rates, yt; are obtained as yt = (log(CPIt) � log(CPIt�1)) � 100 where CPI stands

for consumer price index. The European CPI were observed from January, 1962 to

August, 2001 with T = 476; while for Japan the data were observed from January, 1970
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to August, 2001, with T = 380 10. Intervention analysis and seasonal adjustment of

all series were carried out with the program STAMP 6.20. Several descriptive sample

moments of �yt are reported in Table 6. In these series the evidence of conditional

heteroscedasticity is not so strong as in the daily series analyzed before.

The estimates of the parameters of the homoscedastic random walk plus noise

model are reported in Table 7. Note that in all countries the estimated signal to

noise ratio, bq; is less than one, meaning that the estimated variance of the permanent

component, �̂2� ; is small compared with the variance of the transitory component, �̂2" .

Table 8 also reports several diagnostic statistics of the estimated innovations and

the auxiliary residuals. In particular, for each of these series, we report the estimated

autocorrelations up to order 5 of the original and squared observations as well as

the corresponding Box-Ljung statistics. With respect to the innovations, they may

exhibit some kind of conditional heteroscedasticity in the cases of Italy and Japan.

The same conclusion is reached looking at the Box-Ljung statistics for the squared

residuals of the transitory component. Finally, notice that the autocorrelations of �̂2t

are approximately equal to the squared autocorrelations of �̂t: Therefore, it seems that

the long-run noises are not conditionally heteroscedastic while the transitory noises of

Italy and Japan may have some kind of conditional heteroscedasticity.

For all countries the preferred Q-STARCH model consists in a GQARCH(1,1)

model for the transitory component, and no ARCH e�ect in the permanent component

disturbance given by

ĥt = �̂0 + �̂1"
2
t�1 + �̂"t�1 + �̂2ĥt�1

q̂t = ̂0 (25)

The estimation results reported in Table 8, are in concordance with the conclusions

derived from the analysis of the auxiliary residuals. The ARCH parameter �1 is

clearly signi�cant for Italy and Japan while for Germany and UK is not statistically

di�erent from zero 11. Therefore, the monthly ination in Germany and UK seem to

be homoscedastic, while in Italy and Japan the short-run component is conditionally

heteroscedastic. However, the asymmetry parameter is signi�cant in Japan at the

10The series can be obtained from the OECD Statistical Compendium, edition 02#2001.
11Notice that if �1 = 0; the parameters �2 and � are not identi�ed.
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10% level. As this parameter is positive, it implies that when the short run ination

rises, the uncertainty associated with future ination increases more than when it goes

down. Therefore, our results support the Friedman hypothesis, according to which, a

present positive shock in ination will a�ect tomorrow's uncertainty about ination

more than a negative one; see Friedman (1977).

7 Summary and conclusions

In this paper we propose a new unobserved components model with conditionally

heteroscedastic noises that allows the corresponding conditional variances to respond

asymmetrically to negative and positive shocks. We denote this model as Q-STARCH.

We show that the asymptotic distribution of a QML estimator could be an adequate

approximation to the �nite sample distribution. Consequently, inference can be based

on classical results.

We also show how the autocorrelations of squared auxiliary residuals contain in-

formation useful to identify which of the components is conditionally heteroscedastic.

However, the sample autocorrelations are severely biased towards zero making, in some

cases, the identi�cation of conditional heteroscedasticity a diÆcult task. In this sense,

it may be useful to analyze the behavior of the portmanteau statistic proposed by

Rodriguez and Ruiz (2003) to test the uncorrelatedness of a time series that takes into

account not only the magnitude of the sample autocorrelations but also whether these

autocorrelations have any systematic pattern.

Finally, we show with empirical examples how the Q-STARCH model can be useful

for both �nancial and macroeconomic variables.

Two generalizations of the model are of special interest for the empirical appli-

cations: �rst, the extension to models with seasonal components so that the model

can be directly implemented to analyze seasonal data as ination, and second, the

multivariate generalization. Further research is being carried out in these directions.
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Figure 1: Autocorrelation function of (�yt)
2 of di�erent Q-STARCH models with

q = 1.
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with q = 1.
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Figure 4: Kernel densities for the estimated parameters in a Q-STARCH model with

asymmetry in both components. The solid line corresponds to T = 3; 000, the dotted

line to T = 1; 000 and the dash-dotted line to T = 300. Parameter values are: �0 =

0:01; 0 = 0:01; �1 = 0:2; 1 = 0:1; � = �0:05 and Æ = �0:05:
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(a) (b)

(c) (d)

Figure 6: Likelihood with respect to a1 and b when (a) �t is homoscedastic, (b) �t

is an ARCH(1) process, (c) �t is an QARCH process and (d) �t is an GQARCH(1,1)

process.
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T=300 T=1000 T=3000 T=300 T=1000 T=3000

�0=0.01

0.0101

(0.0023)

[0.0030]

0.0100

(0.0011)

[0.0016]

0.0100

(0.0007)

[0.0009]

�0=0.01

0.0112

(0.0101)

[0.0243]

0.0110

(0.0080)

[0.0128]

0.0101

(0.0057)

[0.0071]

�1=0.2

0.2084

(0.1328)

[0.2036]

0.2087

(0.0563)

[0.1037]

0.2139

(0.0378)

[0.0582]

�1=0.2

0.3158

(0.2631)

[0.6679]

0.2968

(0.2282)

[0.3706]

0.2822

(0.1712)

[0.2093]

�2=0.0 �2=0.5

0.3647

(0.3171)

[1.1964]

0.3815

(0.2894)

[0.6342]

0.4220

(0.2517)

[0.3518]

�=-0.05

-0.0433

(0.0246)

[0.0300]

-0.0464

(0.0122)

[0.0143]

-0.0480

(0.0063)

[0.0085]

�=-0.05

-0.0354

(0.0676)

[0.0995]

-0.0340

(0.0471)

[0.0509]

-0.0315

(0.0270)

[0.0284]

0=0.01

0.0096

(0.0020)

[0.0035]

0.0096

(0.0011)

[0.0019]

0.0096

(0.0006)

[0.0011]

0=0.01

0.0167

(0.0165)

[0.0087]

0.0121

(0.0076)

[0.0044]

0.0106

(0.0034)

[0.0026]

1=0.1

0.0988

(0.0464)

[0.2737]

0.1045

(0.0319)

[0.1483]

0.1082

(0.0188)

[0.0849]

1=0.2

0.2732

(0.1782)

[0.1351]

0.2684

(0.1065)

[0.0727]

0.2728

(0.0591)

[0.0451]

2=0.0 2=0.7

0.5365

(0.2585)

[0.1970]

0.6042

(0.1503)

[0.0986]

0.6190

(0.0771)

[0.0596]

Æ=-0.05

-0.0426

(0.0177)

[0.0383]

-0.0469

(0.0076)

[0.0193]

-0.0486

(0.0033)

[0.0112]

Æ=-0.05

-0.0605

(0.0543)

[0.0495]

-0.0565

(0.0285)

[0.0247]

-0.0564

(0.0149)

[0.0137]

Table 2: Monte Carlo results for estimated parameters of Q-STARCH models with

asymmetry in both components. Standard deviations in brackets. Asymptotic Stan-

dard deviation in squared brackets.
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NIK HPQ XOM GOLD

�yt �yt �yt �yt

Mean -0.012 0.025 0.034 0.000

SK 0.013 -0.062 0.071 0.698�

� 5.588� 6.920� 4.535� 9.159�

�(�) �yt (�yt)
2 �yt (�yt)

2 �yt (�yt)
2 �yt (�yt)

2

1 -0.045� 0.059� -0.017 0.048� -0.040� 0.145� -0.096� 0.054�

2 -0.010 0.091� -0.057� 0.059� -0.077� 0.180� 0.020 0.036�

3 -0.029� 0.048� -0.018 0.038� -0.037� 0.224� 0.021 0.044�

4 0.032� 0.129� 0.011 0.047� -0.041� 0.093� -0.023 0.022

5 -0.024 0.101� -0.018 0.071� -0.042� 0.078� -0.042� 0.062�

Q(10) 18.982 127.27 17.017 76.406 39.018 444.09 16.224 20.172

Table 3: Summary statistics of (�yt) for Nikkei 225, Hewlett-Packard, Exxon and gold

prices series.

33



NIK HPQ XOM GOLD

�̂
2
" 0.111 0.216 0.146 8.705 E-06

�̂
2
� 1.482 7.352 1.963 8.225 E-05

q̂ 13.288 33.975 13.411 9.448

�t �t �t �t

Mean -0.018 0.011 0.026 0.014

Std. Dev. 0.997 0.998 0.998 0.997

SK -0.149 0.050 0.056 0.214

� 4.629 4.988 3.779 5.493

Q(10) 15.892 20.898 35.829� 4.505

Q2(10) 145.78� 193.54� 231.79� 52.913�

"̂t=T "̂t=T "̂t=T "̂t=T

Mean 0.000 0.001 0.000 0.001

Std. Dev. 0.999 1.001 0.999 1.001

SK -0.183 -0.058 -0.034 0.190

� 4.318 4.778 3.833 4.136

�(�) "̂t=T "̂
2
t=T

"̂t=T "̂
2
t=T

"̂t=T "̂
2
t=T

"̂t=T "̂
2
t=T

1 -0.459� 0.332� -0.456� 0.319� -0.424� 0.213� -0.463� 0.294�

2 -0.023� 0.065� -0.060� 0.078� -0.097� 0.156� -0.040� 0.186�

3 -0.048� 0.081� 0.001 0.108� 0.022� 0.140� 0.034� 0.096�

4 0.044� 0.161� 0.035� 0.088� 0.007 0.085� -0.030 0.092�

5 0.008 0.151� -0.040� 0.091� -0.002 0.073� -0.015 0.130�

Q(10) 408.67� 401.70� 515.39� 431.70� 452.15� 317.46� 237.30� 208.08�

�̂t=T �̂t=T �̂t=T �̂t=T

Mean -0.019 0.011 0.027 0.015

Std. Dev. 0.997 0.998 0.998 1.003

SK -0.141 0.051 0.056 0.191

� 4.546 4.966 3.828 5.393

�(�) �̂t=T �̂
2
t=T

�̂t=T �̂
2
t=T

�̂t=T �̂
2
t=T

�̂t=T �̂
2
t=T

1 0.066� 0.089� 0.029� 0.079� 0.065� 0.147� 0.095� 0.094�

2 -0.011 0.094� -0.056� 0.081� -0.077� 0.092� 0.024 0.078�

3 -0.043� 0.042� -0.024� 0.090� -0.038� 0.136� 0.029 0.062�

4 0.015 0.143� 0.006 0.103� -0.039� 0.092� -0.026 0.070�

5 -0.010 0.067� -0.032� 0.066� -0.053� 0.067� -0.026 0.066�

Q(10) 23.805� 148.81� 22.872 196.73� 50.087� 227.56� 14.679 58.811�

Table 4: QML estimates of the parameters of the random walk plus noise model and

summary statistics of estimated innovations and auxiliary residuals for the Nikkei 225,

Hewlett-Packard, Exxon and gold prices time series.
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NIK HPQ XOM GOLD

�̂0 0:0799 0:3997 0:0801 1:0E � 05

(2:3963) (3:1869) (2:3778) (2:3395)

̂0 0:0358 0:0335 0:0292 4:0E � 06

(3:4682) (2:8963) (3:3982) (2:0326)

̂1 0:0824 0:0212 0:0694 0:0542

(5:0822) (4:8864) (5:8808) (2:8690)

̂2 0:9006 0:9737 0:9168 0:8973

(51:7524) (193:2517) (71:0521) (28:2655)

Æ̂ �0:1087 �0:0532 �0:0598 0:0008

(�4:9498) (�2:2747) (�2:7512) (3:0712)

Table 5: QML estimates of the Q-STARCH model for the Nikkei 225, Hewlett-Packard,

Exxon and gold price series.

GER ITA JAP UK

�yt �yt �yt �yt

Mean 0.000 0.000 0.000 0.000

Std. Dev. 0.291 0.267 0.512 0.304

SK -0.144 -0.049 -0.055 0.117

� 3.384* 6.043* 3.985* 3.624*

�(�) �yt (�yt)
2 �yt (�yt)

2 �yt (�yt)
2 �yt (�yt)

2

1 -0.419* 0.183* -0.371* 0.139* -0.549* 0.384* -0.376* 0.211*

2 -0.071* 0.091* 0.053* 0.092* 0.035 0.133* -0.115* 0.028

3 0.050* 0.012 -0.090* 0.118* 0.075* 0.064* 0.107* 0.043

4 -0.053* 0.009 -0.061* 0.174* -0.098* 0.131* -0.105* -0.068*

5 -0.013 0.002 -0.060* 0.070* 0.067* 0.182* 0.006 0.006

Q(10) 93.890* 23.967* 85.340* 57.551* 134.480* 114.040* 93.756* 27.164*

Table 6: Summary statistics of (�yt) for Germany, Italy, Japan and United Kingdom

ination series.
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GER ITA JAP UK

�̂
2
" 0.0479 0.0329 0.1180 0.0436

�̂
2
� 0.0007 0.0055 0.0010 0.0064

q̂ 0.0149 0.1685 0.0087 0.1489

�t �t �t �t

Mean 0.002 -0.012 -0.092 0.002

Std. Dev. 0.997 0.989 0.988 0.986

SK 0.398 0.708 0.091 0.231

� 3.695 5.207 3.650 3.965

Q(10) 31.865� 35.802� 14.073 11.516

Q2(10) 13.493 66.291� 46.336� 9.703

"̂t=T "̂t=T "̂t=T "̂t=T

Mean 0.000 0.000 0.000 0.000

Std. Dev. 0.997 0.995 0.995 0.992

SK 0.484 0.593 0.215 0.280

� 4.005 5.165 3.803 4.001

�(�) "̂t=T "̂
2
t=T

"̂t=T "̂
2
t=T

"̂t=T "̂
2
t=T

"̂t=T "̂
2
t=T

1 0.071� 0.057� -0.046� 0.114� -0.167� 0.159� -0.094� -0.011

2 -0.063� 0.023 -0.070� 0.156� -0.044 0.087� -0.173� 0.082�

3 -0.063� 0.013 -0.168� 0.121� 0.016 0.028 -0.023 0.037

4 -0.158� 0.091� -0.153� 0.102� -0.102� 0.037 -0.141� -0.044

5 -0.157� 0.047� -0.132� 0.123� -0.007 0.104� -0.060� -0.024

Q(10) 44.175� 13.662 47.581� 63.809� 20.897 41.696� 34.726� 12.179

�̂t=T �̂t=T �̂t=T �̂t=T

Mean 0.003 -0.024 -0.437 -0.003

Std. Dev. 0.994 1.001 0.898 1.000

SK -0.060 0.464 -0.225 0.004

� 2.544 4.355 3.213 3.269

�(�) �̂t=T �̂
2
t=T

�̂t=T �̂
2
t=T

�̂t=T �̂
2
t=T

�̂t=T �̂
2
t=T

1 0.882� 0.724� 0.660� 0.493� 0.872� 0.787� 0.674� 0.427�

2 0.748� 0.476� 0.350� 0.190� 0.788� 0.693� 0.412� 0.131�

3 0.629� 0.298� 0.094� 0.142� 0.714� 0.622� 0.269� 0.161�

4 0.524� 0.149� -0.054� 0.118� 0.638� 0.536� 0.135� 0.101�

5 0.457� 0.052� -0.099� 0.114� 0.584� 0.483� 0.092� 0.042

Q(10) 1549.3� 418.10� 282.07� 184.54� 1460.8� 993.21� 354.47� 118.81�

Table 7: QML estimates of the parameters of the random walk plus noise model and

and summary statistics of estimated innovations and auxiliary residuals for Germany,

Italy, Japan and United Kingdom ination series.
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GER ITA JAP UK

�̂0 8.245E-04 1.188E-03 5.904E-03 4.408E-04

(1.1895) (2.5163) (2.0432) (0.9132)

�̂1 0.0321 0.2427 0.1871 0.0353

(1.7351) (4.3787) (3.3198) (1.7234)

�̂2 0.9525 0.7463 0.7842 0.9561

(34.6398) (13.2465) (12.5897) (35.5690)

�̂ 0.0102 0.0122 0.0299 0.0078

(2.0336) (1.0003) (1.5427) (1.3710)

̂0 7.291E-04 3.988E-03 7.328E-04 3.505E-03

(2.6102) (4.5425) (1.9992) (4.3063)

Table 8: QML estimates of the Q-STARCH model for Germany, Italy, Japan and

United Kingdom ination series.
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