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1 Introduction

In the last years investment literature has shown an increasing concern about the

modelling of microeconomic investment decisions. This increasing concern is related

to the growing availability of microeconomic datasets which show the investment be-

havior taking place at the …rm level. The analysis of this behavior highlights the

importance of some phenomena that are masked when analyzing aggregate invest-

ment data. Traditional investment models, characterized by strictly convex capital

adjustment costs functions, seemed to be appropiated to capture the investment be-

haviour observed in the aggregate data. This behavior is associated with a pattern of

smooth capital adjustment. However, in the analysis of …rm-level data, we …nd that

there are periods in which some …rms decide not to invest, and periods in which the

investment carried out involves a high percentage of the installed …rm capital stock.

These phenomena of infrequent and lumpy adjustment are far away from the smooth

adjustment pattern that characterized the investment literature until the last decade.

This fact has given rise to a new generation of investment models that moves away

from the convexity structure. Investment models taking into account irreversibili-

ties and adjustment costs structures with nonconvex components have began to be

considered.

In this paper we propose and estimate a dynamic structural model of …xed capital

investment at the …rm level. Our dataset consists of an unbalanced panel of Spanish

manufacturing …rms. The presence of infrequent and lumpy investment seems to be

important in these data. Based on this empirical fact we consider a dynamic model

of irreversible investment with a general speci…cation of adjustment costs including

convex and nonconvex components. We try to get insight about the investment

behaviour taking place at the …rm level and the importance of di¤erent types of

adjustment costs in the frims’ investment decisions.

From the methodological point of view, we set the …rm’s investment decision

problem in the dynamic programming framework. More speci…cally, we formulate

a discrete choice dynamic programming problem in which …rms decide each period

between not to invest or to undertake an investment project. Until the last years,
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the usual approach to handle with the estimation of these models was some kind of

solution-estimation algorithm in the spirit of the Nested Fixed Point (NFXP) algo-

rithm (Rust, 1987). This estimation method consists of a nested algorithm in which

the dynamic programming problem must be solved in each iteration in the search

for the parameter estimates. The number of empirical works using this method is

limited, because the high computational cost associated with it obligues to consider

very parsimonious speci…cations for the objective function. In the last decade some

alternative methods have appeared. Hotz and Miller (1993) proposed an estimation

method, the Conditional Choice Probability (CCP) estimator that does not require

to solve the dynamic programming problem to obtain estimates of the structural pa-

rameters. From the computational point of view, this method has clear advantages

over the solution-estimation tecniques. However, these computational gains are ob-

tained at the expense of e¢ciency. Thus, there is a clear trade-o¤ between these

two aspects. In Sánchez-Mangas (2002) we apply this method to the estimation of

a dynamic structural model of irreversible investment for Spanish …rms. Recently,

Aguirregabiria and Mira (2002) have proposed an estimation method, the Nested

Pseudo-Likelihood (NPL) algorithm, that bridges the gap between the two estima-

tion strategies mentioned above. It does not require the solution of the dynamic

programming problem. Rather, it is based on a representation of the solution of that

problem in the space of conditional choice probabilities. Successive iterations in the

algorithm return a sequence of estimators that includes as extreme cases the Hotz

and Miller’s CCP estimator and Rust’s NFXP estimators. Furthermore, all the es-

timators in the sequence are distributed asymptotically like the maximum likelihood

estimator.

In this paper, we apply this strategy to the estimation of our dynamic discrete

choice model of irreversible investment. Up to our knowledge, this is the …rst exercise

of application of this new and, in our opinion, promising estimation strategy.

The rest of the paper is organized as follows. In Section 2 we describe the dataset

used in this study. Section 3 formulates a dynamic structural model of irreversible

investment with nonconvex adjustment costs. In Section 4 we describe the estimation

strategy we adopt. Section 5 reports the estimation results and Section 6 concludes.
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2 Evidence from the data

This section stresses the stylized facts which are present in Spanish manufacturing

…rms. This is a revised and extended version of the analysis carried out in Sánchez-

Mangas (2002). The dataset we use has been taken from the Encuesta sobre Es-

trategias Empresariales (ESEE) conducted by the Spanish Ministry of Industry and

Energy. It contains annual information of the balance sheet and other economic vari-

ables. Our sample is an unbalanced panel of 1592 …rms between 1990 and 1997. We

concentrate on capital stock and gross expenditure on capital goods. The investment

rate for period t has been constructed as the ratio between gross expenditure in that

period and the capital stock at the beginning of the period.

We analyze the investment rate for the whole dataset and for …rms of di¤erent

size. The recent empirical studies carried out describing …rm investment behavior

in di¤erent countries have highlighted the importance of two fundamental features:

…rms do not adjust their capital stock smoothly. Rather a relevant percentage of

…rms decide not to invest during some periods, and, when they decide to invest, the

amount of investment represents a high percentage of installed capital. This evidence

can be found in Barnett and Sakellaris (1995), Doms and Dunne (1998) or Nielsen

and Schiantarelli (1998), among others.

The presence of these two phenomena, inaction and investment spikes, has im-

portant e¤ects from the point of view of the modelization of the investment decision.

In the following …gures and tables, we explore the importance of these phenomena in

our dataset.

Figure 1 depicts a histogram of annual …rm-level gross investment rates. The

distribution is strongly skewed to the right. Around 30% of the observations have

investment rates that are zero or close to zero (less than 0.033 gross investment rate),

which re‡ects the fact that many …rm-year observations involve little or no investment.

The long right tail ilustrates the fact that a fraction of plants experiment a large

investment episode in any given year. The last bar accounts for the observations
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having an investment rate greater than 0.98.
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Figure 1

In the following table we can see the evidence of inaction and lumpiness by year.

The …rst column shows the percentage of observations that experiment zero invest-

ment in a given year, while the second one shows the percentage that experiment an

investment rate greater than 20%, where i stands for investment rate.

Inaction Lumpiness
Year (% obs. with i = 0) (% obs. with i > 0:2)
1991 17.46 30.81
1992 18.61 26.59
1993 23.46 18.52
1994 20.28 21.54
1995 18.39 26.65
1996 16.52 23.75
1997 16.24 26.19
Total 18.05 24.70

Table 1: Evidence of inaction and lumpiness.

Even in the year of lowest percentage of observations with zero investment, this

percentage is quite high,above 16%. On the other hand, investment rates higher than

20% arise in more than 20% of the observations in almost every year, reaching 30% in
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one of them. Furhtermore, we can observe in this table a cyclical behavior. Inaction

is a countercyclical phenomenon, since the highest percentage of observation with

zero investment occurred in 1993, year in which the GDP and the gross formation of

…xed capital underwent, respectively, a decrease of 0.68% and 11.72% with respect to

1992. On the contrary, investment spikes are a cyclical phenomena.

We also report this evidence of infrequent and lumpy capital adjustment distin-

guishing three categories of …rms: small, medium and large …rms. We follow the

classi…cation criterion established by the European Commission. According to this

criterion, small …rms are those with no more than 50 employees and no more than

7 million euro of annual turnover. Medium …rms are those with more than 50 and

no more than 250 employees and an annual turnover greater than 7 million euro and

lesser than 40 million euro. Large …rms are those with more than 250 employees and

an anual turnover greater than 40 million euro. The following table shows the distri-

bution of …rms in the sample in the …rst column, the percentage of observations with

zero investment (inaction) in the second column and the percentage of observations

with an investment rate greater than 20% of the installed capital (lumpiness) in the

third colum.

Inaction Lumpiness
Type of …rm % obs. (% obs. with i = 0) (% obs. with i > 0:2)
Small …rms 57.22 29.24 24.52

Medium …rms 25.67 4.51 23.78
Large …rms 17.12 0.93 26.65

Total 100 18.05 24.70

Table 2: Evidence of inaction and lumpiness by categories of …rms

As we can see, more than half of the …rms in our dataset are small …rms. The

percentage of observations with zero investment if very di¤erent for small, medium

and large …rms. While there are around 30% of observations accounting for zero

investment in the group of small …rms, this percentage is only 4% for medium …rms

and almost insigni…cant for large …rms. However, in the three categories considered,
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the percentage of observations with investment rates greater than 20% of installed

capital is quite similar, around 23%.

Figure 2 mimics Figure 2a in Doms and Dunne (1998). For each …rm in our

dataset we have ranked its annual investment rate in descending order. The …gure

shows the mean and the median investment rate in each rank.
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Figure 2

As we can see, the …rst bar, corresponding to the highest mean investment rate,

exceeds 35%, while for the second rank is below 20%, and for subsequent ranks is

even less than 10%. That is, the means drop o¤ signi…cantly after ranks 1 and 2,

meaning that many …rms experiment one or two periods of intense investment, while

the rest of the periods are characterized by moderate investment. The median is

always below the mean, re‡ecting the skewness to the right of the investment rate

distribution.

In Figure 3, the ranks of investment have been constructed as in Figure 2. We

present, for each rank, the percentage that the average investment in this rank rep-

resent over the investment carried out in the whole period. It can be seen that, on

average, more than the third part of investment in the whole period has been carried

out in only one year and almost 60% in two years. Table 3 shows the percentages by

ranks
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% investment over
Rank total investment % acumulated

1 0.3617 0.3617
2 0.2247 0.5864
3 0.1667 0.7531
4 0.1068 0.8599
5 0.0695 0.9295
6 0.0466 0.9761
7 0.0238 1.000

Table 3: Percentaje of average investment in each rank over investment in the whole period

Figure 4 gives an insight about the importance of large investment episodes on

the time series ‡uctuations of investment.
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The solid line re‡ects the percentage of observations with an investment rate

greater than 20%. The dotted line represents the percentage of investment accounted

by observations having these large investment episodes. Observations with large

investment episodes constitute around 25% of the total, but account for approximately

50% of gross investment. That is, around half of the total gross investment is related

with lumpiness and half of it with smooth adjustments. Similar evidence has been

reported in Cooper, Haltiwanger and Power (1999) for a large set of US manufacturing

…rms.

This descriptive analysis of investment behavior in Spanish manufacturing …rms

highlights the importance of inaction and investment spikes. These phenomena are

far away from the pattern of smooth capital adjustment derived from the investment

models proposed in the literature until recent years. Furthermore, these empirical

…ndings clearly support the convenience of focusing on investment models able to

capture this behavior. Thus, we will formulate an investment model which accounts

for irreversibilities and nonconvex capital adjustment costs.

3 A dynamic structural model of …xed capital in-
vestment

3.1 Framework and basic assumptions

This section builds heavily on Section 3 in Sánchez-Mangas (2002). Consider a risk

neutral …rm that produces an homogeneous good using as inputs labor and capital

equipment with some …rm-speci…c characteristics. At each period the …rm decides

hirings and dismissals of workers and purchases of new capital in order to maximize

the expected discounted stream of current and future pro…ts over an in…nite time

horizon. The …rm operates in competitive product and input markets, and its pro…t

at period t, in output units is given by:

¦t = Yt(Kt; Lt; at)¡ wtLt ¡ ptKtit ¡ AC(Kt; it; pt) (1)

where Yt is real output, Kt is the capital stock installed at the beginning of period t;

Lt represents labor in physical units, it represents the investment rate, de…ned as It
Kt
;
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where It = Ktit represents new capital purchases, wt and pt are input prices relative

to product price. We assume that labor can be adjusted costlessly, so the decision

on employment is static. However, when the …rm decides to adjust its capital stock

it faces some adjustment costs represented by the function AC(Kt; it; pt): A well-

known evidence that arises in any empirical study of …rms’ behavior is the large

amount of heterogeneity in …rms size, productivity and behaviour in general, even

after controlling for location, industry or product characteristics. For this reason, we

state the problem in terms of the investment rate it; instead of investment in physical

units, It:

Output depends on labor and installed capital at the beginning of the period and

a productivity shock at, according to the Cobb-Douglas production function:

Yt = atK
®K
t L®Lt (2)

where ®K; ®L 2 (0; 1]. We assume there is one period time-to-build, i.e, the new

equipment is productive one period after its acquisition. The productivity shock is ex-

ogenous and follows a …rst order Markov process with transition density Áa(at+1j at):
We assume that adjustment costs faced by the …rm when it decides to invest can

be variable or …xed costs:

AC(Kt; it; pt) = V C(Kt; it; pt) + FC(Kt) (3)

Variable costs V C(¢) include costs associated with the installation of the capital

stock. We assume a convex structure for these costs, similar to the speci…cation of

adjustment costs in the traditional investment models. More speci…cally, we use the

following quadratic function:

V Ct = V C(Kt; it; pt) =
µQ
2
ptKti

2
t (4)

where µQ is a constant parameter.

Fixed adjustment costs FC(¢) are internal costs related to the reorganization of the

productive process and retraining of employees in the handling of the new equipment.

We assume that these costs are proportional to the installed capital stock:

FC = FC(Kt) = 1(it > 0) µFKt (5)
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where 1(:) is the indicator function and µF is a constant parameter.

Since the …rm operates in competitive markets, input prices are exogenous to

the …rm. We assume that capital price and wages follow a Markov process with

transitional densities Áp(pt+1jpt) and Áw(wt+1jwt); respectively. Capital retirement

and physical depreciation are exogenously given to the …rm. The capital stock follows

a transition rule given by

Kt+1 = Kt ((1¡ ±t) + it) (6)

where ±t 2 (0; 1) is the depreciation rate, which includes not only the economic

depreciation of the capital stock but also the capital retirements due to obsolescense.

At the beginning of period t, the …rm knows its level of capital stock and labor,

the input prices in the industry where it operates and the value of productivity and

cost shocks. Since the decision on labor is static, an optimal condition for labor can

be obtained and the one-period pro…t function can be written as:

¦t = Yt(Kt; L
¤
t ; at)¡ wtL¤t ¡ ptKtit ¡AC(Kt; it; pt); (7)

where Lt have been optimally chosen. The optimal condition for labor, under the

assumption of a Cobb-Douglas production function with constant returns to scale, is

given by

L¤t =

µ
at(1¡ ®K)

wt

¶ 1
®K

Kt (8)

Thus, the pro…t function in terms of capital stock can be written as:1

¦t = RtKt ¡ ptKtit ¡AC(Kt; it; pt) (9)

where Rt is a pro…tability shock in terms of the productivity shock entering the

production function, wages and technological parameters according to the following

expression:

Rt = R(at; wt; ®K) =

µ
at(1¡ ®K)
w1¡®Kt

¶1=®K ®K
1¡ ®K

(10)

1Note that under Cobb-Douglas production with constant returns to scale, and our speci…cation
of capital adjustment costs, the one-period pro…t function is linear in the capital stock.
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We assume that the investment decision is completely irreversible, i.e, the …rm

decides purchases of capital stock and once a new equipment has been acquired, it

cannot be sold.2 Thus, the …rm faces the decision of not to invest or to undertake

a strictly positive investment, so the decision variable in this problem is it ¸ 0.

Let st be the vector of state variables, which can be observed by the …rm and the

econometrician, or only by the …rm. The …rm’s decision problem can be written as:

max
fit¸0g

1X

t=0

¯tE [¦(it; st)] (11)

where ¯ 2 (0; 1) is the discount factor, related to the interest rate of the economy.

The Bellman’s equation for this problem is given by:

V (st) =maxfit¸0g
¦(it; st) + ¯EV (st+1j st; it) (12)

where EV (st+1j st; it) is the expected conditional value function

EV (st+1j st; it) =
Z
V (st+1)Á(dst+1j st; it) (13)

and Á(dst+1j st; it) is the transition probability of the state variables.

3.2 Optimal decision rule

Firms in our model face a double decision: the discrete choice of not investing vs.

investing, and, if they decide to invest, the continuous decision about the amount

of investment. If …rms decide not to invest, it can be due to two di¤erent reasons:

on one hand, the imposibility of selling the purchased capital goods, i.e., the total

irreversibility of the investment decision; on the other hand, the possible existence

of high …xed adjustment costs, that penalize the small capital adjustments and can

lead the …rms to decide postponing the investment decision. So the decision variable

in the intertemporal …rm’s problem, the investment rate, is censored at zero.

If the only source of censoring were the irreversibility of the investment decision,

the value function would be continuous and concave, and thus, relatively easy to deal
2Alternatively, there are some papers assuming the existence of second-hand markets in which

the selling price for capital is lower than the purchase price, so the decision on capital is partially
irreversible.
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with. However, the introduction of …xed adjustment costs brings a discountinuity

in the one-period pro…t function, that makes the value function to be nonconcave.

The decision rules for these kind of problems have been characterized by Bertsekas

(1976), using properties of K-concave functions. We can …nd examples of these type

of decision rules in Scarf (1959), Slade (1998) or Aguirregabiria (1999) in the context

of inventories and price adjustment models.

The optimal decision rule for our investment decision problem is given by:

i(st; µ) =

½
i¤(st; µ) if i¤(st; µ) > 0 and °(st; µ) > 0
0 otherwise

(14)

where i¤(st; µ) is the optimal interior solution characterized by

~¼i(s; i
¤(s; µ); µ) + ¯EVi(s; i

¤(s; µ); µ) = 0; (15)

with ~¼i ´ @~¼=@i and EVi = @EV=@i and the function °(st; µ) is given by

~¼(srt; i
¤(st; µ); µ)¡FC(st; µ)¡~¼(st; 0; µ)+¯ [EV (st; i¤(st; µ); µ)¡ EV (st; 0; µ)] : (16)

That is, there is a …rst order condition of optimality for the interior solution,

given by (15), and there are two conditions for the discrete choice between interior

and corner solution. The …rst one, i¤(st; µ) > 0; is related to the non-negativity

constraint, i.e. the irreversibility of the decision: the interior solution will be optimal

only if it is positive. If condition (15) holds for a negative value i(st; µ) < 0, the …rm

will choose i(st; µ) = 0; due to total irreversibility. The second condition, °(st; µ) > 0;

is related to the existence of …xed adjustment costs. If °(st; µ) > 0; it means that the

…xed costs are not high enough to lead the …rm to decide not to invest.

Our model is a dynamic choice model in which the decision variable is censored at

zero as a consequence of inaction. As it is explained above, there are two sources of

censoring, irreversibility and …xed adjustment costs, which are indistinguishable for

the econometrician. When the intertemporal pro…t, gross of …xed adjustment costs,

is maximized for a negative value of investment, the optimal decision is inaction due

to irreversibility. When it is maximized for a positive level of investment, but the

value obtained with this level is lower than the value obtained with zero investment,

the optimal decision is inaction due to the presence of …xed adjustment costs.
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Although the optimal decision rule (14) involves marginal conditions of optimality

and optimal discrete choices, in this paper we obtain estimates of the structural

parameters which only exploit conditions associated to the optimal discrete choice

between interior and corner solution.3

4 Estimation method

We have a panel of …rms with information on output, capital, labor, investment and

input prices.

fYnt;Knt; Int; pnt; wnt; n = 1; :::;N ; t = 1; :::; Tng

We are interested in exploiting this sample to estimate the structural parameters.

According to the estimation procedure that we describe here, we can classify the

structural parameters in four groups: a) the parameters entering the production

function; b) the parameters that describe the transition probabilities of input prices

and pro…tability shock; c) the adjustment costs parameters: µQ and µF ; and d) the

parameters of the distribution of the state variables which are unobservable for the

econometrician.

For estimation purposes, we proceed in two stages. In a …rst stage we estimate

the parameters of the production function and the transition probabilities of the

state variables. Once we have estimates of the parameters entering the production

function, we can obtain estimates of the productivity shock ant; and construct the

pro…tability shocks Rnt as in (10). In a second stage we estimate the rest of the

structural parameters. In order to do this, we exploit the optimal discrete choice “to

invest vs. not to invest” to obtain estimates of the adjustment costs parameters µQ

and µF and the parameters in the distribution of the unobservable state variables.

With respect to the estimation of the production function, we summarize below

the main features of the modelization and estimation method used in Alonso-Borrego

3Since corner solutions are very frequent in our dataset, the subsample of observations that we
can use to exploit moment conditions associated to marginal conditions of optimality (i.e, Euler
equations) is relatively small. Besides, parameters associated with …xed costs can only be identi…ed
by exploiting the discrete decision between interior and corner solution.
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and Sánchez-Mangas (2001), where we estimated a production function using the

dataset we use in this paper.4 We begin by considering a Cobb-Couglas production

function without imposing constant returns to scale:

ynt = ®K knt + ®L lnt + unt (17)

where ynt = ln(Ynt) , knt = ln(Knt); lnt = ln(Lnt) and unt = ln(ant): We allow the

following structure for the productivity shock:

unt = At + ´n + vnt (18)

vnt = ½ vn;t¡1 + »nt

where At is an aggregate e¤ect, ´n is a time invariant …rm-speci…c e¤ect, vnt is an

AR(1) idiosyncratic shock and »nt is iid N(0; ¾2»):

In order to estimate the parameters (®K; ®L; ½) ; we formulate the dynamic rep-

resentation of (17):

ynt = ®K knt¡®K ½ kn;t¡1+®L lnt¡®L ½ ln;t¡1+½ yi;t¡1+(At ¡ ½ At¡1)+(1¡½) ´n+»nt

or

ynt = ¼1 knt + ¼2 kn;t¡1 + ¼3 lnt + ¼4 ln;t¡1 + ¼5 yi;t¡1 +A
¤
t + ´

¤
n + »nt

subject to two non-linear restrictions: ¼2 = ¡¼1¼5 and ¼4 = ¡¼2¼5; and where

A¤t = At ¡ ½At¡1 and ´¤n = (1¡ ½)´n:
Given consistent estimates of the unrestricted parameter vector ¼ = (¼1; ¼2; ¼3; ¼4; ¼5)

0

and its variance-covariance matrix, the restrictions can be tested and imposed by min-

imum distance to obtain estimates for the restricted parameter vector (®K; ®L; ½)
0 :

In the estimation of the unrestricted parameter vector, we apply the “extended

GMM” estimation method proposed by Arellano and Bover (1995). It is based on a

system including not only di¤erenced equations with lagged levels as instruments,

but also level equations with lagged di¤erences as instruments. In a context of

highly persistent variables, such as sales, capital or employment, the application

4See more details on the estimation of the production function in Alonso-Borrego and Sánchez-
Mangas (2001).
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of standard GMM estimators which take …rst di¤erences to eliminate unobserved

…rm-speci…c e¤ects and use as instruments lagged levels has produced unsatisfactory

results (Mairesse and Hall, 1996). More speci…cally, it yields a low and statistical

insigni…cant capital coe¢cient and suggest decreasing returns to scale. These prob-

lems, due to the weakness of the instruments considered, are dramatically reduced

when applying the extended GMM estimation method.

Since our speci…cation of the pro…t function as a linear function of the capital

stock is based on the constant returns to scale hypothesis, we tested the validity

of this hypothesis and obtained estimates imposing constant returns to scale. The

estimation results are shown in the Appendix.

Estimation of the adjustment costs parameters

Once we have estimated the tecnological parameters, the productivity shock ant

can be recovered and we can obtain the pro…tability shock Rnt according to (10). This

pro…tability shock will be treated as an observable state variable in the estimation of

the adjustment costs parameters.

Let snt the vector of state variables, which can be decomposed as (xnt; "nt) ; where

xnt stands for state variables observed by the …rm and the econometrician and "nt

stands for state variables which are unobservable for the econometrician. In the

…rm’s decision problem, once the production function has been estimated, the vector

of observable state variables is given by xnt = (pnt; Knt; Rnt)
0:

Let d = f0; 1g be the index for the optimal discrete choice, where d = 0 means

that the optimal decision for the …rm n at period t is not to invest, i.e, i(snt) = 0;

and d = 1 means that the optimal decision is to undertake an investment project, i.e,

i(snt) > 0.

Under the Additive Separability (AS) assumption (Rust, 1987), the vector of

unobservable state variables is given by "nt = ("0nt; "
1
nt) ; where "0nt is associated with

the decision d = 0 and "1nt with the decision d = 1; and these unobservable state

variables enter the one-period pro…t function in an additive fashion. The additive

separability assumption allows us to write:
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¼d(snt; µ) = ¼
d(xnt; µ) + "

d
nt for d = 0; 1 (19)

where

¼1(snt; µ) = RntKnt ¡ pntKnt int ¡
µQ
2
pntKnti

2
nt ¡ µFKnt + "

1
nt

¼0(snt; µ) = RntKnt + "
0
nt

The unobservable state variables represent the uncertainty of the researcher about

the actual expected pro…t that is observable to the …rm. We assume they "dnt; for

d = f0; 1g are independent and identically distributed with zero mean and variance

¾2":

Let us consider the following multiplicative decomposition of the expected current

pro…ts:

E
£
¼d(xnt; µ)

¤
= ¼d(xnt)

0 ¹(µ) for d = 0; 1 (20)

Since the adjustment costs parameters enter this function linearly, the decompo-

sition (20) is given by:

¼0(xnt) =

0
@
RntKnt

0
0

1
A ¼1(xnt) =

0
@
RntKnt ¡ pntKntE [intjxnt; dnt = 1]
¡1
2
pntKntE

£
(int)

2
¯̄
xnt; dnt = 1

¤

¡Knt

1
A

¹(µ) =

0
@
1
µQ
µF

1
A

The …rst component of ¼1(xt) is related to the revenues realized by the …rm net

of the acquistion price of the new capital stock. The second and third components

are related, respectively, to the quadratic and …xed adjustment costs.

Let us consider the Conditional Independence (CI) assumption (Rust, 1987),

which establishes that the conditional transition probability of the state variables

can be factorized as:

pdf(xt+1; "t+1j xt; "t; dt) = pdf("t+1j xt+1) pdf(xt+1jxt; dt) (21)
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This assumption implies, on one hand, that conditional on the discrete choice and

the current value of the observable state variables, the future observable state vari-

ables do not depend on unobservables. On the other hand, this assumption rules out

the existence of autocorrelated unobservable state variables that di¢cult extremely

the estimation of the decision problem.

Under assumptions AS and CI and the multiplicative decomposition given by (20),

the optimal discrete choice can be written as:

d¤nt = d () d =argmax
j=0;1

©
¼j(xnt)

0¹ (µ) + "jnt + ¯ EV
j (xnt; µ)

ª

The log-likelihood function for this problem is

lnL =
NX

n=1

TnX

t=1

X

d=0;1

1 (d¤nt = d) ln (Pr(d
¤
nt = djxnt)) (22)

where , for d = f0; 1g ;
P d(xnt) = Pr(d

¤
nt = djxnt) =

= Pr

½
d =argmax

j=0;1

©
¼j(xnt)

0¹ (µ) + "jnt + ¯ EV
j (xnt; µ)

ª¯̄
¯̄ xnt

¾
=

=

Z
1

½
d =argmax

j=0;1

©
¼j(xnt)

0¹ (µ) + "jnt + ¯ EV
j (xnt; µ)

ª¾
q (d"jx)

These conditional choice probabilities entering the log-likelihood function are ex-

pressed in terms of unknown conditional value functions EV d (xnt; µ). An obvious

approach to estimate the structural parameters is a solution method consisting in

some nested algorithm in the spirit of Rust’s Nested Fixed Point (1987). This tech-

nique consists in an outer algorithm that maximizes the likelihood function and an

inner algorithm which solves the dynamic programming problem, i.e., which com-

putes the functions EV d (xnt; µ) ; at each iteration in the search for the parameter

estimates. The main drawback of this kind of techniques that solve the dynamic

programming problem is its high computational cost.

In order to overcome this limitation, Hotz and Miller (1993) proposed an alterna-

tive estimation method, the Conditional Choice Probability (CCP) estimator, which
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allows to estimate the structural parameters without solving the dynamic program-

ming problem. Is is based on the so-called Invertibility Proposition, which gives an

alternative representation of the conditional value functions in terms of observable

state variables, conditional choice probabilities, conditional transition probabilities

and structural parameters. This estimation method has been applied in Aguirre-

gabiria (1999) and Slade (1998) for the estimation of models of inventories and price

change decisions. In Sánchez-Mangas (2002), we estimated a dynamic structural

investment model similar to the model in this paper applying this method.

Although the CCP estimator has clear advantages over the NFXP algorithm in

terms of computational cost, since it avoids the solution of the dynamic programming

problem, it has a clear disadvantage in terms of the e¢ciency of the estimation. Thus,

there is a trade-o¤ between these two techniques in terms of computational cost and

precision.

In a recent work, Aguirregabiria and Mira (2002) proposed the Nested Pseudo-

Likelihood estimator (NPL), which has the computational advantages of the Hotz

and Miller’s CCP estimator, but allows to reach the e¤ciency of the Rust’s NFXP

algorithm. As it is occurs with the CCP estimator, the NPL is based on the represen-

tation of conditional value functions in terms of observable state variables, conditional

choice and transition probabilities and structural parameters. The keypoint of this

estimation method is the so-called Policy Iteration operator. It is an operator in the

space of the conditional choice probabilities:

P = ª(P ) ´ ¤ (' (P ))

where '(¢) is an operator which maps a vector of conditional choice probabilities into a

vector of conditional value functions using Hotz and Miller’s Invertibility Proposition

. The operator ¤(¢) maps a vector in the value function space into a vector of

conditional choice probabities. Aguirregabiria and Mira (2002) show that the set of

optimal choice probabilities P a is …xed point of ª(¢): Thus, the NPL algorithm is,

as the NFXP algorithm, a nested algorithm in which a …xed point problem must be

solved. But this …xed point problem is not de…ned in the value function space, but

in the probability space. In the NPL algorithm, unlike the NFXP algorithm, is the
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outer algorithm which computes the …xed point, while the inner algorithm iterates in

a pseudo-likelihood function using Hotz and Miller’s representation.

This representation of conditional value functions in terms of observable state

variables, conditional choice and transition probabilities and structural parameters

was reformulated by Aguirregabiria (1999), who showed that these value functions

could be expressed as:

EV d(xnt; µ) = W
d(xnt)

0 ¸(µ)

where

W d(xnt) = F̂
d(xnt)

³
I ¡ ¯F̂ (xnt)

´¡1
Ã X

d=0;1

P̂ d(xnt) ¤ ¼d(xnt)
X

d=0;1

P̂ d(xnt) ¤ gd(xnt)
!

(23)

¸(µ) = (¹(µ)0 1)0 ; ¤ denotes the element-by-element product, the functions gd(xt)

are given byr:

gd(xnt) = E
£
"dnt

¯̄
xnt; d

¤
nt = d

¤

and P̂ d(xt), F̂ d(xt) and F̂ (xt) are nonparametric estimators of the conditional choice

probabilities, and the conditional and unconditional transition probabilities respec-

tively.

The vector W d(xt) is related to the expected and discounted stream of the fu-

ture components associated with the corresponding components of the one period

pro…t function ¼d(xt): The conditional expectation of the unobservable state vari-

ables, gd(xnt); can be written if terms of conditonal choice probabilities. If we as-

sume, for example, an extreme value distribution for "dnt; this function is given by

E
£
"dt

¯̄
xt; d

¤
t = d

¤
= ° ¡ ln

£
P d (xt)

¤
; where ° is the Euler’s constant. With this dis-

tributional assumption, it is straightforward from (23) to obtain a closed expression

for the conditional value functions EV d(xnt; µ):

For an arbitrary vector of choice probabilities P; the pseudo-likelihood function is

de…ned as:

~l =
NX

n=1

TnX

t=1

X

d=0;1

1 (d¤nt = d) lnª
d
µ(xnt; P ) (24)
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where

ªdµ(xnt; P ) =
exp

©
¼d(xt)

0¹ (µ) + ¯ W d(xt)
0 ¸(µ)

ª
P
j=0;1

exp f¼j(xt)0¹ (µ) + ¯ W j(xt)0 ¸(µ)g
(25)

Once the pseudo-likelihood function is formulated, how does the NPL algorithm

go? Let us assume that we have obtain nonparametric estimates of the conditional

transition probabilities, F̂ d; for d = 0; 1: Let µ̂
(0)

be an initial vector of parameters

and P̂ (0) an initial vector of conditional choice probabilites (e.g, a nonparametric

consistent estimator). For the iteration R ¸ 1; the NPL algorithm consists in the

following steps:

Step 1: To obtain the representation of the conditional choice value functions in

terms of the conditional choice probabilities, using the Hotz and Miller’s representa-

tion as in (23).

Step 2: To obtain a new pseudo-likelihood estimator µ̂
(R)

:

µ̂
(R)
=argmax

µ2£

NX

n=1

TX

t=1

X

d=0;1

1 (dnt = dj xnt) lnªd
µ̂
(R¡1)

³
P̂ (R¡1)

¯̄
¯ xnt

´

where

ªd
µ̂
(R¡1)

³
P̂ (R¡1)

¯̄
¯xnt

´
= Pr (dnt = djxnt) ´ ªd

³
µ̂
(R¡1)

; P̂ (R¡1); F̂ d
¯̄
¯ xnt

´

Step 3: To update the vector of conditional choice probabilities using the estimator

µ̂
(R)

obtained in step 2.

P̂ (R) = ªd
³
µ̂
(R)
; P̂ (R¡1); F̂ d

¯̄
¯ xnt

´

Iterate in R until convergence in P̂ and µ̂:

As it is showed in Aguirregabiria and Mira (2002), when the NPL is initialized

with consistent estimators of the vector of conditional choice probabilities, successive

iterations return a sequence of estimators, the R-stage Policy Iteration estimators,

that includeas extreme cases the Hotz and Miller’s CCP estimator (for R = 1) and

the Rust’s NFXP estimator (when R ! 1): The gains in e¢ciency form the …rst to

the second iteration is important, but the gains in succesive iterations is much lower.

Furthermore, the asymptotic distribution of all the estimators in the sequence is the

same and equal to that of maximum likelihood estimator.
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5 Estimation results

Once we have estimated the pro…tability shock Rnt from the estimates of the tech-

nological parameters, we decompose it in an aggregate and an idiosyncratic shock
~Rnt; such that Rnt = Rt ~Rnt: Following Cooper and Haltiwanger (2000), the aggregate

shock is simply the yearly mean of the pro…tability shock Rnt, and the idiosyncratic

shock ~Rnt is the deviation from that mean. Both components have been taken in

logarithms, so

rnt = rt + ~rnt

where rnt = ln(Rnt); rt = ln(Rt) and ~rnt = ln( ~Rnt):

With respect to the capital stock Knt; since its range of variability is very di¤erent

for the di¤erent …rms, we have considered the logarithm of the capital stock in devia-

tion with respect to its …rm mean. That is, we have considered ~knt = ln(Knt)¡ln( ¹Kn);

where ¹Kn is the mean capital of …rm n in the whole period in which this …rm is ob-

served. This means to consider some kind of heteroskedasticity in the model. The

one-period pro…t function conditional on the decision, in terms of the mean capital

stock, is given by:

~¼1(snt) = Rnt ~Knt ¡ pt ~Kntint ¡
µQ
2
pt ~Knt (int)

2 ¡ µF ~Knt + ~"
1
nt

~¼0(snt) = Rnt ~Knt + ~"
0
nt

where ~Knt = KntÁ ¹Kn and ~"dnt = "
d
ntÁ ¹Kn; for d = 0 and d = 1:

Thus, the vector of observable state variables we use in the estimation is given by

xnt = (pt; rt; ~rnt; ~knt): The main descriptive statistics for these variables are shown in

Table 4.

Mean Std. deviation Minimum Maximum
rt 1.6301 0.1061 1.4149 1.7394
~rnt 0 1.1749 -4.6440 5.2184
~knt 1 0.1877 0.1881 2.5297
pt 0.9917 0.0474 0.8668 1.1905

Table 4: Descriptive statistics of the observable state variables
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The NPL estimation method, as in Rust’s NFXP or Hotz and Miller’s CCP esti-

mators, requires a discretization of the observable state variables. The details on this

discretization and on the initial estimates of the conditional choice probabilities and

the conditional transition probabilities are shown in the Appendix.

In the NPL algorithm, the inner algorithm maximizes the pseudo-likelihood func-

tion. The conditional choice probabilities entering this function takes the expression

of the probabilities in a logit model, in which the explanatory variables are the com-

ponents of the vectors ¼d (xnt) andW d (xt) : In general, in this type of models it is not

possible to identify the variance of the error term. However, in this case, since one

of the explanatory variables, the one corresponding to the revenue function, appears

with parameter restricted to be 1, it is possible to identify the variance of the error

term.

The structural estimation results using the NPL algorithm are shown in Table 5.

The discount factor ¯ has been …xed at 0.975. We have estimated the model with

di¤erent values of ¯ (from 0.95 to 0.99) obtaining similar results.

Structural parameter estimates (NPL algorithm)
1 stage 2 stages 3 stages 4 stages 5 stages 6 stages

µQ 124.20 157.30 140.2 141.5 141.4 141.4
(30.76) (37.87) (34.44) (34.67) (34.65) (34.65)

µF 5.458 8.002 8.394 8.371 8.377 8.377
(0.928) (1.124) (1.130) (1.126) (1.127) (1.127)

¾" 8.807 9.550 9.305 9.317 9.318 9.318
(1.061) (1.218) (1.140) (1.142) (1.142) (1.142)

LogL -3862 -3693 -3696 -3696 -3696 -3696
Pseudo-R2 0.8129 0.8187 0.8186 0.8186 0.8186 0.8186

Table 5: Structural parameter estimates. Standard errors in parenthesis

We have obtained very precise estimates of all the parameters. Since the capital

has been considered in terms of the …rm’s mean capital, the estimator of the …xed
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cost parameter implies that a …rm with a capital stock of one million euro that

decides to undertake an investment project must face a …xed cost which is equivalent

to a percentage of its installed capital between 0.83% and 1.05% (95% con…dence

interval). Table 6 shows the median proportion that …xed and variable adjustment

costs implied by our estimates represents on average over the installed capital stock

and the sales in the considered categories: small, medium and large …rms, according

to the clasi¢cation criterion established by the European Commission.

Type of …rm VCÁCap. stock FCÁCap. stock VCÁSales FCÁSales
Small …rms 0.7319 3.3975 0.1348 0.6010

Medium …rms 0.0343 0.1838 0.0088 0.0469
Large …rms 0.0109 0.0431 0.0023 0.0111

Table 6: Proportion of adjustment costs over installed capital stock and sales.
VC: Variable adustment costs. FC: Fixed adjustment costs.

On average, …xed adjustment costs are much more relevant than convex costs in

each category. It is worthwhile to emphasize the importance of …xed adjustment costs

in small …rms, representing around 3.34% of the installed capital stock and around

0.60% of the total sales. These proportion decreases a lot in the other categories:

medium and large …rms. In the group of medium …rms, …xed adjustment costs repre-

sent 0.18% of the installed capital and 0.04% of the …rm sales. In the group of large

…rms, …xed costs represent 0.04% of the installed capital and only 0.01% of the sales.

The very di¤erent magnitude of …xed adjustment costs for the categories considered

can explain the very di¤erent importance of inaction found in each of them. As we

saw in Section 2, the percentage of observations accounting for zero investment was

very high in small …rms, 29.24%, while in medium and large …rms this percentage

was much smaller, 4.51% and 0.93% respectively.

There exist very few papers on structural estimation of a dynamic investment

model with …xed adjustment costs. We can cite Cooper and Haltiwanger (2000), who

estimate an investment model for american …rms. Their estimations imply that for the

…rms analyzed, …xed adjustment costs represent approximately 0.04% of total pro…ts.

In our opinion, given the enormous heterogeneity which is present among …rms, it is
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more informative to analyze the implications of the estimators distinguishing more

homogeneous groups of frms.

Up to our knowledge, the work in this paper is the …rst one using the NPL

estimator, which presents clear advantages over other previous estimation methods.

6 Conclusions

In this paper we have estimated a dynamic structural model of irreversible investment

for Spanish manufacturing …rms. The dataset we use exhibit some of the character-

istics reported in the recent microeconomic investment literature. More speci…cally,

we have found strong evidence of inaction and lumpy investment. Based on these em-

pirical features, we have proposed a dynamic structural investment model in which

irreversibilities and nonconvex adjustment costs have been included. The adjustment

cost function we consider includes quadratic and …xed components.

We have stated the model through a dynamic programming problem of discrete

choice, in which …rms decide between buying some capital goods or postponing the

purchase decision. The estimation method used in this paper has been the nested

pseudo-likelihood (NPL) algorithm recently proposed by Aguirregabiria and Mira

(2002). This method presents clear advantages over other estimation methods in this

context. It is a technique based on Hotz and Miller’s CCP estimator, i.e., it is based

on a representation of the conditional value functions in terms of observable state

variables, conditional choice and transition probabilities and structural parameters.

Unlike Rust’s NFXP, this estimation method does not require to solve the dynamic

programming problem to obtain structural parameter estimates, so it has a clear

computational advantage over NFXP estimator. Furthermore, successive iterations

in the NPL algorithm return a sequence of estimators with the asymptotic distribution

of the maximum likelihood estimator. Thus, from the point of view of the e¢ciency,

it has clear advantages over CCP estimator. Up to our knowledge, the estimation

exercise presented in this paper is the …rst one applying this new estimation technique.

Our estimation results re‡ect the importance of …xed adjustment costs, which can

represent a considerable proportion of installed capital and sales. The magnitude of
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these costs varies a lot depending on the …rm size. For small …rms they can represent

around 3.4% of the installed capital and 0.60% of the …rm sales, while for medium

and large …rms these proportions are much smaller. This can explain the observed

investment behavior in our dataset. In the group of small …rms, approximately 29%

of the observations accounted for zero investment, while this percentage was much

smaller for medium and large …rms.
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Appendix

A1. CONSTRUCTION OF VARIABLES

Employment: Number of employees at december 31th, is the sum of permanent

workers and the average number of temporary workers. The weights to calculate the

average number of temporary workers is: 1/4 if the average time in the …rm is less

than 6 months, 3/4 if it is more than 6 months and less than one year and 1 if it is

more than one year.

Output: Gross output at retail prices is calculated as total sales.

Capital stock: The dataset contains information on the book value and the

average age of the stock of …xed capital and the year of the last regulation. It also

includes data on gross nominal investment during the year. Following Alonso-Borrego

and Collado (1999), taking period t as reference year, the market value of the stock

of …xed capital in period t is calculated as:

Knt = (1¡ ±n)agentKBnt
qt
qmn

where agent is the average age of the capital stock of …rm n at period t; ±n is the

depreciation rate of the sector in which …rm n operates, KBnt is the book value of

the stock of …xed capital, qt is the price de‡ator of the stock of …xed capital andmn is

the year of the last regulation in …rm n: The price index is the GDP implicit de‡ator

of investment goods, which is constant over time. The depreciation rate varies across

sectors.

Taking t as the reference year, the market value of the stock of …xed capital for

any year s 6= t is calculated using a perpetual inventory method:

Kns = (1¡ ±n)Kn;s¡1
qs
qs¡1

+ Ins if s > t

Kns =
(Kn;s+1 ¡ In;s+1)

(1¡ ±n)
qs
qs+1

if s < t

where Ins is the investment accounted by the …rm n in period t: Using this approach

it is possible to obtain negative values of Kns for s < t: In that case the market

value of the capital stock is set to missing. In an attempt to reduce this problem,
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the market value of the capital stock for any …rm has been calculated using di¤erent

years as reference. Finally, the reference year was chosen to minimize the number of

missing values in the capital stock.

A2. PRODUCTION FUNCTION ESTIMATES

The following table shows the standard GMM and system GMM estimates for the

production function with constant retuns to scale. Standard errors are in parenthesis.

We have performed some specifcation tests: m1 and m2 are tests for …rst and second

order correlation in the …rst di¤erenced residuals. Sargan is the statistic for the

Sargan test of overidentifying restrictions. Dif Sargan is the statistic for the test of

the validity of the additional instruments used in the system estimation with respect

to the standard estimation. MD stands for minimum distance. Year dummies have

been included in all models.
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GMM estimates
First di¤erences System

t¡ 2 t¡ 2
knt 0.289 0.436

(0.154) (0.113)
kn;t¡1 -0.301 -0.368

(0.117) (0.092)
yn;t¡1 0.864 0.844

(0.090) (0.061)
m1 -7.446 -10.659

p-value 0.000 0.000
m2 0.036 -0.245

p-value 0.971 0.807
Sargan 25.811 39.539
p-value 0.529 0.357

Dif. Sargan — 13.728
p-value — 0.800

Minimun distance estimates
®k 0.357 0.436

(0.133) (0.109)
®L 0.643 0.564

— —
½ 0.878 0.844

(0.088) (0.058)
p-value MD test 0.382 0.993

A3. DISCRETIZATION OF THE STATE VARIABLES

The aggregate shock rt has been discretized in only two cells corresponding to low

and high shock. The idiosyncratic shock and the capital stock have been discretized

in 7 cells using a unifom grid on the empirical distribution of these variables. Due

to the very low variability of the capital price in the dataset, it has been taken as

constant. Besides, preliminary analysis on the relevance of this variable on the …rms’

investment pattern in the dataset yield to consider it nonsigni…cant at the usual

levels. The discretization we have carried out yields 98 cells in the space of the state

variables.
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El shock agregado rt ha sido discretizado en dos únicas celdas, indicando valores

bajo y alto de dicho shock. En cuanto al shock idiosincrático y al capital, se han

discretizado en 7 celdas utilizando una parrilla uniforme en la función de distribución

empírica de ambas variables. En cuanto al precio del capital, éste presenta poca

variabilidad en los datos, y por tanto, se ha tomado como constante. Además, análisis

preliminares acerca de la relevancia de esta variable sobre las pautas de inversión de

las empresas de nuestra base de datos llevaron a considerarla no signi…cativa a los

niveles habituales. La discretización que hemos llevado a cabo da lugar a un total de

98 celdas en el espacio de las variables de estado.

A4. NONPARAMETRIC ESTIMATION OF CONDITIONAL CHOICE PROBABIL-

ITIES AND CONDITIONAL TRANSITION PROBABILITIES

We have obtained nonparametric estimates of the probability that a high (low)

value of the aggregate shock is followed by a high (low) value, obtaining the following

transition probability matrix for the aggregate shock:

Pr (rt+1j rt) low rt+1 high rt+1
low rt 0.682 0.318
high rt 0.318 0.682

Let us denote by M1; M2 and M3 the number of cells in the discretizaton of the

variables rt; ~rnt and ~knt respectively. In this case, M1 = 2 andM2 =M3 = 7: Letm =

1; :::;M be the index for the cells of tridimensional state variable xnt =
³
rt; ~rnt; ~knt

´
;

where M = M1 £M2 £M3 = 2 £ 7£ 7 = 98: Let rc; ~rc and ~kc be the values of the

discretized state variables and let rm; ~rm and ~km be the values of discretized state

variables correspondig to the m-th cell, that is, xm = (rm; ~rm,~km).

The initial estimates of the conditional choice probabilities and the conditional

transition probabilities of the capital stock and the idiosyncratic shock have been

obtained using trivariate kernel estimators.
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The conditional choice probability Pr (d = 1jxm) has been estimated as:

^
Pr (d = 1jxm) =

NP
n=1

TnP
t=1

1 (dnt = 1)K3 (xnt; x
m)

NP
n=1

TnP
t=1

K3 (xnt; xm)

; for m = 1; :::;M

where K3 is the trivariate gaussian kernel:

K3 (xnt; x
m) =

1

(2¼)3=2
exp

8
<
:¡1

2

2
4
µ
rt ¡ rm
h1

¶2

+

µ
~rnt ¡ ~rm

h2

¶2

+

Ã
~knt ¡ ~km
h3

!2
3
5
9
=
;

where h1; h2 and h3 are bandwith parameters chosen using the Silverman’s rule.

Since ~rnt is an exogenous variable, its conditional transition probability is esti-

mated as:

^
Pr

¡
~rct+1 = r

m
¯̄
~rct = r

l
¢
=

NP
n=1

TnP
t=1

1
¡
~rcn;t+1 = r

m
¢
K1

¡
~rnt; r

l
¢

NP
n=1

TnP
t=1

K1 (~rnt; rl)

for m; l = 1; :::;M2; where K1 is a univariate gaussian kernel:

K1

¡
~rnt; r

l
¢
=

1

(2¼)1=2
exp

(
¡1
2

µ
~rnt ¡ rl
h1

¶2
)
:

The capital stock is an endogenuous variable and we must estimate the conditional

transition probability conditional on d = 0 and conditional on d = 1: We have

obtained nonparametric estimates of these probabilities:

^
Pr

³
~kct+1 =

~kl
¯̄
¯ xm; d

´
=

NP
n=1

TnP
t=1

1
³
~kcn;t+1 =

~kl
´
1 (dnt = d)K3 (xnt; x

m)

NP
n=1

TnP
t=1

1 (dnt = d)K3 (xnt; xm)

for d = 0; 1; l = 1; :::;M3 and m = 1; :::M:

From these estimates we obtain the M £ 1 vector P 1(x) = Pr (d = 1jx) of esti-

mated conditional choice probabilities and the M £M matrices F 1 (x) and F 0 (x)

of estimated transition probabilities of the state variables, conditional on d = 1 and

d = 0 respectively.
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A5. ESTIMATION OF THE AMOUNT OF INVESTMENT IF d = 1

The functions E [intj xnt; dnt = 1] and E
£
(int)

2
¯̄
xnt; dnt = 1

¤
appear in the one-

period pro…t function conditional on the decision d; ~¼d(snt): Following a methodology

similiar to Slade (1998), we have obtained nonparametric estimates of these expec-

tations. First, we have discretized the variable fint; dnt = 1g ; that is, considering

the observations such that int > 0; using a uniform grid on the empirical distribution

function of this variable. Let H be the number of cells in this discretization. We

have considered H = 7. Let ic be the value of the discretized investment rate and

ih the value of the discretized investment rate in the cell h = 1; :::; H: The function

E [ij xm; d = 1] ; for m = 1; :::;M; has been estimated as:

HX

h=1

ih Pr
¡
ih

¯̄
xm; d = 1

¢

where the probability Pr
¡
ih

¯̄
xm; d = 1

¢
has been estimated nonparametrically as:

Pr
¡
ih

¯̄
xm; d = 1

¢
=

NP
n=1

TnP
t=1

1
¡
icnt; = i

h
¢
1 (dnt = 1)K3 (xnt; x

m)

NP
n=1

TnP
t=1

1 (dnt = 1)K3 (xnt; xm)

for h = 1; :::;H y m = 1; :::;M: So we have obtained the M £ 1 vector of estimated

values of E [ijx; d = 1] : The M £ 1 vector of estimated values of E [i2jx; d = 1] has

been estimated in a similar way.
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