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1 Introduction

The estimation of decision dynamic models is an area that has experienced a great

development over the last decade. The reason for this increasing concern is that

many behavioral economic models can be described as sequential choice optimization

problems with uncertainty about future events. These models can be found in …elds

such as industrial organization, labor economics, health economics and public …nance

among others.

Despite the interest of these models to capture and describe economic behaviour,

the extent of applications has been dissimilar, depending on the continuous or discrete

nature of the decision variable. In this paper we concentrate on the estimation of

dynamic programming models with censored continuous decision variables. It is well

known that these models share characteristics of both continuous and discrete decision

processes.

In the continuous case, the usual estimation approach is based on the Euler equa-

tions, which result from combining marginal optimality conditions at two consecutive

periods. Sample counterparts of the orthogonality conditions provided by the Euler

equations can be constructed and exploited to obtain estimates of the parameters of

interest by the Generalized Method of Moments. Therefore, in continuous decision

processes there is no need to solve the dynamic programming problem to estimate

the structural parameters. In the discrete case, however, the non-di¤erentiability of

the value function with respect to the control variable prevent the use of the Euler

equations. In fact, the optimality rule in this case is determined by a set of in-

equality conditions which involve the evaluation of the value functions conditional

on the choice of di¤erent alternatives. Until very recently, the structural estimation

required the solution of the dynamic programming problem at the expense of great

computational burden. In an attempt to reduce it, the model speci…cation had to be

very parsimonious in terms of the state variables. This is the reason why the empir-

ical applications of discrete choice dynamic programming models have been scarce.

With regard to this, a major contribution has been the conditional independence

assumption introduced by Rust (1987), which greatly reduces the dimensionality of
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the dynamic programming problem.

In the case of both continuous and discrete decision variables, Pakes (1994) pro-

posed to estimate the structural parameters using some modi…ed Euler equations

which take into account the number of periods between two consecutive interior solu-

tions. This approach has been extended to the case of dynamic programming models

with censored decision variables by Aguirregabiria (1997). However, this method has

some limitations in the context of censored decision models. If corner solutions are

relatively important, the use of only interior solutions leads to selection bias in the

estimation. Besides, there can be some parameters that just can be estimated by

exploiting the discrete decision, which in some cases will be more informative than

the continuous one. Given the limitations of the Euler equations, an alternative ap-

proach to tackle the estimation of censored decision models has been to exploit the

discrete decision and to estimate nonparametrically the continuous one. Empirical

applications of this technique can be found in Aguirregabiria (1999) or Slade (1999).

In this paper we propose a new approach to estimate the structural parameters

in the context of a censored continuous decision model. Instead of handling with

the original model, we propose an approximate model in which the decision variable

has been discretized in a …nite number of values. In this sense, an ordered choice

model becomes a natural approximation to an underlying and more complicated

censored continuous one. We extend to the context of ordered choice models the

estimation technique proposed by Hotz and Miller (1993) for the estimation of binary

or multinomial choice models. It is based on the existence of a one-to-one mapping

from conditional choice value functions to conditional choice probabilities. Exploiting

the invertibility of that mapping it is possible to obtain structural parameter estimates

without solving the dynamic programming problem.

The invertibility of that mapping is the keypoint not only in the conditional choice

probability estimator by Hotz and Miller (1993), but also in the pseudo-likelihood

estimation technique developed by Aguirregabiria and Mira (2002), which builds on

the former but means a great improvement in terms of e¢ciency.

Hence, this paper extends the application …eld of the estimation methods based on

the invertibility of the mapping from conditional choice value functions to conditional

2



choice probabilities to the case of ordered choice models. We apply this extension

to the estimation of censored decision models, considering two di¤erent sources of

censoring: non-negativity constraints and lump sum costs. In both cases, we establish

the invertibility of the mapping from conditional choice value functions to conditional

choice probabilities. While in the former case the inverse mapping has a closed

expression, in the latter it must be obtained numerically.

The rest of the paper is organized as follows. In Section 2 we introduce the

notation and review the econometric issues in the estimation of censored continuous

decision models. In Section 3 we formulate a model with non-negativity constraints

and establish the optimal decision rule and the invertibility of the mentioned mapping

in the corresponding ordered choice model. In Section 4 we incorporate lump-sum

costs as a source of censoring and establish the optimal decision rule as well as the

invertibility of the mapping in the corresponding ordered choice model. Section 5

describes the algorithm for the estimation of the structural parameters. Conclusions

and further lines of research are presented in Section 6.

2 Censored continuous decision models: econo-
metric issues

Consider an agent, i.e, individual or …rm, whose objective is to maximize the expected

discounted value of current and future returns (utility or pro…ts). To do so, she

observes some state variables, s; and takes a decision, represented by a control variable

d: We assume that the vector of state variables, s; can be decomposed into two types

of variables: s = (x; »)0; where x is the subvector of state variables observable for

the econometrician and the decision-maker, whereas » is observable for the decision-

maker, but not for the econometrician. We also assume that the decision variable has

a continuous range of variation and, without loss of generality, is censored at zero.

Let D be the set of feasible choices. For example, if we consider a …rm which decides

its investment in order to maximize the expected discounted value of current and

future pro…ts and we think that investment is completely irreversible and there are

not physical or …nancial constraints, the set of feasible choices is D = [0;1):
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We also assume that the decision-maker has uncertainty about future values of

state variables. Her beliefs about these uncertain values can be represented by a

Markov transition density function f(st+1j st; dt): The one-period return function can

be represented by ¼(st; dt; µ);where µ is the vector of structural parameters. Time is

discrete and indexed by t: The time horizon of the decision problem is in…nite. The

agent’s discount rate is represented by a parameter ¯ 2 (0; 1):
An agent is represented by the set of primitives f¼; f; ¯g : The decision problem

of an agent at period t is to …nd the optimal decision rule ±t(st; µ) that satis…es:

±t(st; µ) =argmax
dt2D

½
¼(st; dt; µ) + ¯

Z
V (st+1; µ) f(dst+1j st; dt)

¾

where V (¢) is de…ned recursively as the solution to Bellman’s equation:

V (st; µ) =max
dt2D

½
¼(st; dt; µ) + ¯

Z
V (st+1; µ) f(dst+1j st; dt)

¾

In continuous decision processes, that is, when the decision variable is continuous,

the usual estimation approach is based on the Euler equations. We can construct

sample counterparts of the orthogonality conditions provided by the Euler equations

and use them to estimate the parameters of interest by the Generalized Method of

Moments. But these equations result from combining marginal conditions of opti-

mality at two consecutive periods. That is, they are based on the assumption that,

conditional on the information at period t; an interior solution will hold with prob-

ability one at period t+ 1: However, for censored decision models, interior solutions

do not occur at each period with probability one. When an agent makes her decision,

she assigns a non-zero probability to the event “corner solution at period t + 1":

For example, in an irreversible investment model, a …rm can choose inaction, that

is, zero investment (i.e. corner solution). Therefore the decision variable is censored

at zero. Hence the standard Euler equations do not hold. One of the limitations

of the Euler approach in the context of censored decision models is that, given that

marginal optimality conditions only hold for interior solutions, if there is a signi…cant

frequency of corner solutions in the sample and we drop them, we are inducing a

selection bias. Another limitation is that there can be situations under which not

all the structural parameters can be estimated using only the marginal optimality
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conditions, since some parameters may be identi…ed only by exploiting the discrete

choice “interior solution vs. corner solution”. This is the case, for example, when

censoring is due to the existence of lump-sum costs. To overcome these limitations,

Pakes (1994) proposed some modi…cations of the Euler equations in a model with

both a continuous and a discrete control variable. This method has been extended to

the context of censored decision models by Aguirregabiria (1997), for a model of price

and inventory decisions. However, if corner solutions are relatively frequent in the

sample, the discrete choice between interior solution and corner solution may contain

more information about the structural parameters than the modi…ed Euler equations,

as it is stressed in Aguirregabiria (1999). There exist some contributions in the lit-

erature with censored decision variables that only exploit the discrete choice interior

solution vs. corner solution, for example, Slade (1999) or Aguirregabiria (1999). In

these cases, the interior solution is estimated nonparametrically.

This paper establishes a new approach to estimate the structural parameters in the

context of a censored decision model. Instead of handling with the original censored

model, we propose an approximate model in which the decision variable has been

discretized in a …nite number of values. In this sense, an ordered choice model becomes

a natural approximation to an underlying and more complicated censored continuous

model. We consider two sources of censoring: non-negativity constraints and lump-

sum costs.

3 A censored decision model with non-negativity
constraints

Consider a model in which the decision variable is censored, without loss of generality,

at zero. For example, in a model of capital investment with total irreversibility, …rms

can decide whether not to invest (inaction) or to invest a strictly positive amount,

but once the new capital has been acquired, it cannot be sold.1 In such a model, the

non-negativity constraint implies a positive probability of corner solutions. The set

1This feature can be relaxed: for instance, we can think of an imperfect second-hand market
for physical capital in which, due to informational asymmetries, the selling price is lower than the
purchasing price. This fact creates a kink in the one-period pro…t function at d = 0:
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of feasible choices is D = [0;1): The optimal decision rule in this model is as follows:

±(s; µ) =

(
±¤(s; µ) if ±¤(s; µ) > 0
0 otherwise

(1)

where ±¤(s; µ) is the optimal interior solution characterized by:

¼d [s; ±
¤(s; µ); µ] + ¯EVd [s; ±

¤(s; µ); µ] = 0 (2)

where ¼d ´ @¼=@d and EVd = @EV=@d:

That is, there is a …rst order condition of optimality for the interior solution, given

by (2), and there is a discrete choice between corner and interior solution, given by

(1). This is the main feature of the decision rule in censored continuous decision

processes.

Let us assume now that our decision variable d has been discretized in a …nite

number of values, such that the set of feasible choices is given by:

0 = d0 < d1 < ::: < dM

For example, in a completely irreversible investment model, if we consider that the

decision variable is the investment rate, we could group the feasible decisions for a

…rm in some categories: zero investment, investment of 10 percent of the installed

capital, investment of 20 percent, etc.

We establish the following assumptions:

ASSUMPTION A1 : The one-period pro…t associated with each alternative m =

0; 1; :::;M can be decomposed additively as

¼m(st; µ) = ¼
m(xt; µ)¡ gm(xt) "t

where gm(¢) is a function of the decision variable and the observable state variables

and "t is an unobservable state variable.

ASSUMPTION A2: The functions gm(xt) ´ g(xt; d
m) are positive and strictly

increasing in dm; for m ¸ 1:

ASSUMPTION A3 : Conditional Independence assumption (Rust, 1987): The

transition probability of state variables can be factorized as:
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f (dst+1j st; dmt ) ´ f(xt+1; "t+1jxt; "t; dmt ) = f ("t+1j xt+1) f (xt+1j xt; dmt ) (3)

ASSUMPTION A4 : The domain of observable state variables is …nite: x 2 X =
n
x1; :::; xH

o
:

Regarding the additive decomposition in A1, the unobservable state variable "

stands for heterogeneity in some component of the one period return function. For

example, in an irreversible investment model where …rms decide whether not to invest

or to invest a positive amount among a …nite set of alternatives, " can be related to

heterogeneity in variable adjustment costs that …rms face when they decide to invest.2

The implications of A3 are, on the one hand, that conditional on the discrete

choice and the current value of the observable state variables, the future observable

state variables do not depend on unobservables. On the other hand, this assump-

tion rules out the existence of autocorrelated unobservables that would make the

estimation of the structural parameters very cumbersome.

The conditional value function will be given by:

V m(st; µ) = ¼
m(st; µ) + ¯EV

m(st; µ)

where

EV m(st; µ) =
Z
V (st+1; µ) f (dst+1j st; dmt )

2For example, let us consider an irreversible investment model for which the one-period pro…t
function is:

¼m(st; µ) = F (Kt) ¡ Kti
m
t ¡ AC(st; i

n
t )

where imt is the investment rate (decision variable), Kt is the installed capital (observable state
variable) and µL and µQ are parameters related with linear and quadratic capital adjustment costs
respectively. F (Kt) is the revenue function, Kti

m
t the purchase cost of capital and AC(st; i

n
t ) =

Kti
m
t (µL + "t + µQimt ) is the capital adjustment cost function.

The decomposition in A1 will be given by:

¼m(xt; µ) = F (Kt) ¡ Kti
m
t (1 + µL + µQimt )

gm(xt) = Kti
m
t
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Let us de…ne the expectation of the value function conditional on the state vari-

ables, where the expectation is taken with respect to unobservables:

V (xt; µ) ´
Z
V (xt; "t; µ) f(d"tj xt)

Under A1, A2 and A4, the Bellman’s equation for this problem can be writtten

as:

V (xt; µ) =
Z
max
dm2D

2
4¼m(xt; µ)¡ gm(xt) "t + ¯

X

xt+1

V (xt+1; µ) f(xt+1jxt; dmt )
3
5 f (d"tjxt)

(4)

The functional equation (4) is a contraction mapping, V (xt; µ) being its unique …xed

point. The conditional choice probability of alternative dm given the vector of ob-

servable state variables is given by:

Pr(dmt jxt) =
Z
I fdm = argmax [v(xt; dm)¡ gm(xt) "t]g f (d"tjxt); (5)

where the conditional choice value function in terms of observable variables is simply

v(xt; d
m) = ¼m(xt; µ) + ¯

X

xt+1

V (xt+1; µ) f (xt+1jxt; dmt ) (6)

The underlying model, in which the decision variable has not been discretized,

is a censored continuous decision model. The ordered choice model that arises as

an approximation of the original one, can be viewed as the result of evaluating the

underlying censored model only in a …nite number of points of the feasible choice set.

Since the intertemporal pro…t function is concave, the optimal decision rule in the

ordered choice model can be de…ned by a set of inequalities. Such inequalities arise

from the comparison of the value attained at each alternative with the value attained

at previous and subsequent alternatives:

Optimal decision rule

Under assumptions A1-A4, the optimal decision rule in the ordered choice model

is:

d¤(st; µ) =

8
><
>:

dm > 0 if em+1(xt) < "t · em(xt)

0 if "t > e1(xt)
(7)
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where eM+1(xt) = ¡1, and for m · M ,

em(xt) =
¢vm(xt)

¢gm(xt)

with ¢vm(xt) = v(xt; d
m) ¡ v(xt; d

m¡1) and ¢gm(xt) ´ gm(xt) ¡ gm¡1(xt): The

interpretation of this optimal decision rule is simple. Consider …rst the decision

among alternatives dm > 0; that is, the decision among fdm;m = 1; :::;Mg : Sup-

pose that the optimal decision is d¤(st) = dm > 0; for certain m > 0. In this

case, the concavity of the intertemporal pro…t function of the underlying model im-

plies that whereas the “slope” of this function to the left of dm should be positive

(i.e., ¢vm(xt) ¡ ¢gm(xt)"t > 0), the “slope” to the right should be negative (i.e.,

¢vm+1(xt)¡¢gm+1(xt)"t < 0). It is clear that these two inequalities imply that the

shock "t should lie in the interval [em+1(xt); em(xt)]. Notice that concavity of the

value function in the underlying model implies that the threshold em+1(xt) is always

smaller than em(xt).

Consider now the decision between d0 = 0 and dm > 0; for m ¸ 1: In the case of

an irreversible investment model, consider the decision of inaction (zero investment)

vs. a strictly positive investment. If the “slope” of the intertemporal pro…t function

of the underlying model at d0 = 0 is negative, the maximum intertemporal pro…t

would be reached at a negative value of d. However, since we are considering that

there exists a non-negativity constraint, the optimal decision would be d0 = 0: In an

irreversible investment model, if the maximum intertemporal pro…t is reached at a

negative investment value, the optimal decision would be inaction, due to irreversibil-

ity. That condition for the “slope” of the intertemporal pro…t function is given by

¢v1(xt)¡¢g1(xt)"t < 0, which is equivalent to "t > e1(xt).

Let e(xt) be the M-dimensional vector of conditional choice value functions,

(e1(xt); :::; eM(xt))0 and P (xt) the M -dimensional vector of conditional choice prob-

abilities
³
P 1(xt); :::; PM (xt)

´0
:

Notice that this vector does not include the probability of choosing the alternative

d0 = 0; which will be trivially computed from the elements in P (xt): As we can see

in the optimal decision rule, there is a mapping from conditional value functions to

conditional choice probabilities. For any m ¸ 1; the conditional choice probability
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Pm(xnt) is given by

Pm(xnt) = Pr
n
em+1(xnt) < "nt · em(xnt)

o
=

= F" (e
m(xnt))¡ F"

³
em+1(xnt)

´
(8)

where eM+1(xnt) = ¡1, and F"(¢) stands for the cumulative distribution function of

".

Let Q : RM ¡! [0; 1]M be that mapping:

P (xt) = Q(e(xt)) (9)

More speci…cally, the choice probability Pm(xt) depends on the vector e(xt) only

through its m-th and (m+ 1)-th components. That is,

Pm(xnt) = Q
m(em(xnt); e

m+1(xnt))

Lemma 1 Given gm(¢); under assumptions A1-A4, the mapping Q is invertible.

Proof: See Appendix.

The invertibility of the mapping can be exploited to obtain an alternative rep-

resentation of the value funcions in terms of choice probabilities. The Bellman’s

equation (4) can be written as:

V (xt; µ) =
MX

m=0

Pm(xt)

8
<
:¼

m(xt; µ)¡ gm(xt) E ["tj xt; d¤t = dm] + ¯
X

xt+1

V (xt+1; µ) f (xt+1jxt; dmt )
9
=
;

(10)

where E ["tj xt; d¤t = dm] is the expectation of the unobservable " conditional on the

optimal choice of the alternative dm: This expectation is a function of the components

m and m+ 1 of the vector of unknown functions e(xt) :

E ["tjxt; d¤t = dm] = E
h
"tjxt; em+1(xt) < "t · em(xt)

i
= (11)

=
1

Pm(xt)

Z em(xt)

em+1(xt)
" f (") d"
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However, by exploiting the invertibility of the mapping Q we can write this expec-

tation in terms of conditional choice probabilities, that we denote as hm(P ). In the

context of our ordered choice model, that expectation becomes (omitting the argu-

ment xt for the sake of notational simplicity):

hm(P ) =
1

Pm

Z F¡1(Pm+Pm+1+:::+PM )

F¡1(Pm+1+:::+PM )
" f (") d" (12)

Including these expressions into (10), and solving the …xed-point equations, we can

write the value function in terms of the conditional choice probabilities, in compact

matrix notation, as follows:

V (x) =

Ã
IH ¡ ¯

MX

m=0

Pm(x) ¤ Fm(x)
!¡1 (

MX

m=0

Pm(x) ¤ [¼m(x)¡ gm(xt) hm(P )]
)

(13)

where ¤ is the element-by-element product, H is the dimension of the discretized

space of observable state variables and Fm(x) is the H £ H matrix of conditional

transition probabilities.

4 A censored model with non-negativity constraints
and lump-sum costs

Consider now a continuous decision model in which there are two sources of censoring:

non-negativity constraints and lump-sum costs. For example, a model of investment

such that installed capital cannot be sold (total irreversibility) and there are some

…xed adjustment costs that …rms face if they decide to invest, irrespective of the

amount of investment. The set of feasible choices is D = [0;1); as in the earlier

section. However, in this case, the optimal decision can be d = 0 not only due to

non-negativity constraints, but also due to lump-sum costs. The presence of lump-

sum costs introduces a discontinuity in the one-period pro…t function in d = 0; what

complicates the estimation of the structural parameters.

As in the earlier section, we begin by establishing the optimal decision in the

censored continuous decision problem. Let ¼(st; µ) be the one-period pro…t function

and ~¼(st; µ) the one-period pro…t function gross of …xed costs. That is,

¼(st; µ) = ~¼(st; µ)¡ FC(st; µ) I(dt > 0)
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where FC(¢) is the …xed-cost function. The discontinuity of the pro…t function at

d = 0 induces nonconcavity in the value function. The characterization of the optimal

decision rule in this case requires to exploit properties of K-concave functions.3 The

optimal decision rule for this censored decision problem is:

±(s; µ) =

(
±¤(s; µ) if ±¤(s; µ) > 0 and °(s; µ) > 0
0 otherwise

(14)

where ±¤(s; µ) is the optimal interior solution characterized by

~¼d(s; ±
¤(s; µ); µ) + ¯EVd(s; ±

¤(s; µ); µ) = 0; (15)

with ~¼d ´ @~¼=@d and EVd = @EV=@d and the function °(s; µ) is given by

~¼(s; ±¤(s; µ); µ)¡ FC(s; µ)¡ ~¼(s; 0; µ) + ¯ [EV (s; ±¤(s; µ); µ)¡ EV (s; 0; µ)] : (16)

That is, there is a …rst order condition of optimality for the interior solution,

given by (15), and there are two conditions for the discrete choice between corner

and interior solution. The …rst one concerns ±¤(s; µ); which is related with the non-

negativity constraint, so that the interior solution will be optimal only if it is positive.

If condition (15) holds for a negative value, we will choose ±(s; µ) = 0. The second

condition is given in terms of °(s; µ); which is related with the presence of …xed costs.

If °(s; µ) > 0; it means that the …xed costs are not high enough to lead the …rm to

decide not to invest.

It is possible to formulate an ordered choice model as an approximation to the

censored continuous model in order to get a representation of conditional value func-

tions in terms of conditional choice probabilities. Suppose that the decision variable

in the original problem has been discretized in a …nite number of values, such that

the set of feasible choices is given by:

0 = d0 < d1 < ::: < dM

Consider assumptions A2, A3 and A4 from the earlier section and these additional

assumptions:

3See Aguirregabiria (1999) for details on the characterization of the optimal decision rule in a
censored decision problem with lump sum costs.
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ASSUMPTION B1 : The one-period pro…t associated with each alternative m =

0; 1; :::;M can be decomposed as :

¼m(st; µ) = ~¼
m(xt; µ)¡ gm(xt) "t ¡ FC(st; µ) I(dmt > 0)

and the …xed cost function is decomposed in observable and unobservable components

as follows:

FC(st; µ) = c0(xt; µ) + c1(xt) !t

where gm(¢) is a function of the decision variable and the observable state variables,

c0(¢) and c1(¢) are functions of the observable state variables and " and ! are unob-

servable state variables.

ASSUMPTION B2: The function c1(xt) is strictly positive.

ASSUMPTION B3 : Independence between unobservable state variables:

f("t; !tjxt) = f("tjxt) f (!tjxt)

Regarding assumption B1, the unobservable state variables " and ! stand for

heterogeneity in some components of the one-period return function. In the case

of an irreversible investment model where …rms decide whether not to invest or to

undertake an investment project among a …nite set of alternatives, " can represent

heterogeneity in variable adjustment costs that …rms face when they decide to invest

and ! heterogeneity in …xed costs.4

4See the investment model described in note 2. Let us assume that when the …rm decides to
invest, it faces …xed adjustment costs, which are, for example, proportional to the installed capital.
Let us consider the following one-period pro…t function:

¼m(st; µ) = F (Kt) ¡ Kti
m
t ¡ AC(st; i

n
t )

where AC(st; i
n
t ) = Kti

m
t (µL + "t + µQimt ) + (µF + !t)Kt1(imt > 0): In this case, the decomposition

in B1 is as follows:
~¼m(xt; µ) = F (Kt) ¡ Kti

m
t (1 + µL + µQimt )

¼m(xt; µ) = ~¼m(xt; µ) ¡ c0(xt; µ) 1(imt > 0)

gm(xt) = Kti
m
t ; c0(xt; µ) = µF Kt; c1(xt) = Kt

13



Taking into account assumption B3, the conditional independence assumption A3

can be written as:

f(dst+1j st; dmt ) = f ("t+1jxt+1) f(!t+1jxt+1) f(xt+1jxt; dmt )

Under assumptions A3, A4, B1 and B3 the Bellman’s equation for this problem

can be written as:

V (xt; µ) =
Z
max
dm2D

[¼m(xt; µ)¡ gm(xt) "t ¡ c1(xt) !t I(dmt > 0)+

+¯
X

xt+1

V (xt+1; µ) f (xt+1jxt; dmt )
3
5 f (d"tjxt) f(d!tjxt) (17)

The functional equation (17) is a contraction mapping, V (xt; µ) being its unique

…xed point. The conditional choice probability of alternative dm given the vector of

observable state variables is given by:

Pr(dmt j xt) =
Z
I fdm = argmax [v(xt; dm)¡ gm(xt) "t ¡ c1(xt) !tI(dmt > 0)]g f(d"tjxt)f(d!tjx

(18)

where the conditional choice value function in terms of observable variables is simply

v(xt; d
m) = ¼m(xt; µ) + ¯

X

xt+1

V (xt+1; µ) f (xt+1jxt; dmt ) (19)

and ¼m(xt; µ) = ~¼m(xt; µ) ¡ c0(xt; µ) I(dmt > 0):
Similarly to the case without …xed costs, the ordered choice model may be con-

sidered as an approximation of the underlying censored continuous decision model.

Let us establish the optimal decision rule for the ordered choice model:

Optimal decision rule

Under assumptions A2-A4 and B1-B3, the optimal decision rule for the ordered

choice model can be written as:

d¤(st; µ) =

8
><
>:

dm > 0 if em+1(xt) < "t < em(xt) and !t < wm(xt)¡ bm(xt) "t

d0 = 0 if "t > e
1(xt) or !t > wm(xt) ¡ bm(xt) "t for any m > 0

(20)
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where eM+1(xt) = ¡1, and for m · M ,

em(xt) =
¢~vm(xt)

¢gm(xt)

bm(xt) =
gm(xt)

c1(xt)

wm(xt) =
1

c1(xt)

h
~vm(xt)¡ ~v0(xt)¡ c0(xt; µ)

i

¢~vm(xt) = ~v
m(xt)¡ ~vm¡1(xt)

¢gm(xt) = g
m(xt)¡ gm¡1(xt)

~vm(xt) = ~¼
m(xt; µ) + ¯

X

xt+1

V (xt+1; µ) f(xt+1j xt; dmt )

What is the interpretation of this optimal decision rule? Consider …rst the decision

on the intensive margin and suppose that d¤(st) = dm > 0. In this case, the concavity

of the intertemporal pro…t function ~v implies that the ”slope” of this function to the

left of dm should be positive (i.e., ¢~vm(xt)¡¢gm(xt)"t > 0), and the ”slope” to the

right should be negative (i.e., ¢~vm+1(xt) ¡¢gm+1(xt)"t < 0). It is clear that these

two inequalities imply that the shock "t should lie in the interval (em+1(xt); em(xt)].

Notice that concavity of ~v implies that the threshold em+1(xt) is always smaller than

em(xt).

Consider now the decision on the extensive margin. There are two sources of

inaction in this model: non-negativity constraints and lump-sum costs. Even without

lump-sum costs, the maximum intertemporal pro…t may take place at dt = 0. This is

the case when the ”slope” of the pro…t function at dt = 0 is negative, i.e., ¢~v1(xt)¡
¢g1(xt)"t < 0, which is equivalent to "t > e1(xt). Once we account for lump sum

costs, optimal decision can be also dt = 0 because the maximum intertemporal pro…t

with dmt > 0 is smaller than this pro…t under dt = 0: This is represented by the

condition: for any m > 0; !t > w
m(xt)¡ bm(xt)"t.

Hence, there are two sources of censoring, non-negativity constraints and lump-

sum costs, which are indistinguishable for the econometrician. If we think of an

irreversible investment model with …xed adjustment costs, the interpretation of the
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optimal decision rule is as follows: when the intertemporal pro…t, gross of …xed ad-

justment costs, is maximized for a negative value of investment, the optimal decision

is inaction due to irreversibility. When it is maximized for a positive level of invest-

ment, but the value obtained with this level is lower than the value obtained with zero

investment, the optimal decision is inaction due to the presence of …xed adjustment

costs.

As in the earlier section, let e(xt) be the M-dimensional vector of conditional

choice value functions, (e1(xt); :::; eM(xt))0 and P (xt) the M-dimensional vector of

conditional choice probabilities
³
P 1(xt); :::; P

M(xt)
´0
:

The mapping from conditional value functions to conditional choice probabilities

is given by the following expressions, for m > 0 :

Pm(xt) = Pr
n
em+1(xt) < "t · em(xt) , !t < wm(xt)¡ bm(xt)"t

o
=

=
Z em(xt)

em+1(xt)
F! (w

m(xt)¡ bm(xt)"t) f"(") d" (21)

where eM+1(xnt) = ¡1, and F!(¢) and F"(¢) stand for the cumulative distribution

function of ! and " respectively.

It is clear that the threshold functions wm(xt) can be expressed in terms of the

vector ¢~v(xt) =
³
¢~v1(xt); :::;¢~v

M (xt)
´0

and thus in terms of the components of the

vector e(xt); in the following way:

wm(xt) =
1

c1(xt)

"
mX

k=1

¢~vk(xt)¡ c0(xt; µ)
#
=

1

c1(xt)

"
mX

k=1

¢gk(xt)e
k(xt)¡ c0(xt; µ)

#

(22)

Let Q : RM ¡! [0; 1]M be the mapping from conditional value functions to

conditional choice probabilities:

P (xt) = Q(e(xt))

As it can be seen in (22), the choice probability Pm(xt) depends on the vector e(xt)

through the …rst m+ 1 components: That is, for m = 1; :::;M :

Pm(xt) = Q
m(e1(xt); :::; e

m(xt); e
m+1(xt)) =

16



=
Z em(xt)

em+1(xt)
F!

"
1

c1(xt)

Ã
mX

k=1

¢gk(xt)e
k(xt)¡ c0(xt; µ)

!
¡ bm(xt)"t

#
f"(") d" (23)

Lemma 2 Given c0(¢); c1(¢) and gm(¢), under assumptions A2-A4 and B1-B3, the

mapping Q is invertible.

Proof: See Appendix

The invertibility of the mapping can be exploited to obtain an alternative rep-

resentation of the value funcions in terms of choice probabilities. The Bellman’s

equation (17) can be written as:

V (xt) =
MX

m=1

Pm(xt) f¼m(xt; µ)¡ gm(xt)E ["tjxt; d¤t = dm]¡ c1(xt)E [!tjxt; d¤t = dm] +

+¯
X

xt+1

V (xt+1; µ) p(xt+1jxt; dmt )
9
=
; (24)

where the expectation of the unobservables conditional on the optimal choice of al-

ternative dm; that is, E ["tjxt; d¤t = dm] and E [!tjxt; d¤t = dm] ; are functions of the

elements of the vector of unknown functions e(xt): For m > 0 :

E ["tjxt; d¤t = dm] =
1

Pm(xt)

Z em(xt)

em+1(xt)
" F! [D(xt)] f(") d"

E [!tj xt; d¤t = dm] =
1

Pm(xt)

Z em(xt)

em+1(xt)

"Z D(xt)

¡1
! f!(!) d!

#
f(") d"

where

D(xt) =
1

c1(xt)

Ã
mX

k=1

¢gk(xt)e
k(xt)¡ c0(xt; µ)

!
¡ bm(xt)"t

Let us denote these expectations as hm" (P ) and hm! (P ) respectively. Including

these expressions into (24) and solving the …xed point equations in compact matrix

notation, we can write the value function in terms of the conditional choice probabil-

ities as:

V (x) =

Ã
IH ¡ ¯

MX

m=1

Pm(x) ¤ Fm(x)
!¡1 (

MX

m=1

Pm(x) ¤ [¼m(x)¡ gm(xt)hm" (P )¡ c1(xt)hm! (P )]
)
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where ¤ is the product element-by-element, H is the dimension of the discretized

space of observable state variables and Fm(x) is the H£H matrix of the conditional

transitional probabilities.

From the computational point of view the main implication induced by the pres-

ence of …xed costs is that there are not closed form expressions of em(xt) in terms of

the elements of P (xt): These expressions must be obtained numerically solving the

highly nonlinear system of equations given by (23).

5 Estimation of the structural parameters

We follow Aguirregabiria and Mira (2002), who show that for any value of the struc-

tural parameters µ, the vector of conditional choice probabilities Pµ associated with

the solution of the dynamic programming problem can be obtained as the unique …xed

point of a mapping in probability space, Pµ = ªµ (Pµ) ; the Policy Iteration mapping.

They propose the Nested Pseudo-Likelihood algorithm (NPL): an inner algorithm

maximizes in µ a pseudo-likelihood function based on choice probabilities,ªµ (P ) ;

where P is an estimate of these probabilities; an outer algorithm computes ªµ (P ) at

the current parameter estimates to update the estimate of P:

The keypoint ot the NPL algorithm is the Policy Iteration operator ª(¢) in the

space of conditional choice probabilities:

P = ª(P ) = ¤ ('(P ))

where '(¢) is a policy valuation operator which maps a vector of conditional choice

probabilities into a vector in value function space using Hotz and Miller’s representa-

tion, that is, the invertibility of the mapping from conditional choice probabilities to

conditional value functions, and ¤ (¢) is a policy improvement operator which maps

a vector in value function space into a vector of conditional choice probabilities.

Let us describe Aguirregabiria and Mira’s NPL algorithm: …rst, we must obtain

a consistent estimator of conditional transition probabilities, F̂m; for m = 0; 1; :::;M:

Start with an initial guess of the parameter vector, µ̂
(0)
; and an initial guess for

the conditional choice probabilities, P̂ (0) (for example, a consistent nonparametric
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estimator of these probabilities). For iteration K ¸ 1; do the following steps:

Step 1: Obtain a representation of conditional value functions in terms of condi-

tional choice probabilities:

ê(K¡1) = Q¡1
³
P̂ (K¡1)

´

Step 2: Obtain a new pseudo-likelihood estimator µ̂
(K)

as:

µ̂
(K)
=argmax

µ2£

NX

n=1

TX

t=1

MX

m=0

1 (dnt = d
mj xnt) lnªm

³
P̂ (K¡1)

¯̄
¯xnt

´

where

ªm
³
P̂ (K¡1)

¯̄
¯xnt

´
= Pr (dnt = d

mjxnt) ´ ªm
µ
µ̂
(K¡1)

; P̂ (K¡1); F̂m
¯̄
¯̄ xnt

¶

Step 3: Update P̂ using the estimator obtained in step 2:

P̂ (K) = ªm
µ
µ̂
(K)
; P̂ (K¡1); F̂m

¯̄
¯̄xnt

¶

Go to step 1 and iterate in K until convergence in P̂ and µ̂ is reached.5

As it is stressed in Aguirregabiria and Mira (2002), when the NPL algorithm is

initialized with consistent nonparametric estimates of conditional choice probabili-

ties succesive iterations return a sequence of estimators of the structural parameters,

which they call K-stage Policy Iteration estimators, which includes as extreme cases

a Hotz-Miller CCP estimator (for K = 1) and Rust’s Nested Fixed Point estimator

(when K ! 1): The K-stage Policy Iteration estimators are asymptotically equiva-

lent to the maximum likelihood estimator.

6 Concluding remarks

In this paper we propose a new approach to estimate the structural parameters in

dynamic programming models with censored decision variables. This approach over-

come some of the drawbacks of the estimation tecniques proposed in the literature in

5See more details on the algorithm and the necessary assumptions in Aguirregabiria and Mira
(2002).
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this context. Instead of handling with the original model, we consider an approximate

model in which the decision variable is discretized in a …nite number of values. This

discretization yields an ordered choice model, which seems a natural way to approxi-

mate a censored continuous decision model. We have considered two di¤erent sources

of censoring, non-negativity constraints and lump-sum costs, which can appear in

many economic problems. For each source of censoring considered, we have obtained

the optimal decision rule of the corresponding ordered choice model and a representa-

tion of conditional choice value functions in terms of conditional choice probabilities.

This approach provides the necessary tools to estimate the structural parameters by

pseudo-maximum likelihood following Aguirregabiria and Mira’s NPL algorithm. In

this sense, our approach extends to the context of ordered choice models the …eld of

application of the kind of Hotz and Miller estimators proposed in the literature for

the estimation of binary or multinomial choice models with independent alternatives.

We have ilustrated our estimation approach with an investment model with irre-

versibility and …xed adjustment costs. However, other sources of censoring and many

other economic problems can be considered. For example, models of labor demand

where …rms decide hirings and …rings of workers. There is a discrete decision, about

keep the employment constant vs. adjust employment, and a continuous decision on

the amount of workers that the …rm will hire or …re. If we assume that hiring costs

and …ring costs are di¤erent, this creates a kink in the one-period pro…t function at

zero, which implies a positive probability of corner solutions. Therefore, the decision

variable, the employment level, will be censored at zero due to partial irreversibility.

Another examples in which our estimation approach can be applied are, among oth-

ers, decision models of inventories or prices, in which the possible existence of lump

sum costs associated with purchases or price changes respectively induce censoring

in the decision variable.
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Appendix

Proof of Lemma 1:

The proof of this lemma is straigtforward. The mapping in (9) is a nonlinear

system of equations that can be solved very easily. Let us consider …rst the probability

of choosing alternative d0 = 0 :

P 0(xt) = 1¡ F"(e1(xt))

From this equation we can obtain:

e1(xt) = F
¡1
"

h
1¡ P 0(xt)

i
= F¡1"

h
P 1(xnt) + :::+ P

M (xt)
i

Once e1(xt) has been obtained, the mapping (9) is a triangular system that can be

solved in a recursive way, equation by equation, resulting, for m ¸ 1 :

em(xt) = F
¡1
"

h
Pm(xnt) + P

m+1(xnt):::+ P
M(xt)

i

That is, there exists the inverse mapping Q¡1 from the conditional choice prob-

abilities to the conditional choice value functions. More speci…cally, em(xt) depends

on the vector of conditional choice probabilities only through the last M ¡ m + 1

elements.

Proof of Lemma 2:

The conditional choice probabilities P (xt) are given in terms of the threshold

functions e(xt); P (xt) = Q(e(xt)); where Q is an M¡dimensional vector function,

whose m-th element is given by (23).

Then, the conditional choice probability Pm(xt) depends on the vector e(xt) only

through the …rst m+ 1 components. That is, for m = 1; :::;M :

Pm(xt) = Q
m(e(xt)) = Q

m(e1(xt); :::; e
m+1(xt))

where eM+1(xt) = ¡1.

Let G be the M-dimensional square matrix of partial derivatives of the mapping

Q(e(xt)); that is, Ghl =
³
@Qh(e(xt))
@el(xt)

´
; h; l = 1; :::;M: In order to prove the invertibility

of the mapping Q(e(xt)); we need to prove that G is an invertible matrix.
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The structure of the matrix G is as follows:

(1) Elements above the upper diagonal: Ghl; for h = 1; :::;M ¡2, l = h+2; :::;M:
It is clear that these elements are zero, since for m = 1; :::;M the dependence of

the probability Pm(xt) on the vector e(xt) is only through the …rst m+1 components

of this vector.

(2) Elements in the upper diagonal: Gm;m+1;for m = 1; :::;M ¡ 1 is given by:

Gm;m+1 =
@Qm (e(xt))

@em+1(xt)
= ¡F!

³
wm(xt)¡ bm(xt)em+1(xt)

´
f"

³
em+1(xt)

´

Then, Gm;m+1 < 0 for m = 1; :::;M ¡ 1:

(3) Elements in the main diagonal: Gmm; m = 1; :::;M:

Gmm =
@Qm (e(xt))

@em(xt)
= F! (w

m(xt)¡ bm(xt)em(xt)) f" (em(xt)) +

+
¢gm(xt)

c1(xt)

Z em(xt)

em+1(xt)
f! (w

m(xt)¡ bm(xt)em(xt)) f"(") d"

Since c1(xt) is strictly positive and gm(xt) are positive and strictly increasing in dm;

it is clear that Gmm > 0 for all m = 1; :::;M:

(4) Elements below the main diagonal: Gmh; for m = 2; :::;M and h · m¡ 1 :

Gmh =
@Qm (e(xt))

@eh(xt)
=
¢gh(xt)

c1(xt)

Z em(xt)

em+1(xt)
f! (w

m(xt)¡ bm(xt)em(xt)) f"(") d"

Since c1(xt) is strictly positive and gm(xt) are positive and strictly increasing in dm;

it is clear that Gmh > 0.

Then, G is a square matrix whose elements are strictly negative in the upper

diagonal, zero above and strictly positive below. It is straightforward to prove that

a matrix with this structure is a positive de…nite matrix, and then, G¡1 does exist.

Then, there exists a di¤erentiable inverse mappingQ¡1 such that e(xt) = Q¡1(P (xt));

that is, we can obtain the di¤erence in conditional value functions, and thus, the el-

ements of e(xt); as a computable function of the conditional choice probabilities in

P (xt):
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