
Working Paper  02-03

Statistics and Econometrics Series 01

January 2002

Departamento de Estadística y Econometría

Universidad Carlos III de Madrid

Calle Madrid, 126

28903 Getafe (Spain)

Fax (34) 91 624-98-49

FORECASTING MONTHLY US CONSUMER PRICE INDEXES THROUGH A
DISAGGREGATED I(2) ANALYSIS

 A. Espasa, P: Poncela and E. Senra*

Abstract

In this paper we carry a disaggregated study of the monthly US Consumer Price Index
(CPI). We consider a breakdown of US CPI in four subindexes, corresponding to four
groups of markets: energy, food, rest of commodities and rest of services. This is seen as a
relevant way to increase information in forecasting US CPI because the supplies and
demands in those markets have very different characteristics. Consumer prices in the last
three components show I(2) behavior, while the energy subindex shows a lower order of
integration, but with segmentation in the growth rate. Even restricting the analysis to the
series that show the same order of integration, the trending behavior of prices in these
markets can be very different. An I(2) cointegration analysis on the mentioned last three
components shows that there are several sources of nonstationarity in the US CPI
components. A common trend analysis based on dynamic factor models confirms these
results.

The different trending behavior in the market prices suggests that theories for price
determinations could differ through markets. In this context, disaggregation could help to
improve forecasting accuracy. To show that this conjecture is valid for the non-energy US
CPI, we have performed a forecasting exercise of each component, computed afterwards the
aggregated value of the non energy US CPI and compared it with the forecasts obtained
directly from a model for the aggregate. The improvement in one year ahead forecasts with
the disaggregated approach is more than 20%, where the root mean squared error is
employed as a measure of forecasting performance.
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1 Introduction

Consumer Price Index (CPI) is, perhaps, the most intensively price indicator used by economic analysts.

Financial markets continuously asses expectations on CPI and react to the innovations contained in new

published data. In‡ation is also a key issue in monetary policy. Forecasting monthly in‡ation is nowadays

a necessity for analysts, and they highly demand immediate updates as soon as new information is

available. Authors use a great variety of techniques to forecast in‡ation. For instance, Stock and

Watson (1999) use a type of generalized Phillips curve based on measures of real aggregate activity and

build a new activity index based on a great number of economic indicators, Jacobson et al (2001) build

a VAR model, Bidarkota (2001) uses regime switching models and Moshiri and Cameron (2000) apply

neural network techniques.

In this paper we disaggregate the monthly US CPI in food, rest of non-energy commodities, services

and energy components as a way to increase the information used in forecasting CPI. We con…rm that

all the components but energy are I(2), while the behavior of the energy component is I(1), probably

with segmented means. For this reason we perform a joint analysis of the other three components.

A methodology for I(2) cointegration analysis was developed by Johansen (1995, 1997), Rahbek et

al. (1999) and Paruolo (1996) amongst others. We have used this technique to show that there is

not a unique source of nonstationarity in the data. Some other applied works dealing with the I(2)

cointegration analysis of the CPI are Juselius (1999) that studies price convergence of several quarterly

price indices, and Banerjee et al. (2001) that relates quarterly Australian CPI to several macroeconomic

variables, among others. In this paper we study convergence through markets which have quite di¤erent

demand and supply properties. In particular, the incorporation of technological innovations and the

e¤ects of changes in the consumer habits can di¤er substantially and persistently through these markets.

Factor analysis provides complementary information to the cointegration analysis. It explicitly mod-

els the di¤erent sources of non-stationarity present in data. Escribano and Peña (1994) showed the

equivalence between cointegration and common factors. Dynamic factor analysis was …rst introduced

3



by Geweke (1979) and Geweke and Singleton (1981) in the frequency domain, Peña and Box (1987)

studied stationary dynamic factor models in time domain and Stock and Watson (1988) and Peña and

Poncela (2000) analyzed the nonstationary case. In this paper we con…rm coincident results from both

approaches.

Our disaggregated analysis shows di¤erent trending behavior for the several CPI components, which

suggests that theories for price determination could di¤er through markets. This is in line with the

results in Hendry (2001) where a valid econometric model for UK in‡ation must include variables re-

ferring to di¤erent theoretical explanations. In this context, disaggregation could also help to improve

the forecasting results. To show that the previous conjecture is valid for the Non-Energy US CPI, we

have performed a disaggregated forecasting exercise of each component and computed afterwards the

aggregated value of the Non-Energy US CPI. Then, we have compared it with the forecasts obtained

directly without disaggregating the Non-Energy US CPI. This exercise shows that the bottom-up ap-

proach reduces the prediction root mean squared error by 23% in one year ahead forecast. To test if the

improvement of the disaggregated approach over the aggregated one was statistically signi…cant, we have

used the Diebold and Mariano (1995) test. Our disaggregated approach builds on the results of Espasa

et al (1987) and Lorenzo (1997) for the Spanish in‡ation. For annual GDP data and using Bayesian

techniques, disaggregation has also been successfully applied in forecasting by Zellner and Tobias (2000)

and Zellner and Chen (2000).

Although in order to detect the existence of di¤erent sources of nonstationarity we have used dynamic

factor analysis and cointegration techniques, multivariate forecasts did not outperform the forecasts

from univariate disaggregated models. There is mixed evidence in the literature about the improvement

in forecasting accuracy using univariate or multivariate time series models in the case of cointegration.

Although Engle and Yoo (1987) advocate that taking into account the presence of cointegration improves

the long run predictions, other authors like Christo¤ersen and Diebold (1998), García-Ferrer and Novales

(1998) and Lin and Tsay (1996), among others, provide evidence on the opposite direction. In our case,
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Figure 1: Natural logarithms of energy (LUSE), food (LUSF), rest of non-energy commodities (LUSC)

and rest of services (LUSS).

the univariate models outperform the multivariate ones.

This paper is organized as follows. In section 2, we analyze the order of integration of the US CPI

components. In sections 3 and 4, we investigate the sources of nonstationarity by means of the cointegra-

tion and factor analysis techniques, respectively. In section 5, we analyze the forecasting performance of

the aggregated and disaggregated approaches to predict Non-Energy US CPI and compare their results.

Finally, in section 6 we interpret the results and conclude.

2 Order of Integration of US CPI components

Four monthly U.S. consumer price index (CPI) series were analyzed over the sample from January 1983

to December 2000. The four monthly CPI components (in natural logarithms) are food (LUSF), non-

energy commodities (LUSC), services (LUSS) and energy (LUSE). Figure 1 shows the four components.

In order to check the order of integration of the series, several unit root tests, that are all given in

the appendix, were performed. The series exhibited seasonality and sometimes the need of intervention
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analysis. The unit root tests accounted for the possibility of these deterministic characteristics. Tables

A.1 and A.3 of the appendix show the models estimated to test the null hypothesis of one and two unit

roots, respectively, while tables A.2 and A.4 describe the characteristics of the series both under the

null and alternative hypothesis. The results are given in tables A.5 to A.7.

All series show a trending behavior, so the unit root tests are designed to contemplate this feature,

both, in the null and alternative hypothesis. The behavior of US energy CPI seems di¤erent as it can

be seen in …gure 1 and this is also con…rmed by the unit root tests.

One unit root is not rejected in all cases, and when checking for the second one this is also clearly

not rejected for all series but US energy CPI. This result shows that the energy CPI behavior is di¤erent

to the rest of the components and for that reason it will not be analyzed jointly with the remaining

series. For US food, services and non energy commodities CPIs we adopt the hypothesis that are I(2)1 .

Nevertheless, another possibility would be to contemplate I(1)2 processes with segmentations on the

means of the series; this would imply that in‡ation usually will be a stationary process. Still, in this

case the long term equilibrium mean could not be estimated due to the incapacity of formulating a valid

long term stochastic scheme of the breaks. For this reason, in this paper we proceed as if the series were

I(2,0).

3 Cointegration Analysis

The di¤erent CPI components do not seem to follow a single common trend. This hypothesis is going

to be tested using two di¤erent approaches: (1) cointegration analysis, in this section and (2) common

trends in the next section.

As it has been shown in section 2, the variables can be characterized as I(2) processes. These

1 More precisely, we would say that they are I(2,0) in the notation I(d;m) of Espasa and Peña (1995), which we give in

the appendix.
2 or more precisely I(1,1) in the terminology I(d;m) of Espasa and Peña (1995)
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features complicate the analysis and requires the application of Johansen’s I(2) techniques as developed

in Johansen (1995), and Rahbek et al. (1999) amongst others.

The model we use is:

¢2yt =

pX

i=1

¡i¢
2yt¡i + ¡¢yt¡1 + ¦yt¡2 + CDt + ¹ + "t (1)

"t s Nn(0; §); t = 1; ¢ ¢ ¢ ; T

where, yt is an n £ 1 vector which collects the n = 3 CPI components, p is the order of the VAR used

for serial correlation, Dt is a matrix (11 £ 1) that accounts for eleven centered seasonal dummies, and

T is the sample size. The model also restricts the constants so no quadratic trends are allowed in the

data.

The existence of cointegration relationships is implied in the matrices associated to the levels (¦)

and …rst di¤erences (¡) of the variables (otherwise the model would be a VAR(p) in second di¤erences).

Since the variables are I(2), we can …nd the following possibilities: (1) I(0) cointegration relations only

in the levels of the variables; (2) I(0) polynomial cointegration between levels and …rst di¤erences of the

variables and (3) I(1) cointegration relations amongst the levels of the variables.

In the presence of cointegration relations in I(2) systems, there are two reduced rank conditions

associated to the system matrices ¦ and ¡ de…ned in (1):

1) the one associated with the I(1) analysis, that consists in checking the rank of ¦ = ®¯ 0 to identify

the number of I(0) relationships (r);

2) and the one that characterizes the I(2) analysis, that consists in checking the rank of ®0
?¡¯0

?

where ®? and ¯? are the orthogonal complements of ® and ¯ respectively. This step identi…es the

number of I(1) and I(2) components (s1 and s2 respectively).

Essentially, what the Johansen’s method does it is to project the n variables collected in vector yt

in three mutually orthogonal subspaces with basis ¯, ¯1? and ¯2? of dimensions n £ r , n £ s1 and

n £ s2, respectively. This subspaces represent the stationary, I(1) and I(2) subspaces and are of ranks r ,
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s1 and s2, respectively. The stationary cointegration space spanned by ¯ can be further decomposed in

two subspaces with basis ¯d and ¯p of dimensions n £ rd and n £ rp such that rd + rp = r: The matrix

¯d contains as columns the cointegrating vectors that generate linear combinations of the variables that

are I(0) and ¯p contains as columns the cointegrating vectors that generate linear combinations of the

variables that are I(1) but that cointegrate to I(0) with the …rst di¤erences of the variables. This later

case is known in the literature as polynomial cointegration. (See, for instance, Johansen, 1995, pag. 39).

The …rst step is to …t an unrestricted (without imposing any cointegration restriction) VAR(p) model

in levels to the data. Table 1 shows the misspeci…cation residual tests for a VAR(3) model. We used

both univariate and multivariate diagnostics tools. The multivariate diagnostic tools used were the

Akaike Information Criterion to select the order p of the VAR, the multivariate portmanteau test of

Hosking (1980) over the residuals of the VAR(p) which is distributed as a Â2 with n2(l ¡ p) degrees of

freedom, where l is the lag length used to perform the test, and the Lagrange Multiplier (LM) test over

the residuals whose distribution is Â2 with n2 degrees of freedom. The univariate diagnostic tools used

were the usual portmanteau test of Ljung-Box-Pierce, the Jarque-Bera test of normality and the LM

test of the squared of the residuals for conditional heterocedasticity. In the table eLUSC , eLUSF and

eLUSS are the residuals of the VAR(p) for commodities, food and services respectively. All the tests

indicate that an unrestricted VAR(3) in levels is an appropriate model, except for the Jarque-Bera for

the second series that is too high. This high value is due just to one observation in US food CPI in

January 1990. The analysis including an impulse dummy variable on that date has been performed and

the Jarque-Bera is downloaded to 2.45. All the remaining statistics remain approximately the same. We

don’t have information to consider this anomalous value as generated exogenously to the data generation

process, so we have not included this dummy variable in further analysis.

8



The variance-covariance matrix for the residuals is given by

b§ =

0
BBB@

4:11 £ 10¡6 2:19 £ 10¡8 ¡2:96 £ 10¡9

2:19 £ 10¡8 8:01 £ 10¡6 ¡1:30 £ 10¡7

¡2:96 £ 10¡9 ¡1:30 £ 10¡7 1:29 £ 10¡6

1
CCCA :

The next step is to determine the number of I(0) cointegration relations (r), and the number of the

nonstationary components (s1 for the I(1) and s2 for the I(2) components). We apply Johansen’s (1995)

likelihood ratio test. The null hypothesis is that conditioning to a given number r of cointegration

relationships, there are 0, 1, 2,... I(1) components in the system.

Table 2 shows the results for the I(2) Johansen’s two step procedure. In the …rst step, we determine

the number r of cointegration relations as if the system was I(1). Based on this number r , in a second

step we determine the number s1 of I(1) components in the system and s2 = n ¡ r ¡ s1 is the number of

I(2) components. Q(r) is the likelihood ratio statistic for the I(1) analysis and Q(s1jr) is the likelihood

ratio test for s1 given r: Looking at the Q(r) column we detect that the null hypothesis r � 1 is not

rejected at the 5% signi…cance level (this is seen italics in the table). In the second step, we look at

the Q(s1jr) statistic; the bold …gures mean that the null hypothesis for s1 = 1 is not rejected at the 5%

critical value.

So the …nal result of the test is (r = 1; s1 = 1). Since s2 = r; this means that the only possibility for

I(0) cointegrating relations is through polynomial cointegration3 . This test implies two cointegration

relations, one from I(2) to I(1) and the other with the levels and …rst di¤erences of the variables, from

I(2) to I(0). The test indicates the presence of one I(2) component and one I(1) component, in favor

of our hypothesis of several sources of nonstationarity in the prices indexes and therefore the need for

disaggregation.

The joint statistical tests of the null hypothesis of r = 1; s1 = 1 of Paruolo (1996) does not reject this

joint hypothesis at the 99% critical values. (See table 3). There are also three roots of the companion

3 Also, as r is not greater than s2, there are no cointegration relations from I(2) to I(0) directly, so the only cointegration

relation involves levels and …rst di¤erences of the variables. (See, for instance, Johansen, 1997).
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matrix (see, table 4) very close to unity, what should con…rm the results of the test. All these pieces of

evidence taken together lead us to conclude that r = 1 and s1 = 1:

Once we know the di¤erent number of stationary and nonstationary components, we proceed to

estimate them.

0:06LUSC
t
+ LUSFt ¡ 0:93LUSSt + 10:75¢LUSCt + 16:74¢LUSFt + 18:65¢LUSSt ¡ 0:3 s I(0)

1:79LUSCt ¡ 0:58LUSFt ¡ 0:51LUSSt s I(1)

The existence of a unique multicointegrating I(0) relationship shows the existence of more than one

source of nonstationarity. In fact there are p ¡ r = 2 nonstationary variables associated to these three

US CPI components. Also the existence of one I(1) cointegration relationship indicates that only one

source of nonstationarity is I(2), being the other one I(1). These results are further con…rmed in section

4.

The cointegration relationships could be interpreted as follows. The multicointegrating I(0) rela-

tionship indicates that the ratio between the indexes for food and services is explained by a linear

combination of the rates of in‡ation of the three components (food, services and commodities). The

coe¢cients that multiply LUSFt and LUSSt could be considered to be equal. The I(1) cointegration

relation, if we consider that the coe¢cients of LUSFt and LUSSt are equal, indicates that the rate of

in‡ation in commodities is approximately 60% of the mean rate of in‡ation of food and services. Nev-

ertheless, it must be said that it is di¢cult to anticipate the type of cointegrating relationships between

markets under a common monetary policy, but with di¤erent possibilities of technological innovations

with diverse degrees in incorporating them and di¤erent patterns in the change of consumer preferences.

This is a very di¤erent situation to the analysis of prices with other macro variables.
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4 Common trend analysis

Let n = 3 be the number of series and s = s1 + s2 the number of common nonstationary factors or

common trends. As it was shown by Escribano and Peña (1994) the number of cointegration relations

n ¡ s is the number of series minus the number of common trends.

We will con…rm the results of the cointegration analysis by a common factors analysis. We assume

that each component of the vector of observed series, yt, can be written as a linear combination of

common factors and speci…c components,

yt = P ft + C Dt + nt ;

n £ 1 n £ s s £ 1 n £ 12 12 £ 1 n £ 1

where ft is the s-dimensional vector of common trends or nonstationary factors, P is the factor loading

matrix, Dt is a matrix (12 £ 1) that accounts for twelve seasonal dummies4 , and nt is the vector of

speci…c components. After extracting the common factors, we will …t an univariate model for the speci…c

components of each one of the series of the CPI, if it is needed. In this model, the common factors are

non-stationary non-observed variables which determine the long run behavior of the series. Contrary to

the cointegration analysis, where we focus on the stationary relations, with factor models we explicitly

model the sources of nonstationarity; so both techniques should be considered as complementary.

The key point is to determine the number of common trends. To do that, we build the ’generalized

covariance matrices’, Cy(k) = 1
T 2d

P
(yt¡k ¡ ¹y)(yt ¡ ¹y)0, for lags k = 0; 1; ¢ ¢ ¢ ; 5; that is sample auto-

covariance matrices of the series but using 1
T2d , where d is the order of integration of the series instead of

the usual 1
T

normalization factor for the sample quantities. In Peña and Poncela (2000) it is shown that

(i) the generalized covariance matrices converge weakly in the sense of Billingsley (1968) to the random

matrix ªy, for k = 0; 1; ¢ ¢ ¢ ; K, k small enough to T; the limits are taken as T goes to in…nity and ªy

is a functional of the integrated Brownian motion, where the d times integrated Brownian motion is
4 To keep the parallelism with the cointegration analysis, we introduce dummies to take into account seasonality.
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de…ned as Vd(¿) = Fd(¿) ¡
R 1

0
Fd(¿)d¿ and Fd(¿ ) is de…ned recursively by Fd(¿) =

R ¿

0
Fd¡1(s)ds; for

d = 1; 2; ::: with F0(¿ ) = W(¿); the standard Brownian motion5 and (ii) there are exactly s eigenvectors

(the same as the number of common trends) of these matrices that are common for the di¤erent lags

k = 0; 1; ¢ ¢ ¢ ; K:

Tables 5 and 6 show the …rst and second eigenvectors for the components of the CPI. In both tables,

the …rst column shows the name of the variables and columns 2 through 6 show the eigenvectors for

the indicated lag in the …rst row. The …rst two eigenvectors are very stable. They clearly indicate the

existence of two common trends. After extracting the …rst two factors, the series became stationary.

A …rst estimation of the factors is obtained by the linear combinations given by the eigenvectors. We

perform an ADF unit root test to check the integration order of each of the factors. Table 7 con…rms

that there are one I(2) nonstationary factor and one I(1) factor.

A nice interpretation can also be given to these …rst two common nonstationary factors. The …rst

common factor is I(2) and can be interpreted as a weighted mean driving all the CPI components, giving

more weight to services CPI. The second factor is I(1) and can be interpreted as separating commodities

from food and services, since the associated eigenvector has a negative weight in the …rst component

and a positive one in the remaining ones.

We have estimated the factor model by maximum likelihood using the EM algorithm, modelling the

I(2) common trend as a local linear trend as in Harvey (1989) and the I(1) common trend as a random

walk,

f1t = ¹t + ¯t + "1t

¯ t = ¯t¡1 + ´t

f2t = f2t¡1 + "2t

where fit , i = 1; 2 are the common factors. The variance of the three uncorrelated white noises ("1t, "2t

´t) are set equal to 1 to identify the model. The speci…c components were modelled as pure autoregressive
5 This can be proven using the results in Phillips and Durlauf (1986), Tiao and Tsay (1990) and Tanaka (1998).
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Figure 2: Graphs of the two nonstationary common factors of the food, rest of non-energy commodities

and rest of services.

processes. Figure 2 shows the estimated nonstationary common factors.

5 Forecasting results

In this section, we forecast food, rest of non-energy commodities and rest of services US CPI and then

aggregate them to forecast the non-energy US CPI. This is compared with the forecasts obtained directly

from the non-energy US CPI.

Univariate ARIMA models are used both to forecast the non-energy CPI and its components. All

the models are in second di¤erences and used centered seasonal dummies. The multivariate forecasts

obtained by either of the two procedures analyzed (cointegration and dynamic factor models) are not

shown because they did not outperform the forecasts obtained by the univariate approach6 . This is in

the line with Christo¤ersen and Diebold (1998) who advocate that the use of multivariate models does

6 They are available from the authors upon request.
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not need to improve the ARIMA univariate forecasts. These authors point out the following paradox:

it seems unlikely that the cointegrated systems provide information about the long-horizon evolution of

the variables because the long-horizon forecast of the error-correction term is always 0. This could be a

hint why the cointegration restrictions do not necessarily need to improve the univariate forecasts.

The sample considered for estimation is 1983:01 to 1997:12 and we generate one to twelve-step-

ahead forecasts for the years 1998 through 2000, which have been reserved to evaluate the forecasting

performance of both approaches. In consequence, we obtain 36 one-step-ahead forecast errors, 35 two-

steps-ahead forecast errors and so on up to 24 twelve-steps-ahead forecast errors. The root mean squared

error (RMSE) is employed as a measure of forecasting performance.

Also, to check if the di¤erences between the two forecasting procedures are statistically signi…cant

we applied the Diebold and Mariano (1995) test statistic with the …nite sample corrections suggested

by Harvey et al. (1997). The null hypothesis states the equality of the two forecast procedures in terms

of the quadratic loss as a function of their errors, g(e), that is, E(dt) = 0, where dt = [g(eAt) ¡ g(eDt)]

and eAt and eDt are the forecast errors obtained with the aggregated and disaggregated approaches

respectively and, in our case, g is the quadratic loss function. The Diebold and Mariano statistic is

S = dp
dvar(d)

where d is the sample mean of the dt series and dvar(d) is calculated taking into account

the serial correlation in dt . The S statistic follows an asymptotic standard normal distribution under

the null hypothesis and its correction for …nite sample follows a Student t with l ¡1 degrees of freedom,

where l is the number of forecasts. The computed S statistics for h=1 to 12 horizons of prediction are

given in table 8. If the computed S is positive and statistically signi…cant, it would indicate that the

disaggregated model improves the aggregated one.

Table 8 shows the results on forecasting accuracy from the aggregated and disaggregated approaches.

In the …rst column, we show the horizon of prediction, in the second and third columns, we present the

RMSE of the aggregated and disaggregated approaches ( RMSEA and RM SED , respectively), in the

fourth column we measure the percentage of change of the RMSE of the aggregated approach over the
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disaggregated one and in the …fth and sixth columns we present the Diebold and Mariano test statistic

and its p-value.

Table 8 shows that for the medium and long run we can obtain improvements up to 23% in the

RMSE with the disaggregated approach. Only for the …rst three horizons of prediction, the univariate

aggregated model slightly outperforms the disaggregated approach. This is in agreement with the fact

that the diverse trending behavior is better captured modelling the di¤erent components separately.

So, the major gains in forecasting are expected to happen in the medium and long run terms. A

closer look to the data reveals that several extreme observations in the estimation sample in the CPI

components cancel out when aggregating to form the non-energy CPI. Including intervention analysis

in the components improves short term forecasts, while it keeps the important di¤erence in the medium

and long term forecasts. Regarding the Diebold and Mariano test, we can …nd statistically signi…cant

di¤erences between both approaches in favor of the disaggregated methodology from the …fth step ahead

forecasts onwards, while for the shorter run forecasts the di¤erences between the two approaches are

not statistically signi…cant.

6 Conclusions

Four components of monthly US CPI have been analyzed: energy, food, rest of commodities, and rest of

services. Several unit root tests performed indicated that the …rst three components are better described

as I(2) processes, while the energy component exhibits a lower order of integration and was discarded

from a joint multivariate analysis.

A cointegration analysis has been performed over the remaining three components (food, rest of

non-energy commodities and rest of services) in order to identify the number and nature of sources

of nonstationarity in the US CPI. We have obtained that there are at least one I(2) and one I(1)

nonstationary trends driving the consumer price indexes.

According with the above mentioned results the data support the existence of two cointegrating
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relations: an I(0) multicointegrating relation in which the ratio between food and services consumer

price indexes is explained by a linear combination of the in‡ation rates of all the components jointly

analyzed (food, commodities and services); and an I(1) cointegrating relation that shows that the rate

of in‡ation in commodities is about 60% of the mean rate of in‡ation of food and services.

The number and nature of the sources of nonstationarity has been corroborated through a common

factors analysis that con…rmed the existence of an I(2) common trend, which could be interpreted as a

weighted mean of the three variables jointly analyzed, and an I(1) nonstationary factor.

All of this calls for a disaggregated analysis of the US non-energy CPI in order to be able to capture

the di¤erent movements of prices in markets of di¤erent characteristics. This has been illustrated to

be useful in forecasting the medium and long run terms. Gains of a disaggregated approach based on

univariate time series models for the components, over an aggregated one become statistically signi…cant

from …ve months ahead forecasts and reach 23% for the twelve months ahead root mean squared error

forecasts. Short term forecasts are improved by the disaggregated analysis when including speci…c

intervention analysis for the components. The intervention analysis was not needed in the global US

non-energy CPI due to the cancellation of extreme observations in the components. The conclusions in

any case are the same with or without intervention analysis. The multivariate techniques were useful to

identify the di¤erent sources of nonstationarity present in the data and improve the forecast accuracy

of the aggregate.

Questions for further research are the following. First, the forecasts accuracy could be further

improved by including speci…c leading indicators for each one of the CPI components. Second, it could

be studied if the I(2) common trend is related to monetary policy and the I(1) to technology and changes

in consumer habits.
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7 Appendix: Unit root tests

In the context of testing unit roots we shall use the terminology proposed by Espasa and Peña (1995)

I(d;m) for integrated processed, where d means the number of positive unit roots in the process and m

equals the maximum possible number of deterministic elements in the mean of the di¤erenced process.

Thus, m = 1 indicates the presence of a constant, m = 2 the presence of a linear trend (constant plus

slope), m = 3 the presence of a quadratic trend, etc. With this notation h = d + m ¡ 1 gives the order

of the trend polynomial in the forecasting function. This trend will be deterministic if d = 0 and will

have parameters depending on the initial conditions if d 6= 0: All parameters will depend on the initial

conditions if m = 0:

For the data we are analyzing we will have as maintained hypothesis that the maximum value of

h is 1, which excludes the presence of quadratic terms (stochastic or deterministic) in the trend. The

maintained hypothesis can be ful…lled without unit roots, I(0,2), with one unit root I(1,1) or with two

unit roots I(2,0). We will …rst test the presence of one unit root and if this hypothesis is not rejected

we will test the presence of two unit roots.

The models used for the test of one unit root are collected in table A.1 and they di¤er on the inclusion

or not of the deterministic seasonality and deterministic intervention factors. The null, I(1,1), and the

possible alternatives I(0,2), I(0,1) and I(1,2), are re‡ected in table A.2. The alternative I(0,1) would

imply that the trend, just a constant, in the data is much simpler that the maximum allowed in the

maintained hypothesis, but the alternative I(1,2) would imply that the maintained hypothesis is wrong,

that the trend has quadratic terms and that the models used for these tests were not appropriate. They

should allow for a quadratic (deterministic) trend in order to capture quadratic evolution in the long

run without forcing the presence of a unit root.

The test of two unit roots, once it has not been rejected the presence of one, can be done with models
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in table A.3 and the same maintained hypothesis, considering di¤erent deterministic formulations. The

null, I(2,0), and possible alternatives in these models, I(1,1), I(1,0) and I(2,1) are represented in table

A.4. The …rst alternative implies the rejection of a second unit root within the context of h = 1; but the

rejection of the third alternative could imply that the maintained hypothesis is wrong and the models

used were inappropriate. They should include a linear deterministic trend. The alternative I(1,0) implies

a simple trend but within the maintained hypothesis. From the three possibilities of the alternative, only

the …rst one would …t our data. The joint hypothesis is considered in order to avoid the identi…cation

problems suggested by Franses (2001), Dickey and Fuller (1981) and Harris (1995) among others. In

order to rule out the alternatives we are not interested in, we also compute Dickey- Fuller -statistics.

Tables A.5 and A.7 show the results for unit root testing. In all tables, ¿ is the augmented Dickey-

Fuller (ADF) statistic for an unit root, F1 and F2 are the statistics for the joint null hypothesis described

in tables A.2 and A.4 respectively, SCR is the sum of squared residuals and Q(24) is the Ljung-Box

statistic at lag 24. The models where described in tables A.1 and A.3, the autoregressive order is 12 for

the di¤erenced process, but the results are robust to the lag length. The critical values can be found

in Dickey and Fuller (1979), an * on the right side of the statistics indicates rejection at the usual 5%

signi…cance level, and ** indicates rejection at 1% signi…cance level.
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9 Tables

Table 1: Misspeci…cation residual tests for a VAR(3) model

Multivariate tests Statistic

Akaike -28.52

Portmanteau Lag

4 12.25

5 22.98

6 30.90

7 52.54

12 113.65

24 232.42

LM Lag

1 7.73

12 14.89

Univariate tests eLU SC eLUSF eLUSS

Q(12) 12.213 6.739 20.582

Q(24) 24.471 16.227 48.469

ARCH 1.256 0.0002 1.095

Jarque-Bera 8.62 72.99 5.12

Table 2: Two step I(2) Johansen’s cointegration analysis

n-r r Q(s1jr) Q(r) 5%

3 0 172.04 81.56 3.12 109.01 34.80

2 1 84.63 7.05 18.06 19.99

1 2 24.76 2.86 9.13

5% 34.80 19.99 9.13

s2 =n-r-s1 3 2 1
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Table 3: Paruolo’s joint statistical test for s1 and r:

n ¡ r r Q(s1; r) Q(r)

3 0 281.05 190.57 112.13 109.01

2 1 102.7 25.11 18.06

1 2 27.63 2.86

s2 = n ¡ r ¡ s1 3 2 1

Table 4: Eigenvalues of the companion matrix.

Real Complex Modulus

0.1463 0.4256 0.4501

0.1463 -0.4256 0.4501

0.02915 0.2853 0.2867

0.02915 -0.2853 0.2867

0.1439 0.06221 0.1568

0.1439 -0.06221 0.1568

0.9974 0 0.9974

0.9752 0.01818 0.9753

0.9752 -0.01818 0.9753

Table 5 First eigenvector of the generalized covariance matrices, for lags 0 through 5.

Lag 0 1 2 3 4 5

LUSC 0.40 0.40 0.40 0.40 0.40 0.40

LUSF 0.55 0.55 0.55 0.55 0.55 0.55

LUSS 0.73 0.73 0.73 0.73 0.73 0.73

Table 6 Second eigenvector of the generalized covariance matrices, for lags 0 through 5.

Lag 0 1 2 3 4 5

LUSC -0.90 -0.90 -0.91 -0.92 -0.92 -0.91

LUSF 0.39 0.37 0.33 0.26 0.23 0.32

LUSS 0.20 0.22 0.25 0.31 0.33 0.26
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Table 7: Unit root tests on factors

H0 : I(1) H0 : I(2)

Factor 1 -1.36 -1.51

Factor 2 -0.87 -2.60*

Note: An asterisk on the table indicates that the null hypothesis is rejected at the usual 5% level of signi…cance.

Table 8: Forecasting accuracy with aggregated and disaggregated approaches.

Horizon of Prediction RMSEA RM SED

³
RMSEA

RMSED
¡ 1

´
£ 100 DM p ¡ val

1 0.137 0.148 -7.05 -0.98 0.33

2 0.239 0.253 -5.45 -1.56 0.13

3 0.307 0.318 -3.71 -1.29 0.21

4 0.335 0.333 0.48 0.05 0.96

5 0.334 0.311 7.43 2.21 0.03

6 0.350 0.305 14.70 1.54 0.13

7 0.400 0.342 16.81 3.34 0.002

8 0.468 0.413 13.53 2.02 0.054

9 0.532 0.479 11.03 2.33 0.03

10 0.545 0.484 12.78 1.90 0.07

11 0.517 0.446 15.87 1.76 0.09

12 0.482 0.392 23.00 1.59 0.13

9.1 Tables for the Appendix

Table A.1: Models for the null hypothesis of a unit root. H0 : ° = 0;Ã = 0. H1 : no H0:

[1.1] 4yt = c + °t + Ãyt¡1 +
Pp

i=1 Ãi 4 yt¡i

[1.2] 4yt = c + °t + Ãyt¡1 +
Pp

i=1 Ãi 4 yt¡i +
P11

i=1 ciDit

[1.3] 4yt = c + °t + Ãyt¡1 +
Pp

i=1 Ãi 4 yt¡i +
P11

i=1 ciDit +
Ps

i=1 biIit

Notes: ¢ = 1 ¡L is the di¤erence operator, where L is the lag operator such that Lyt = yt¡1, c is a

constant, t is a deterministic trend, Dit ; i = 1; :::11 are 11 centered seasonal dummies, and Iit represent

the intervention dummies required in each case.
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Table A.2: Characteristics of the processes under the null and the three possible alternatives.

H0 ° = 0, Ã = 0 I(1) with constant (c 6= 0) or I(1,1)

H1 ° 6= 0, Ã 6= 0 ° = 0; Ã 6= 0 ° 6= 0, Ã = 0

trend stationary process pure stationary process quadratic linear trend plus an I(1) process

I(0,2) I(0,1) I(1,2)

Table A.3: Models for the null of I(2).

[2.1] 42yt = c + Ã 4 yt¡1 +
Pp

i=1 Ãi 42 yt¡i

[2.2] 42yt = c + Ã 4 yt¡1 +
Pp

i=1 Ãi 42 yt¡i +
P11

i=1 ciDit

[2.3] 42yt = c + Ã 4 yt¡1 +
Pp

i=1 Ãi 42 yt¡i +
P11

i=1 ciDit +
Ps

i=1 biIit

Notes: ¢ = 1 ¡L is the di¤erence operator, where L is the lag operator such that Lyt = yt¡1, c is a

constant, t is a deterministic trend, Dit ; i = 1; :::11 are 11 centered seasonal dummies, and Iit represent

the intervention dummies required in each case.

Table A.4: Characteristics of the processes under the null and the three possible alternatives.

H0 c = 0, Ã = 0 I(2) without constant or I(2,0)

H1 c 6= 0, Ã 6= 0 c = 0; Ã 6= 0 c 6= 0, Ã = 0

I(1) with constant process I(1) process I(2) with constant process

I(1,1) I(1,0) I(2,1)
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Table A.5: I(1) tests for the logarithm of US CPI components

Components

Model Stats LUSC LUSC LUSS

¿ 0.12 -1.92 -0.20

[1.1] F1 1.32 2.06 2.88

SCR 0.000987 0.001820 0.000266

Q(24) 20.08 23.04 24.21

¿ -0.37 -1.59 0.15

[1.2] F1 0.83 1.62 2.76

SCR 0.000705 0.001386 0.000195

Q(24) 15.75 10.31 16.90

¿ -0.28 -1.90 0.30

[1.3] F1 0.68 2.23 6.21

SCR 0.000606 0.001183 0.000146

Q(24) 15.98 18.76 20.41

Table A.6: I(2) tests for the logarithm of US CPI components

Components

Model Stats LUSC LUSF LUSS

¿ -1.75 -2.47 -0.63

[2.1] F2 1.96 3.10 0.70

SCR 0.0010 0.001808 0.000274

Q(24) 19.16 19.38 20.22

¿ -1.88 -2.46 -0.57

[2.2] F2 1.95 3.09 0.63

SCR 0.000702 0.001366 0.000195

Q(24) 14.21 10.44 9.18

¿ -1.81 -2.37 -0.46

[2.3] F2 1.81 2.88 0.55

SCR 0.000664 0.001300 0.000171

Q(24) 14.65 12.82 13.66
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Table A.7: Unit root tests for the logarithm of US Energy CPI.

Models for I(1)

Stats [1.1],° = 0 [1.2],° = 0 [1.3],° = 0

¿ -1.88 -1.43 -1.14

F1 1.78 1.02 0.68

SCR 0.035782 0.025017 0.0154

Q(24) 11.07 16.86 32.33

Models for I(2)

Stats [2.1],c = 0 [2.2],c = 0 [2.3],c = 0

¿ -3.72** -3.77** -3.49**

F2 13.87** 14.20** 12.19**

SCR 0.035843 0.024952 0.01953

Q(24) 8.84 13.98 21.06
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10 Captions for …gures

Figure 1: Natural logarithms of energy (LUSE), food (LUSF), rest of non-energy commodities (LUSC)

and rest of services (LUSS).

Figure 2: Graphs of the two nonstationary common factors of the food, rest of non-energy commodities

and rest of services.

28


