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1 Introduction

The GARCH model was originally proposed by Engle (1982) and Bollerslev

(1986) to represent the dynamic evolution of conditional variances. One of

the most useful applications of GARCH models is to represent high frequency

�nancial returns. The GARCH model has been extended in many directions.

Two of the most popular generalizations deal with the asymmetric response

of the conditional variance, �2t ; to positive and negative returns and with the

persistence often observed in the autocorrelations of squared returns.

The �rst asymmetric model proposed in the �nancial econometrics liter-

ature was the Exponential GARCH (EGARCH) model of Nelson (1991). To

simplify the exposition, we will focus on the simplest EGARCH(1,1) model

and their equivalents. In the EGARCH(1,1) model, the series of returns is

given by "t = zt�t where zt is an independent white noise process with unit

variance and symmetric distribution and the conditional variance of returns

is given by:

log(�2t ) = ! + (1� �L)�1(1 +  L)g(zt�1) (1)

where g(zt) = �zt +  [jztj � E(jztj)] and L is the lag operator such that

L
j
xt = xt�j. The parameter � measures the asymmetric response of volatility.

Later, Henstchel (1995) proposed the Family GARCH (FGARCH) model

that nests many previous heteroscedastic models. The conditional variance

is given by:

�
�
t � 1

�
= !

0 + ��
�
t�1
f
�(zt�1) + Æ

�
�
t�1

� 1

�
(2)

f(zt) = jzt � bj � c(zt � b)

The asymmetry is introduced by shifting and rotating the absolute value

of the shock through the parameters b and c respectively. The parameter �

represents the Box and Cox (1964) transformation for the conditional vari-

ance so that the limit when � goes to zero is the logarithmic transformation.

The parameter � serves to transform the function f(�). Henstchel (1995)

shows that model (2) encompasses, among many others, the GARCH model,

the EGARCH model, the threshold GARCH (TGARCH) model of Zakoian

(1994) and the Nonlinear GARCH (NGARCH) model of Higgins and Bera

(1992).
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With respect to the persistence of volatility, Baillie et al. (1996) propose

the Fractionally Integrated GARCH (FIGARCH) model where squared re-

turns have long memory. The conditional variance of the FIGARCH(1,d,1)

model is given by

�
2

t = !
� +

h
1� (1� �L)

�1
(1� �L) (1� L)

d
i
"
2

t (3)

where d is the long memory parameter such that 0� d < 1: The FIGARCH(1,d,1)

model in (3) has been derived by introducing a fractional root in the autore-

gressive polynomial of the ARMA representation of squared observations of

a GARCH model. However, in the appendix we show how it is possible

to obtain the following alternative representation of the FIGARCH(1,d,1)

model:

�
2

t = !
00

+ �(1� �L)�1 (1� L)
�d

(1� ÆL)�2t�1
(z2t�1

� 1) (4)

At the moment, the only long memory asymmetric model of the GARCH

family is the Fractionally Integrated EGARCH (FIEGARCH) model pro-

posed by Bollerslev and Mikkelsen (1996). The conditional variance of the

FIEGARCH(1,d,1) model is given by

log(�2t ) = ! + (1� �L)�1(1� L)�d(1 +  L)g(zt�1) (5)

Hwang (2001) proposes a new asymmetric long memory model, the asym-

metric FIFGARCH model, and claims that it nests the FIGARCH and FIE-

GARCH models. In section 2, we will show that this model is badly speci�ed

and does not encompass the previously mentioned models. We propose an

alternative speci�cation, based on the asymmetric FIFGARCH model, that

seems to full�l the objectives stated by Hwang (2001).

2 The asymmetric long memory GARCHmodel.

Hwang (2001) proposes the asymmetric FIFGARCH(1,d,1) model to repre-

sent both the long memory and asymmetry properties of conditional standard

deviations. The speci�cation of the conditional variance is given by:

�
�
t = �

� +
h
1� (1� ÆL)�1(1� �L)(1� L)d

i
f
�(zt)�

�
t (6)

Looking at equation (6), it seems that Hwang (2001) has tried to gen-

eralize the FGARCH model in equation (2) to allow for long memory, by
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introducing the fractional root, (1 � L)d, in the volatility equation. Alter-

natively, the FIFGARCH(1,d,1) model could be seen as a generalization of

the FIGARCH model in (3) with the conditional variance depending on a

transformation similar to the one proposed by Henstchel (1995), instead of

depending on squared returns, so that the model could deal with asymme-

try. In any case, Hwang (2001) does not refer to any of the previous related

papers in this area.

Notice that model (6) is not able to represent adequately the simultaneous

presence of long memory and asymmetry in the conditional variance. First of

all, the long memory property is somehow de�ned in a strange way because

the factor (1 � L)d does not a�ect the corresponding transformation of the

conditional standard deviation, but to the function f(�). The way that the

long memory is introduced in equation (6) seems to be similar to the way that

the GARCH model is generalized to the FIGARCH model in (3). However,

this latter generalization is based on the ARMA representation of squared

returns implied by the GARCH model; see, Baillie et al. (1996) and the

appendix.

Secondly, Hwang (2001) is not considering a Box-Cox transformation of

the conditional standard deviation and, as a consequence, model (6) is badly

misspeci�ed when � = 0. In this case, the model becomes:

1 = �
� +

h
1� (1� ÆL)�1(1� �L)(1� L)d

i
f
�(zt) (7)

and the conditional standard deviation has disappeared. Therefore, the FIE-

GARCH model cannot be obtained from model (6) when � = 0 as Hwang

(2001) claims. But even if the asymmetric FIFGARCH(1,d,1) model were

de�ned in such a way that, when � = 0, the logarithmic transformation would

be obtained and considering � = 1 and b = 0, the model would become:

log(�2t ) = �
� +

h
1� (1� ÆL)�1(1� �L)(1� L)d

i
(jztj � czt) log(�

2

t ) (8)

which is not a FIEGARCH model.

Finally, notice that the FIGARCH model in (3) can be obtained as a

particular case of model (6) when � = � = 2 and c = b = 0. However, this

model is not able to represent asymmetries in the response of conditional

volatilities to negative and positive returns. On the other hand, if d = 0 in

equation (6) and the Box-Cox transformation is applied to �t in the left hand

side of such equation, then the short memory Hentchel's FGARCH model
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will be obtain. However, it is not obvious that the asymmetric FIFGARCH

model is able to encompass adequately models with conditional variances

that simultaneously are asymmetric and have long memory.

Alternatively, we propose the following model based on a direct gen-

eralization of the FGARCH model introducing a fractional unit root and

subtracting the unconditional mean of f �(zt) from the function f �(zt):

�
�
t � 1

�
= !

0+�
h
(1� ÆL)�1(1� L)�d(1� �L)

i
�
�
t�1

ff
�(zt�1)��E(f

�(zt�1))g

(9)

If � = 0; � = 1, b = 0 and � = 1, we obtain the FIEGARCH model.

Also, if � = � = 2, b = c = 0 and � = 1, the FIGARCH model in (4) is

obtained. Finally, if d = � = � = 0, the FGARCH model in (2) would be

obtained. Remember that, as previously mentioned, the FGARCH model

nests the short memory GARCH and EGARCH models.

However, it will be necessary to analyze in detail the statistical properties

of this model as well as the properties of the estimators of the parameters

before the model could be applied to the analysis of real time series.

3 Conclusions

The asymmetric FIFGARCH model has been proposed by Hwang (2001) to

represent adequately the asymmetry and persistence often observed in the

conditional variances of high frequency series of returns. It seems that the

FIFGARCH model is trying to generalize the model proposed by Henstchel

(1995) in the same way the GARCH model has been generalized to the FI-

GARCH model. However, contrary to the claims made by Hwang (2001), we

have shown that the asymmetric FIFGARCH is not able to encompass pre-

vious models proposed in the literature with the exception of the FIGARCH

model. We think that the new asymmetric FIFGARCH should be deeply

revised before it can be safely applied to the analysis of real �nancial time

series. We propose an alternative speci�cation that encompasses the most

popular long memory and asymmetric models for conditional variances.

4 Appendix

The GARCH(2,1) model is given by:
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"t = zt�t (10)

�
2

t = ! + �1"
2

t�1
+ �2"

2

t�2
+ ��

2

t�1

Alternatively, model (10) can be written as an ARMA(2,1) for squared

observations as follows:

"
2

t = ! + �1"
2

t�1
+ �2"

2

t�2
+ �("2t�1

� �t�1) + �t (11)

where �t = "
2

t � �
2

t : Reorganizing terms in (11), it is possible to obtain the

following expression:

[1� (�1 + �)L� �2L
2]"2t = !

� + (1� �L)�t (12)

If there is a unit root, the autoregressive polynomial in (12) can be factor-

ized as [1� (�1+�)L��2L
2] = (1��L)(1�L) and the following expression

is obtained for "2t :

(1� �L)(1� L)"2t = !
� + (1� �L)�t (13)

However, if there is a fractional root instead of a unit root, the following

model for squared observations is obtained

(1� �L)(1� L)d"2t = !
� + (1� �L)�t (14)

Finally, substituting �t = "
2

t � �
2

t in (14), the FIGARCH(1,d,1) model

in (3) is directly obtained. However, it is possible to obtain an alternative

expression of the FIGARCH(1,d,1) model by considering directly the expres-

sion of the variance in (10):

�
2

t = ! + (�1 + �2L)"
2

t�1
+ ��

2

t�1
+ (�1 + �2L)�

2

t�1
� (�1 + �2L)�

2

t�1
=(15)

= ! + (�1 + �2L)�
2

t�1
(z2t�1

� 1) + (� + �1 + �2L)�
2

t�1
(16)

Reorganizing terms in (15), the following expression is obtained:

??�
2

t = !
� + [1� (� + �1)L� �2L

2]�1(�1 + �2L)�
2

t�1
(z2t�1

� 1) (17)
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If similarly to what we have done in expression (14), we factorize the au-

toregressive polynomial allowing for a fractional root, then the FIGARCH(1,d,1)

model in (4) is obtained:

�
2

t = !
� + �(1� �L)�1(1� L)�d(1� ÆL)�2t�1

(z2t�1
� 1) (18)

where � = �1 and Æ = �
�2
�1
:
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