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1 Introduction

Firms’ investment is an economic decision that plays a crucial role in both the cycli-

cal and long run performance of any economy. As one of the main components of

the aggregate demand, it has a direct impact on the business cycle. Furthermore,

capital acumulation, as well as technology adoption, constitute the leading sources

of economic growth in the long run. In the real world governments are interested on

moderating both the impact and duration of the recessions and, at the same time,

on fostering the economic growth of the countries. Implementation of public policies

aimed at stimulating …rms’ investment appears as a primary instrument to enhance

economic growth. Thus, the importance of investment to macroeconomics is obvi-

ous. A previous step to understand macro investment is the characterization of the

investment process taking place at the …rm level. Our goal in this paper is to get a

better understanding of microeconomic investment decisions and the nature of capital

adjustment costs …rms face when they decide to undertake an investment project.

Although there exists a huge literature concerning investment at macro level, it

has been in the last years when invesment literature has shown an increasing concern

about the modelling of microeconomic investment decisions. A strong evolution has

taken place from the initial frictionless neoclassical model to the actual nonconvex

adjustment cost models. The Jorgenson’s neoclassical model (1963), characterized

by the absence of capital adjustment costs, yielded a static decision rule for capital

stock. Empirical evidence has shown the failure of this model to explain investment

behaviour, because of the observation that capital adjustment takes time to com-

plete. Given this limitation, it was necessary to introduce dynamics in investment

models. Generalizations of the structural approach of Jorgenson’s model appeared

in the seventies. Treadway (1969), Lucas (1971) and Abel (1980) proposed models

introducing explicitly capital adjustment costs. Initially, as a matter of analytical

convenience, these costs were assumed to be strictly convex and di¤erentiable. This

structure yielded a closed-form expression for the investment decision, which gener-

ated a smooth adjustment of capital consistent with the observed aggregated data.

But descriptive evidence on the time series behaviour of …rm-level investment data
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has questionned the validity of such asumption, because this convex structure can not

match the periods of inaction and lumpy investment observed at micro level. There is

an increasing literature highligthing the importance of these phenomena. Doms and

Dunne (1994), using data of US manufacturing …rms showed that more than half of

them experienced a year in which the capital stock increases more than 35%. Nilsen

and Schiantarelli (1998), using information of Norwegian plants, …nd that around

30% of them have zero investment in an average year. Barnett and Sakellaris (1995),

Caballero, Engel and Haltiwanger (1995), and Abel and Eberly (1996) obtain similar

results for US …rm-level data.

The evidence about infrequent and lumpy adjustment have given rise to a new

generation of investment models which take into account irreversibilities and noncon-

vex adjustment costs. Among them, we can cite Bertola and Caballero (1994), Abel

and Eberly (1996), and Caballero and Leahy (1996), Cooper, Haltiwanger and Power

(1999) and Cooper and Haltiwanger (2000). In some of these papers it is stressed

the convenience of consider convex and nonconvex costs rather than either convex or

nonconvex costs to best …t the data.

In this paper we propose and estimate a dynamic structural model of …xed capital

investment at the …rm level. Our dataset consists on an unbalanced panel of Span-

ish manufacturing …rms. The evidence of infrequent and lumpy investment is also

present in these data. Based on this empirical facts we consider a dynamic discrete

choice model of irreversible investment with a general speci…cation of adjustment

costs including convex and nonconvex components. We use a two stage estimation

procedure. In a …rst stage, we obtain GMM estimates of technological parameters. In

the second stage, we obtain partial maximum likelihood estimates for the adjustment

cost parameters. The estimation strategy builds on the representation of conditional

value functions as a computable function of conditional choice probabilities. It is

in the line of structural estimation techniques which avoid the solution of the dy-

namic programming problem. More speci…cally, it is based on a new representation

of conditional value function proposed by Hotz and Miller (1993)

The rest of the paper is organized as follows. In Section 2 we describe the dataset

used in this study. Section 3 formulates the dynamic structural model of investment.
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In Section 4 we describe the estimation method we implement. Section 5 reports the

estimation results and Section 6 concludes.

2 The data. Preliminary analysis

The dataset we use in this study has been taken from the Encuesta de Estrategias

Empresariales (ESEE) conducted by the Spanish Ministry of Industry and Energy.

It contains annual information of the balance sheet and other economic variables for

a large number of Spanish manufacturing …rms. Our sample is an unbalanced panel

of 1592 …rms between 1990 and 1997. We concentrate on capital stock and gross

expenditure on capital goods. The investment rate for period t has been constructed

as the ratio between gross expenditure in that period and the capital stock at the

beginning of the period.

There exists a huge empirical literature highlighting the importance of inaction

and lumpiness in microeconomic investment datasets. Doms and Dunne (1998) use

data on american …rms from 1972 to 1989. They …nd that more than half of them

increase their capital stock over than 35% in some of the years considered. Nielsen

and Schiantarelli (1998), using information on Norwegian plants, …nd that about 30%

of them present zero investment in an average year. Similar …ndings are reported for

di¤erent countries in Barnett and Sakellaris (1995), Caballero, Engel and Haltiwanger

(1995), Abel and Eberly (1996) or Eberly (1997).

These empirical features are also present in our dataset. Figure 1 depicts a his-

togram of annual …rm-level gross investment rates. The distribution is strongly

skewed to the right. Around 30% of the observations have investment rates that

are zero or close to zero (less than 0.033 gross investment rate), which re‡ects the

fact that many …rm-year observations involve little or no investment. The long right

tail ilustrates the fact that a fraction of plants experiment a large investment episode

in any given year. The last bar accounts for the observations having an investment
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rate greater than 0.98.
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Figure 1

In the following table we can see the evidence of inaction and lumpiness by year.

The …rst column shows the percentage of observations that experiment zero invest-

ment in a given year, while the second one shows the percentage that experiment an

investment rate greater than 20%, where i stands for investment rate.

Inaction Lumpiness
Year (% obs. with i = 0) (% obs. with i > 0:2)
1991 17.46 30.81
1992 18.61 26.59
1993 23.46 18.52
1994 20.28 21.54
1995 18.39 26.65
1996 16.52 23.75
1997 16.24 26.19

Table 1: Evidence of inaction and lumpiness.

Even in the year of lowest percentage of observations with zero investment, this

percentage is quite high,above 16%. On the other hand, investment rates higher than

20% arise in more than 20% of the observations in almost every year, reaching 30% in

one of them. We also report this evidence of infrequent and lumpy capital adjustment
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distinguishing three categories of …rms: small, medium and large …rms. We follow the

classi…cation criterion established by the European Commission. According to this

criterion, small …rms are those with no more than 50 employees and no more than

7 million euro of annual turnover. Medium …rms are those with more than 50 and

no more than 250 employees and an annual turnover greater than 7 million euro and

lesser than 40 million euro. Large …rms are those with more than 250 employees and

an anual turnover greater than 40 million euro. The following table shows in the …rst

column the distribution of …rms in the sample, the percentage of observations with

no investment (inaction) in the second column and the percentage of observations

with an investment rate greater than 20% of the installed capital (lumpiness) in the

third colum.

Inaction Lumpiness
Type of …rm % obs. (% obs. with i = 0) (% obs. with i > 0:2)
Small …rms 57.22 29.24 24.52

Medium …rms 25.67 4.51 23.78
Large …rms 17.12 0.93 26.65

Total 100 18.05 24.70

Table 2: Evidence of inaction and lumpiness by categories of …rms

As we can see, more than half of the …rms in our dataset are small …rms. The

percentage of observations with no investment if very di¤erent for small, medium

and large …rms. While there are around 30% of observations accounting for zero

investment in the group of small …rms, this percentage is only 4% for medium …rms

and almost insigni…cant for large …rms. However, in the three categories considered,

the percentage of observations with investment rates greater than 20% of installed

capital is quite similar, around 23%.

Figure 2 mimics Figure 2a in Doms and Dunne (1998). For each …rm in our

dataset we have ranked its annual investment rate in descending order. The …gure

shows the mean and the median investment rate in each rank.
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As we can see, the …rst bar, corresponding to the highest mean investment rate,

exceeds 35%, while for the second rank is below 20%, and for subsequent ranks is

even less than 10%. That is, the means drop o¤ signi…cantly after ranks 1 and 2,

meaning that many …rms experiment one or two periods of intense investment, while

the rest of the periods are characterized by moderate investment. The median is

always below the mean, re‡ecting the skewness to the right of the investment rate

distribution.

Figure 3 gives an insight about the importance of large investment episodes on

the time series ‡uctuations of investment.
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The solid line re‡ects the percentage of observations with an investment rate

greater than 20%. The dotted line represents the percentage of investment accounted

by observations having these large investment episodes. Observations with large

investment episodes constitute around 25% of the total, but account for approximately

50% of gross investment. That is, around half of the total gross investment is related

with lumpiness and half of it with smooth adjustments. Similar evidence has been

reported in Cooper, Haltiwanger and Plant (1999) for a large set of US manufacturing

…rms.

The empirical evidence reported in this Section stresses two important features

present in our dataset: high frequency of inaction and lumpiness. These empirical

…ndings clearly support the convenience of an investment model which accounts for

irreversibilities and nonconvex capital adjustment costs.

3 A model of …rm equipment investment

3.1 Framework and basic assumptions

Consider a risk neutral …rm that produces an homogeneous good using as inputs labor

and capital equipment which has some …rm-speci…c characteristics. At each period

the …rm decides hirings and dismissals of workers and purchases of new capital in

order to maximize the expected discounted stream of current and future pro…ts over

an in…nite time horizon. The …rm operates in competitive product and input markets,

and its pro…t at period t, in output units is given by:

¦t = Yt(Kt; Lt; at)¡ wtLt ¡ ptIt ¡AC(Kt; It; pt) (1)

where Yt is real output, Kt is the capital stock installed at the beginning of period t;

Lt represents labor in physical units, It represents new capital purchases in physical

units and wt and pt are input prices relative to product price. We assume that labor

can be adjusted costlessly, so the decision on employment is static. However, when

the …rm decides to adjust its capital stock it faces some adjustment costs represented

by the function AC(Kt; It; pt):
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Output depends on labor and installed capital at the beginning of the period and

a productivity shock at, according to the Cobb-Douglas production function:

Yt = atK
®K
t L®Lt (2)

where ®K ; ®L 2 (0; 1]. We assume there is one period time-to-build, i.e, the new

equipment is productive one period after its acquisition. The productivity shock is ex-

ogenous and follows a …rst order Markov process with transition density Áa(at+1j at):
We assume that adjustment costs faced by the …rm when it decides to invest can

be variable or …xed costs:

AC(Kt; It; pt) = V C(Kt; It; pt) + FC(Kt) (3)

Variable costs V C(¢) include costs associated with the installation of the capital

stock. We assume a convex structure for these costs, similar to the speci…cation of

adjustment costs in the traditional investment models. More speci…cally, we use the

following quadratic function:

V Ct = V C(Kt; it; pt) =
µQ
2

µ
It
Kt

¶2

ptKt (4)

where µQ is a constant parameter.

Fixed adjustment costs FC(¢) are internal costs related to the reorganization of the

productive process and retraining of employees in the handling of the new equipment.

We assume that these costs are proportional to the installed capital stock:

FC = FC(Kt) = 1(It > 0) µFKt (5)

where 1(:) is the indicator function and µF is a constant parameter.

Since the …rm operates in competitive markets, input prices are exogenous to

the …rm. We assume that capital price and wages follow a Markov process with

transitional densities Áp(pt+1jpt) and Áw(wt+1jwt); respectively. Capital retirement

and physical depreciation are exogenously given to the …rm. The capital stock follows

a transition rule given by

Kt+1 = (1¡ ±t)Kt + It (6)

8



where ±t 2 (0; 1) is the depreciation rate, which includes not only the economic

depreciation of the capital stock but also the capital retirements due to obsolescense.

At the beginning of each period, the …rm knows its level of capital stock and labor,

the input prices in the industry where it operates and the value of productivity and

cost shocks. The one-period pro…t function can then be written as

¦t = Yt(Kt; L
¤
t ; at)¡wtL¤t ¡ ptIt ¡AC(Kt; It; pt); (7)

where Lt have been optimally chosen. The optimal condition for employment, under

the assumption of a Cobb-Douglas production function with constant returns to scale,

is given by

L¤t =

µ
at(1¡ ®K)

wt

¶ 1
®K

Kt (8)

Thus, the pro…t function in terms of capital stock can be written as:1

¦t = RtKt ¡ ptIt ¡AC(Kt; It; pt) (9)

where Rt is a pro…tability shock in terms of the productivity shock, wages and tech-

nological parameters according to the following expression:

Rt = R(at; wt; ®K) =

µ
at(1¡ ®K)
w1¡®Kt

¶1=®K ®K
1¡ ®K

(10)

A well-known evidence that arises in any empirical study of …rms’ behavior is the

large amount of heterogeneity in …rms size, productivity and behaviour in general,

even after controlling for location, industry or product characteristics. It will be

convenient to represent a …rm’s decision using investment rate it ´ It=Kt as the

decision variable instead of investment in physical units. Using it as argument, the

transition rule for the capital stock becomes Kt+1 = Kt [(1¡ ±t) + it], and the one-

period pro…t function, where employment has been optimally chosen, can be written

as:

¦t = RtKt ¡ ptKt it ¡ AC(it; Kt; pt) (11)

1Note that under Cobb-Douglas production with constant returns to scale, and our speci…cation
of capital adjustment costs, the one-period pro…t function is linear in the capital stock.
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where

AC(it; Kt; pt) =
µQ
2
ptKti

2
t + 1(it > 0) µFKt (12)

We assume that investment decision is completely irreversible, i.e, the …rm decides

purchases of capital stock and once a new equipment has been acquired, it cannot be

sold. The …rm chooses either not to invest or to face a strictly positive investment.

The decision variable in this problem is it ¸ 0. Let st be the vector of state variables,

which can be observed by the …rm and the econometrician, or only by the …rm. The

…rm’s problem can be written as:

max
fit¸0g

1X

t=0

¯tE [¦(it; st)] (13)

where ¯ 2 (0; 1) is the discount factor, related to the interest rate of the economy.

The Bellman’s equation for this problem is given by:

V (st) =maxfit¸0g
¦(it; st) + ¯EV (st+1j st; it) (14)

where EV (st+1j st; it) is the expected conditional value function

EV (st+1j st; it) =
Z
V (st+1)Á(dst+1j st; it) (15)

and Á(dst+1j st; it) is the transition probability of the state variables.

3.2 Optimal decision rule

As it is explained above, …rms choose between not to invest or to undertake an

investment project. If they decide not to invest, it can be due to two di¤erent reasons:

irreversibility and …xed adjustment costs.

When there are no …xed costs associated with capital adjustment, the value func-

tion is continuous and concave. However, the introduction of …xed adjustment costs

makes the value function nonconcave. Aguirregabiria (1999) and Slade (1998) have

characterized the optimal decision rule for these type of problems with nonconcave

value functions.
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The optimal decision rule for this problem is given by:

i(st; µ) =

½
i¤(st; µ) if i¤(st; µ) > 0 and °(st; µ) > 0
0 otherwise

(16)

where i¤(st; µ) is the optimal interior solution characterized by

~¼i(s; i
¤(s; µ); µ) + ¯EVi(s; i

¤(s; µ); µ) = 0; (17)

with ~¼i ´ @~¼=@i and EVi = @EV=@i and the function °(s; µ) is given by

~¼(s; i¤(s; µ); µ)¡ FC(s; µ)¡ ~¼(s; 0; µ) + ¯ [EV (s; i¤(s; µ); µ)¡ EV (s; 0; µ)] : (18)

That is, there is a …rst order condition of optimality for the interior solution,

given by (17), and there are two conditions for the discrete choice between interior

and corner solution. The …rst one concerns i¤(s; µ); which is related with the non-

negativity constraint, so that the interior solution will be optimal only if it is positive.

If condition (17) holds for a negative value, we will choose i(s; µ) = 0; due to total

irreversibility. The second condition is given in terms of °(s; µ); which is related with

the presence of …xed costs. If °(s; µ) > 0; it means that the …xed costs are not high

enough to lead the …rm to decide not to invest.

Our model is a dynamic choice model in which the decision variable is censored

at zero as a consequence of inaction. As it is explained above, there are two sources

of censoring indistinguishable for the econometrician: irreversibility and …xed ad-

justment costs. When the intertemporal pro…t, gross of …xed adjustment costs, is

maximized for a negative value of investment, the optimal decision is inaction due to

irreversibility. When it is maximized for a positive level of investment, but the value

obtained with this level is lower than the value obtained with zero investment, the

optimal decision is inaction due to the presence of …xed adjustment costs.

Although the optimal decision rule (16) involves marginal conditions of optimality

and optimal discrete choices, in this paper we obtain estimates of the structural

parameters which only exploit conditions associated to the optimal discrete choice

between interior and corner solution.2

2Since corner solutions are very frequent in our dataset, the subsample of observations that we
can use to exploit moment conditions associated to marginal conditions of optimality (i.e, Euler
equations) is relatively small. Besides, parameters associated with …xed costs can only be identi…ed
by exploiting the discrete decision between interior and corner solution.
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4 Estimation method

Consider a panel of …rms with information on output, capital, labor, investment and

input prices.

fYnt; Knt; Int; pnt; wnt; n = 1; :::; N ; t = 1; :::; Tng

We are interested in exploiting this sample to estimate the structural parameters.

According to the estimation procedure that we describe here, we can classify the

structural parameters in four groups: a) the parameters entering the production

function; b) the parameters that describe the transition probabilities of input prices

and pro…tability shock; c) the adjustment costs parameters: µQ and µF ; and d) the

parameters of the distribution of the state variables which are unobservable for the

econometrician.

For estimation purposes, we proceed in two stages. In a …rst stage we estimate

the parameters of the production function and the transition probabilities of the

state variables. Once we have estimates of the parameters entering the production

function, we can obtain estimates of the productivity shock ant; and construct the

pro…tability shocks Rnt as in (10). In a second stage we estimate the rest of the

structural parameters. In order to do this, we exploit the optimal discrete choice

“to invest vs. not to invest” to obtain partial maximum likelihood estimates of the

adjustment costs parameters µQ and µF and the parameters in the distribution of the

unobservable state variables.

4.1 Estimation of the production function

We begin by considering a Cobb-Couglas production function without imposing con-

stant returns to scale:

ynt = ®K knt + ®L lnt + unt (19)

where ynt = ln(Ynt) , knt = ln(Knt); lnt = ln(Lnt) and unt = ln(ant): We allow the

following structure for the productivity shock:

unt = At + ´n + vnt (20)

vnt = ½ vn;t¡1 + »nt
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where At is an aggregate e¤ect, ´n is a time invariant …rm-speci…c e¤ect, vnt is an

AR(1) idiosyncratic shock and »nt is iid N(0; ¾2»):

In order to estimate the parameters (®K ; ®L; ½) ; we formulate the dynamic rep-

resentation of (19):

ynt = ®K knt¡®K ½ kn;t¡1+®L lnt¡®L ½ ln;t¡1+½ yi;t¡1+(At ¡ ½ At¡1)+(1¡½) ´n+»nt

or

ynt = ¼1 knt + ¼2 kn;t¡1 + ¼3 lnt + ¼4 ln;t¡1 + ¼5 yi;t¡1 +A
¤
t + ´

¤
n + »nt

subject to two non-linear restrictions: ¼2 = ¡¼1¼5 and ¼4 = ¡¼2¼5; and where

A¤t = At ¡ ½At¡1 and ´¤n = (1¡ ½)´n:
Given consistent estimates of the unrestricted parameter vector ¼ = (¼1; ¼2; ¼3; ¼4; ¼5)

0

and its variance-covariance matrix, the restrictions can be tested and imposed by min-

imum distance to obtain estimates for the restricted parameter vector (®K ; ®L; ½)
0 :

We apply a GMM estimation method to obtain estimates of the unrestricted

parameter vector. In the estimation of the Cobb-Douglas production function from

panel data, the application of standard GMM estimators which take …rst di¤erences

to eliminate unobserved …rm-speci…c e¤ects and use as instruments lagged levels has

produced unsatisfactory results (Mairesse and Hall, 1996). More speci…cally, it yields

a low and statistical insigni…cant capital coe¢cient and suggest decreasing returns to

scale.

These problems in the GMM estimation are due to weak instruments. The series

of …rm sales, capital and employment are highly persistent, so their lagged levels are

only weakly correlated with the …rst di¤erences to which they must instrument. Arel-

lano and Bover (1995) proposed and extended a GMM estimator which is based on

a system including not only di¤erenced equations with lagged levels as instruments,

but also level equations with lagged di¤erences as instruments. They show that the

shortcomings of the …rst di¤erence estimation is dramatically reduced in a context

with highly persistent variables. Blundell and Bond (1998) and Blundell, Bond and

Windmeijer (2000) apply this “system GMM” to the estimation of production func-

tions from company panel data. They …nd that the system GMM greatly improves
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the performance of the …rst di¤erences GMM estimator. They obtain a strongly

signi…cant capital coe¢cient and con…rm that the lagged di¤erences are informative

instruments for the endogenous variables in levels.

In the next section we obtain GMM estimates for the parameters in the produc-

tion function, using both the standard …rst di¤erences and the system estimator.

Our results con…rm the …ndings in Blundell and Bond (1998) and Blundell, Bond

and Windmeijer (2000). We also test the nonlinear restrictions by minimum dis-

tance, obtaining estimates for the restricted parameters, and show the validity of the

additional instruments used in this extended GMM.

Since our speci…cation of the pro…t function as a linear function of the capital

stock is based on the constant returns to scale hypothesis, we also test the validity of

this hypothesis and obtain estimates imposing constant returns to scale.

4.2 Estimation of adjustment costs parameters

Once we have estimated the tecnological parameters and the productivity shock, we

can obtain Rnt as in (10). This pro…tability shock will be treated as an observable

state variable in the estimation of the remaining structural parameters.

Let xnt = (pnt; Knt; Rnt)0 be the vector of state variables which are observable for

both the …rm and the econometrician, and consider a panel dataset with the following

information: fint; xnt; n = 1; :::;N ; t = 1; :::; Tng.

Let d = f0; 1g be the index for the optimal discrete choice, where d = 0 means

that the optimal decision is not to invest, i.e, i(st) = 0; and d = 1 means that the

optimal decision is to undertake an investment project, i.e, i(st) > 0.

Let as consider the following assumptions:

AS: Additive separability assumption (Rust, 1987):

¦d(st; it; µ) = ¦
d(xt; It; µ) + "

d
t for d = 0; 1 (21)

There are unobservable state variables, one associated with each choice, that are

independent and enter additively the one-period pro…t function. The unobservable

state variables "d; for d = f0; 1g ; represent the uncertainty of the researcher about the
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actual expected pro…t that is observable to the …rm. We assume they are identically

distributed with zero mean and variance ¾2":

MS: Multiplicative separability:

E
£
¦d(xt; it; µ)

¤
= ¦d(xt)

0 ¹(µ) for d = 0; 1 (22)

Under this assumption, the expected pro…t function can be factorized as a func-

tion depending only on observable state variables and a function of the structural

parameter vector. If the parameters enter the one-period pro…t function in a linear

fashion, this assumption trivially holds. In our model, these factorization is given by

the following functions:

¦0(xt) =

0
@
RtKt

0
0

1
A ¦1(xt) =

0
@
RtKt ¡ ptKtE [itjxt; dt = 1]
¡1
2
ptKtE

£
(it)

2
¯̄
xt; d = 1

¤

¡Kt

1
A ¹(µ) =

0
@
1
µQ
µF

1
A

The …rst component of ¦1(xt) is related to the revenues realized by the …rm net

of the acquistion price of the new capital stock. The second and third components

are related, respectively, to the quadratic and …xed adjustment costs.

CI: Conditional independence assumption (Rust, 1987)

pdf(xt+1; "t+1jxt; "t; dt) = pdf("t+1jxt+1) pdf (xt+1jxt; dt) (23)

This assumption implies, on one hand, that conditional on the discrete choice and

the current value of the observable state variables, the future observable state vari-

ables do not depend on unobservables. On the other hand, this assumption rules out

the existence of autocorrelated unobservable state variables that di¢cult extremely

the estimation of the decision problem.

Under these assumptions, the optimal discrete choice can be written as:

d¤ = d () d =argmax
j=0;1

©
¦j(x)0¹ (µ) + "j + ¯ EV j (x; µ)

ª

The log-likelihood function for this problem is

lnL =
NX

n=1

TnX

t=1

X

d=0;1

ln (Pr(d¤nt = djxnt)) (24)
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where , for d = f0; 1g ;
P d(xnt) = Pr(d

¤
nt = djxnt) =

= Pr

½
d =argmax

j=0;1

©
¦j(xnt)

0¹ (µ) + "jnt + ¯ EV
j (xnt; µ)

ª¯̄
¯̄ xnt

¾

These probabilities entering the log-likelihood function are expressed in terms of

unknown conditional value functions EV d (xnt; µ). An obvious approach to estimate

the structural parameters is a solution method consisting in some nested algorithm

in the spirit of Rust’s Nested Fixed Point (1987). This technique consists in an outer

algorithm that maximizes the likelihood function and an inner algorithm which solves

the dynamic programming problem at each iteration in the search for the parameter

estimates. The main drawback of this kind of techniques that solve the dynamic

programming problem is its high computational cost.

The estimation estrategy we use in this paper is in the line of the estimation

techniques recently appeared in the literature on the estimation of dynamic discrete

choice models, that avoid the solution of the dynamic programming problem. More

speci…cally, our method is in the line of Hotz and Miller (1993) and their Conditional

Choice Probability estimator (CCP). They show that there is a representation of the

di¤erence in conditional value functions as a computable function of state variables,

structural parameters and conditional choice probabilities. This representation have

been used, among others, by Aguirregabiria (1999) for the estimation of a model of

price and inventory decisions and Slade (1998) for a model of price decisions.

Under assumptions AS ¡ CI, Aguirregabiria (1999), following the strategy by

Hotz and Miller (1993), showed that the expected conditional valuation function can

be written, for d 2 f0; 1g ; as:

EV d(xt; µ) = W
d(xt)

0 ¸(µ)

where

W d(xt) = F̂
d(xt)

³
I ¡ ¯F̂ (xt)

´¡1
Ã X

d=0;1

P̂ d(xt) ¤ ¦d(xt)
X

d=0;1

P̂ d(xt) ¤ gd(xt)
!

(25)
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¸(µ) = (¹(µ)0 1)0 ; ¤ is the element-by-element product, the functions gd(xt) are

given by:

gd(xt) = E
£
"dt

¯̄
xt; d

¤
t = d

¤

and P̂ d(xt), F̂ d(xt) and F̂ (xt) are nonparametric estimates of the conditional choice

probabilities, conditional transition probabilities and unconditional transition prob-

abilities of the state variables respectively.

The vector W d(xt) is related to the expected and discounted stream of the fu-

ture components associated with the corresponding components of the one period

pro…t function ¦d(xt). The conditional expectation of unobservable state variables,

gd(xt), can be written in terms of conditional choice probabilities. For instance,

if "d are independent with extreme value distribution, that expectation becomes

E
£
"dt

¯̄
xt; d¤t = d

¤
= 0:57721¡ ln

£
P d (xt)

¤
; where 0:57721 is the Euler’s constant.

From expression (25) it is straightforward to obtain a closed expression for the

conditional valuation function EV d (xt; µ) :

The estimation method consists in two stages: in a …rst stage we obtain nonpara-

metric estimates of the conditional choice probabilities P̂ d(xt) and the conditional

transition probabilities of the state variables, F̂ d(xt): From these estimates we can

obtain an estimate for the unconditional transition probabiliy matrix, F̂ (xt) =
P
d=0;1

P̂ (xt) ¤ F̂ d(xt): In the second stage, these estimates can be used to construct the

valuesW d(xt). Given extreme value distribution for the unobservable state variables,

we can obtain structural parameter estimates by partial maximum likelihood, where

the probability of choosing alternative d is given by the well-known logit formula:

P d(xt; µ) =
exp

©
¦d(xt)

0¹ (µ) + ¯ W d(xt)
0 ¸(µ)

ª
P
j=0;1

exp f¦j(xt)0¹ (µ) + ¯ W j(xt)0 ¸(µ)g

Hotz and Miller (1993) prove the consitency and asymtotic normality of this kind

of estimators.3

3Hotz and Miller estimator (CCP) is not based on the maximum likelihood method. It is a GMM
estimator that exploits the following moment conditions:

E
¡
Znt

£
1(dnt = d) ¡ Pd(xt; µ)

¤¢
= 0 for d = 0; 1
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5 Estimation results

5.1 Estimation of technological parameters

We have obtained estimates of the production function (19). The results are reported

in Table 3. We report results for the two-step GMM estimator for both the …rst-

di¤erenced equations and the system. We take as instruments the lagged levels dated

t¡ 2 and earlier in the …rst-di¤erenced equations. As additional instruments in the

system GMM estimation, we take the lagged di¤erences dated t ¡ 1: Year dummies

have been included in both models. The non-linear restrictions have been tested and

imposed by minimun distance.

Table 3 reports the production function estimates without imposing constant re-

turns to scale constraint. As we can see, in the …rst di¤erences GMM estimation we

obtain a nonsigni…cant capital coe¢cient. Although the shortcomings of the standard

…rst di¤erenced GMM estimation in our case does not seem to be as dramatic as in

Mairesse and Hall (1996) or Blundell and Bond (1998), the gains of the system GMM

estimation are important. The precision of all the estimates improves considerably,

specially in the estimation of the capital coe¢cient.

The autocorrelation tests are consistent with the AR(1) error speci…cation. The

validity of lagged levels dated t¡ 2 and earlier as instruments in the …rst-di¤erenced

equations are not rejected. The Dif. Sargan test clearly does not reject the additional

instruments in the system estimation. We can see that constant returns to scale and

non-linear restrictions are not rejected in none of the models.

Given that our model speci…cation is based on the constant returns to scale hy-

pothesis, we have also estimated the parameters in the production function imposing

this restriction. The results are reported in Table 4. Neither the Sargan test nor the

…rst and second order autocorrelation tests provide any evidence against the speci-

…cation. Again, we observe the gains obtained with the system GMM estimation in

terms of the precision of the estimates.

where Znt is a vector of instrumental variables (e.g., functions of xnt). However it is straightforward
to show that if we de…ne the vector of instrumental variables Znt as the gradient of the log-likelihood
function, the CCP estimator is equivalent to the partial maximum likelihood estimator that we
describe in this paper.
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GMM estimates
First di¤erences System

t¡ 2 t¡ 2
knt 0.332 0.444

(0.313) (0.154)
kn;t¡1 -0.348 -0.378

(0.203) (0.132)
lnt 0.754 0.568

(0.310) (0.199)
ln;t¡1 -0.609 -0.255

(0.212) (0.235)
yn;t¡1 0.849 0.724

(0.136) (0.097)
m1 -5.695 -7.572

p-value 0.000 0.000
m2 0.073 -0.563

p-value 0.942 0.574
Sargan 29.474 31.684
p-value 0.245 0.629

Dif. Sargan — 2.210
p-value — 0.980

Minimun distance estimates
®k 0.435 0.456

(0.225) (0.121)
®L 0.722 0.576

(0.231) (0.195)
½ 0.874 0.819

(0.082) (0.074)
p-value MD test 0.658 0.314
p-value CRS test 0.660 0.880

Table 3: Production function estimates without imposing constant returns to scale.
Standard errors in parenthesis
m1,m2: tests for …rst and second order correlation in …rst di¤erenced residuals
Sargan: Sargan test of overidentifying restrictions
Dif Sargan: test of the validity of the additional instruments in system estimation
MD: minimum distance
CRS: constant returns to scale
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GMM estimates
First di¤erences System

t¡ 2 t¡ 2
knt 0.289 0.436

(0.154) (0.113)
kn;t¡1 -0.301 -0.368

(0.117) (0.092)
yn;t¡1 0.864 0.844

(0.090) (0.061)
m1 -7.446 -10.659

p-value 0.000 0.000
m2 0.036 -0.245

p-value 0.971 0.807
Sargan 25.811 39.539
p-value 0.529 0.357

Dif. Sargan — 13.728
p-value — 0.800

Minimun distance estimates
®k 0.357 0.436

(0.133) (0.109)
®L 0.643 0.564

— —
½ 0.878 0.844

(0.088) (0.058)
p-value MD test 0.382 0.993

Table 4: Production function estimates imposing constant returns to scale. Standard
errors in parenthesis. See notes on Table 3

20



Once we have estimates of the parameters entering the production function and

the productivity shock, we can construct the pro…tability shock Rnt which will be

used as an observable state variable in the estimation of the rest of the structural

parameters, those related with capital adjustment costs.

5.2 Estimation of adjustment cost parameters

As we said in the previous Section, the estimation of the adjustment cost parame-

ters involves two steps. First, we estimate the conditional choice probabilities and

the transition probabilities of the state variables. In a second step, we obtain an

expression for the conditional valuation functions in terms of the structural parame-

ters, state variables and previous nonparametric estimators and use this expression

to estimate the discrete choice model.

This estimation method requires a discretization of the space of observable state

variables. The observable state variable we are considering are the capital stock

Knt and the pro…tability shock Rnt:4 The capital stock is measured in thousand

euros. Since the range of variation of Knt is very di¤erent for di¤erent …rms, we

have considered the variable ~Knt =
Knt
¹Kn
; which represents the capital stock of …rm

n in period t over the average capital stock of …rm n in the sample period. The

pro…tability shock Rnt have been considered in logarithms and decomposed in ag-

gregate and idyosincratic components. The aggregate component is the yearly mean

of the log-pro…tability shocks and the idyosincratic component is the deviation of

the log-pro…tability shock from that mean: We have discretized the observable state

variables using a unifom grid in the space of their empirical probability distribu-

tions. The nonparametric estimators for the conditional choice probabilities have

been obtained using multivariate kernel estimators. The bandwith parameter has

been chosen according to Silverman’s rule. The conditional transition probabilities

have been estimated using multinomial logits on the space of the discretized variables.

4We have not discretized capital price pt in the set of state variables. Since there is very low
variability of this variable in our dataset, we have considered it as constant.
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The amount of investment when a …rm decides to invest, E [itjxt; d = 1] ; which

enter the functions ¦1(xt) and W 1(xt); has been estimated nonparametrically using

kernel estimators.

The structural parameter estimates are reported in Table 5. Since one of the

components of the one-period pro…t function has a parameter restricted to be 1 (the

component associated with the revenue function) it is possible to identify the standard

deviation of the unobservable state variables, ¾": The discount factor ¯ has been …xed

at 0.975. We have also estimated the model with di¤erent values of ¯ ( from 0.95 to

0.99) obtaining similar results.

Structural parameter estimates
µQ 115.6

(26.10)
µF 30.78

(4.513)
¾" 25.34

(5.082 )
LogL -3162.01
Obs. 7519

Table 5: Structural parameter estimates. Standard errors in parenthesis

We have obtained very precise parameter estimates. Since the capital stock has

been considered as the ratio ~Knt =
Knt
¹Kn
; our estimate of the …xed adjustment cost

parameter implies that a …rm with, for example, an average capital stock of one

million euro that decides to undertake an investment project, must face a …xed cost

between 2.19% and 3.96% of its capital stock (95% con…dence interval). The following

table shows the proportion that variable and …xed adjustment costs implied by our

estimates represent on average over the installed capital and the sales of the …rms

in three categories: small, medium and large …rms, according to the classi…cation

criterion established by the European Commission.
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VCÁCap. stock FCÁCap. stock VCÁSales FCÁSales
Small …rms 0.12545 0.23303 0.011902 0.03461

Medium …rms 0.00327 0.01148 0.000362 0.00199
Large …rms 0.00051 0.00239 0.000067 0.00041

Table 6: Proportion of capital adjustment costs over installed capital and sales.
VC: Variable adjustment costs. FC: Fixed adjustment costs.

On average, …xed adjustment costs are much more relevant than convex costs in

each category. It is worthwhile to emphasize the importance of …xed adjustment costs

in small …rms, representing around 23% of the installed capital stock and around 3%

of the total sales. These proportion decreases a lot in the other categories: medium

and large …rms. In the group of medium …rms, …xed adjustment costs represent

1.11% of the installed capital and 0.19% of the …rm sales. In the group of large …rms,

…xed costs represent 0.23% of the installed capital and only 0.04% of the sales. The

very di¤erent magnitude of …xed adjustment costs for the categories considered can

explain the very di¤erent importance of inaction found in each of them. As we saw in

Table 2, the percentage of observations accounting for zero investment was very high

in small …rms, 29.24%, while in medium and large …rms was much smaller, 4.51%

and 0.93% respectively.

6 Conclusions

In this paper we have estimated a dynamic structural model of irreversible investment

for Spanish manufacturing …rms. The dataset we use exhibit some of the character-

istics reported in the recent microeconomic investment literature. More speci…cally,

we have found strong evidence of inaction and lumpy investment. Based on these em-

pirical features, we have proposed a dynamic structural investment model in which

irreversibilities and nonconvex adjustment costs have been included. The adjustment

cost function we consider includes quadratic and …xed components.

We have estimated the model in two stages. In a …rst stage we have obtained

GMM estimates of the parameters entering the production function. We have ap-

plied the standard …rst-di¤erenced GMM estimator to eliminate the unobservable
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individual time invariant e¤ect. We have also obtained the extended GMM estima-

tor proposed by Arellano and Bover (1995) which consist on a system of equations

including not only …rst di¤erenced equations but also level equations. This system

GMM seems to work well in our dataset, improving the precision of the estimates

and reducing some of the de¢ciencies found in the estimation of the …rst di¤erenced

equations. Once we have estimated the production function, in the second stage we

have proposed a dynamic discrete choice model, in which the …rm chooses between

not to invest and to undertake an investment project. We have obtained partial max-

imum likelihood estimates of the adjustment cost parameters, using an estimation

strategy that avoids the solution of the dynamic programming problem. It builds on

the Hotz and Miller’s CCP estimator, which is based on the representation of the

conditional value functions as computable functions of conditional choice probabili-

ties, state variables and structural parameters. Given nonparametric estimates of the

conditional choice probabilities and transition probabilities of the state variables, the

conditional value functions have a closed form expression in terms of the structural

parameters. Our estimation results re‡ect the importance of …xed adjustment costs,

which can represent a considerable proportion of installed capital and sales. The

magnitude of these costs varies a lot depending on the …rm size. For small …rms they

can represent around 20% of the installed capital and 3% of the …rm sales, while for

medium and large …rms these proportions are much smaller. This can explain the

observed investment behavior in our dataset. In the group of small …rms, around

29% of observations accounted for zero investment, while this percentage was much

smaller for medium and large …rms.
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