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1. Introduction

Bayesian analysis of queueing systems is a relatively recent research

area. As far as we know, the �rst papers on Bayesian estimation in

queueing models are Bagchi and Cunningham (1972), Muddapur (1972)

and Reynolds (1973). In the 1980's and 1990's, there has been much

work on Bayesian inference for the simple Markovian M/M/c queue,

see Armero (1985), McGrath et al. (1987), McGrath and Singpurwalla

(1987) and Armero and Bayarri (1994, 1995, 1997). More recently, the

development of modern numerical integration methods have allowed

the development of inference and prediction in more general queueing

systems, see Armero and Conesa (1998), Wiper (1998), Rios Insua et

al. (1998) and Ausin et al. (2001).

Up to now, most analyses have considered queueing systems where

the customers arrive according to a Poisson process. To the best of

our knowledge, the only exception is Wiper (1998) where inference for

the Er/M/1 (and Er/M/c) model, with Erlang interarrival times, was

considered. Although the Erlang distribution has often been used in
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the queueing literature to �t interarrival (or service) time data with

coeÆcient of variation greater than one, see Allen (1990), it will not

be an appropriate model if the data have low coeÆcient of variation

or are multimodal. Our objective in this paper is to consider inference

and prediction for these, more general, G/M/1 queues. To do this, we

consider a semiparametric approximation to the general interarrival

time distribution based on a mixture of Erlang distributions. Note

that this family includes the Erlang, hyperexponential and exponential

distributions, which are commonly used in the queueing literature, as

special cases. It is also dense over the set of distributions on the positive

reals, see Asmussen (1987).

The use of mixture distributions to model data is very common and

the Bayesian approach provides an important tool for semiparamet-

ric density estimation, see, for example, Diebolt and Robert (1994).

Markov chain Monte Carlo methods (MCMC), see Robert (1996), have

been developed for Bayesian analyses for mixture models. Recently,

MCMC methods for exploring mixture models of unknown dimen-

sion have been proposed. Richardson and Green (1997) introduced

the reversible jump technique to analyze normal mixtures. This type

of algorithm was used by Rios et al. (1998) for exponential mixtures

and Wiper et al. (2001) for mixtures of gamma distributions. More

recently, an alternative approach to reversible jump based on a birth-

death process has been proposed by Stephens (2000). In this paper

we make use of the latter methodology to study mixtures of Erlang

distributions.

Throughout the paper we consider a queueing system with a single

server and FIFO discipline. Service times S are distributed exponen-

tially with mean 1=�. Interarrival and service times are considered to

be independent. Customers are assumed to arrive singly with inter-

arrival times identically and independently distributed. De�ning T to

be a typical interarrival time then we assume that T is distributed as

random variable distributed as a mixture of k Erlang distributions with
parameters w = (w1; :::; wk);� = (�1; :::; �k) and � = (�1; :::; �k): The
corresponding density function is given by,

f(t j k;w; �; �) =
kX
i=1

wiEr(t j �i; �i);

where

Er(t j �i; �i) =
(�i=�i)

�i

�(�i)
t�i�1 exp(�

�i

�i
t)

represents an Erlang density parameterized to have mean �i:
Given interarrival and service time data, we wish to make inference

on the system parameters and to predict the stationary distributions.
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For the G/M/ 1 system, a stationary distribution exists if the traÆc

intensity � is less than one, see, for example, Kleinrock (1975). In our

model, the traÆc intensity is given by

� =

 
�

kX
i=1

wi�i

!�1

In Section 2, we describe a simple experiment and develop a method

to make inference for the system parameters. We de�ne prior distribu-

tions and propose a birth and death algorithm to obtain a sample from

the joint posterior distribution of the system parameters. In Section 3,

we describe how to estimate the predictive distributions of the system

size and the waiting time using the data generated from the MCMC

algorithm described in Section 2.

In Section 4, we illustrate this methodology with various simulated

examples and a real data set. Conclusions and a discussion of possible

extensions are included in Section 5.

2. Data observation and Bayesian inference

Assume that given a single sample ofma interarrival times, t = ft1; :::; tmag,
and ms service times, s = fs1; :::; smsg, we wish to make inference for

the system parameters, k;w; �; � and �: Given this simple experiment,

the likelihood function is,

L (k;w; �; �;� j t; s) /

2
4maY
j=1

 
kX
i=1

wiEr(tj j �i; �i)

!3
5�ms exp

0
@�� msX

j=1

sj

1
A :

Thus, the likelihood separates into two parts, one concerning the arrival

parameters, (k;w; �; �) and another concerning the service parameter,

�: Hence, assuming independent prior distributions for the arrival and

service parameters, the corresponding posterior distributions will also

be independent a posteriori.

This experiment has also been used for many inference problems in

queueing systems, see for example, Thiruvaiyaru and Basawa (1992),

Rios et al. (1998) and Armero and Bayarri (1994). However, we could

use other experiments which would result in di�erent forms for the

likelihood as proposed by Lehoczky (1990).

In the next subsection, we will introduce a prior model for the system

parameters, k;w; �; � and � and show how to estimate the joint poste-

rior distribution, f (k;w; �; �;� j t; s). Exact inference is impossible in
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this case but we can calculate the necessary conditional posterior distri-

butions to implement a Markov chain Monte Carlo (MCMC) algorithm

to sample the joint posterior distribution.

2.1. Prior specification and updating

Here, we will assign prior distributions for the system parameters,

k;w; �; � and �: As indicated earlier, we will consider independent

prior distributions for the interarrival and service parameters. For the

service rate, �; we assume a gamma prior distribution, � � G (a; b) :
It is straightforward to show that the prior to posterior updating is

conjugate so that,

� j s � G

0
@a+ms; b+

msX
j=1

sj

1
A : (1)

In order to make inference for the interarrival distribution param-

eters, following Diebolt and Robert (1994), it is �rst convenient to

introduce a missing data formulation in which each observed interar-

rival time, tj, is assumed to arise from a speci�c component of the

mixture. Thus, we de�ne missing data z = fz1; :::; zmag assumed to be

realizations from i.i.d. missing variables, Z1; :::; Zma , such that

P (Zj = i j k;w) =wi; for i = 1; :::; k:

Conditional on these variables, we have

f (tj j Zj = i; k;w; �; �) = Er(tj j �i; �i); for j = 1; :::;ma:

Following Stephens (2000), we de�ne a hierarchical model for the

joint prior distribution on the remaining mixture parameters, (k;w; �; �)
of the form

f (k;w; �; �; z) / f (k) f (z j k;w) f (w j k) f (� j k) f (� j k) : (2)

We now de�ne a truncated Poisson prior distribution for the mixture

size, k; taking values from 1 to kmax;

f (k) /

k

k!
(3)

For the examples of Section 4, we have used the values 
 = 2 and

kmax = 10 but, in principle, any values could be considered. Other

prior structures such as a discrete uniform de�ned on [1; kmax] could

also be used:
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Using the hierarchical structure (2), we can de�ne the following prior

distributions for the remaining parameters conditional on k;

w j k � D(�; :::; �);

�i j k � IG(�; �); for i = 1; :::; k;

�i j k � GE(#); for i = 1; :::; k;

where D(�; :::; �) denotes a symmetric Dirichlet distribution of dimen-

sion k; IG(�; �) denotes an inverted gamma and GE(#) is a geometric

distribution with mean 1=#. Typically, we might set � = 1; which
implies a uniform prior for w j k and � = 1 and � = 1 and # = 0:01
giving fairly di�use priors for �i and �i:

Given k; the required conditional posterior distributions which are

used within the MCMC algorithm can be shown to be;

P (Zj = i j t; k;w; �; �) / wi
(�i=�i)

�i

�(�i)
t�i�1j exp(�

�i

�i
tj); for i = 1; :::; k;

w j t; z;k � D(�+m1; :::; � +mk);

�i j t; z;k � IG(�+mi�i; � + Ti�i);

where mi = #fZj = ig and Ti =
P

j:Zj=i

tj ; for i = 1; :::; k; and,

f(�i j t; z;k;w; �) /
�mi�i
i

�(�i)mi
exp

�
��i

�
� log(1� #) +

Ti

�i
+mi log �i � logPi

��
(4)

where Pi =
Q

j:Zj=i

tj:

In the following subsection, we construct an MCMC algorithm in

order to estimate the joint posterior distribution of the interarrival

parameters, (k;w; �; �) :

2.2. BDMCMC algorithm

Here, we obtain a sample from the joint posterior distribution of the

interarrival parameters, k;w; � and �: To analyze the Erlang mix-

ture model, we propose a birth-death MCMC (BDMCMC) algorithm.

This method is based on a birth-death process and was introduced by

Stephens (2000) in the context of normal mixtures. With this approach,

the model parameters are interpreted as observations from a marked

point process and the mixture size, k; changes so that births and deaths

of the mixture components occur in continuous time. The rates at which

this happens determine the stationary distribution of the process.
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To create a Markov chain with stationary distribution f (k;w; �; � j t) ;
a birth-death process (BD) is combined with a standard MCMCmethod

where the mixture size, k; is kept �xed.
In the BD process, births of the mixture components occur at a

constant rate which we might set equal to the parameter 
; of the prior
distribution of k in (3) : A birth increases the number of components

by one and the parameters of the new component are generated from

the prior distribution.

The death rate of every mixture component is a likelihood ratio of

the model with and without this component. Thus, death rates are very

low if the corresponding component explains a lot of data and high if

it does not. The total death rate of the process at any time is the sum

of the individual death rates. A death decreases the number of mixture

components by one.

Then, we de�ne an algorithm, based on Stephens (2000), as follows:

1. Set initial values k(0);w(0); �(0); �(0):

Birth Death process.

2. Run the birth-death process for a fixed time t0:
2:1: Start from k(n);w(n); �(n); �(n):
2:2: Compute the death rates.

2:3: Simulate the exponential time to next jump.

2:4: Simulate the type of jump (birth or death).

2:5: Modify the mixture components and

2:6: If the run time is less than t0 go to 2.2.

MCMC algorithm.

3. Update the allocation by sampling from z(n+1) � zj t;k(n);w(n); �(n); �(n):
4. Update the weights by sampling from w(n+1) �wj t; z(n+1); k(n):
5. For i = 1; :::; k,

5.1. Update the means by sampling from �
(n+1)
i � �ij t;z

(n+1); k(n):
5.2. Update �i using a Metropolis step.

6. n = n+ 1: Go to 2.

Step 2 of the algorithm is the BD process described above. Following

Stephens (2000), we have �xed in our examples t0 = 1. We have also

chosen a birth rate equal to the parameter, 
. As should be expected, we
have found in practice that larger values of the birth rate produce better

mixing but require more time in the computation of the algorithm.

Steps 3 to 5 are standard Gibbs sampling, see, for example, Gelfand

and Smith (1990) whereby the model parameters are updated condi-
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tional on the mixture size, k: The only slightly complicated step is 5.2.

where we introduce a Metropolis Hasting method, see Hastings (1970),

to sample from the posterior distribution of �. To do this, we generate

candidate values for � from a negative binomial proposal distribution.

We have chosen this proposal distribution because, for large values of

�; the conditional distribution in (4) has a similar form to a negative

binomial distribution.

Given the MCMC output of size N , we can estimate the predictive

density of the interarrival time distribution using

f(t j s; t) =
1

N

NX
n=1

k(n)X
i=1

w
(n)
i Er(s j �

(n)
i ; �

(n)
i ):

For further details of this type of algorithm in the context of Bayesian

inference for a normal mixture model, see Stephens (2000) or Hurn et

al (2001).

3. Application to queues

Suppose now that we have obtained Monte Carlo samples of size N
from the posterior distribution of the arrival parameters, via the BDM-

CMC algorithm, and the service parameter � via direct sampling of the

gamma density f(� j s) Then we can make inference about the system.

In particular, we can estimate the posterior distribution of the traÆc

intensity �: For example, the probability that the system is stable can

be estimated with,

P (� < 1 j s; t) �
1

N
#
n
�(n) < 1

o
;

where

�(n) =

0
@�(n) k

(n)X
i=1

w
(n)
i �

(n)
i

1
A
�1

;

n�
k(1);w(1); �(1); �(1)

�
; :::;

�
k(N);w(N); �(N); �(N)

�o
is the sample ob-

tained from the BDMCMC algorithm and
n
�(1); :::; �(N)

o
is the sample

generated from the posterior distribution of �. If this probability is large
enough, it may be reasonable to consider inference assuming that the

system is stable.

It is well known, see Kleinrock (1975), that in queueing systems

with non-Markovian interarrival process, the probability that an arriv-

ing customer �nds j customers in the system, � (j) ; di�ers from the

probability that a random arrival �nds j customers in the system, p (j) :
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Speci�cally, for the G/M/ 1 system, the stationary probability de-

scribing the number of customers in the system at the arrival instants

is a geometric distribution given by,

� (j j �) = (1� �)�j ; j = 0; 1; 2; :::

where � is the unique root in the interval (0; 1) of the equation,

� = A� (�� ��) ; (5)

and A� is the Laplace transform of the interarrival time distribution.

For our model, the arrival distribution is an Erlang mixture, therefore,

A� (s) =
kX
i=1

wi

�
�i=�i

s+ �i=�i

��i
:

Given the model parameters, �; k;w; � and �; it is easy to approximate

� using the Newton-Raphson method or a similar procedure.

On the other hand, the steady-state distribution of the number of

customers found by a random arrival is,

p (j j �; �) =

�
1� �; si j = 0

�� (j � 1 j �) ; si j � 1

Given the MCMC output, we can approximate the predictive stationary

distribution � (j) using,

� (j) �
1

R

X
n:�(n)<1

�
1� �(n)

��
�(n)

�j

where R = #
n
�(n) < 1

o
and �(n) can be computed by solving (5) for

every k(n);w(n); �(n); �(n) and �(n): Analogously, we can estimate the

predictive distribution function of p (j) :
The probability of having an empty system is � (0 j �) = 1 � �:

Thus, the probability that a customer has to wait is �: Using this fact

and the conditional distribution of the waiting time in the queue, given

that the queue exists, the unconditional waiting time distribution can

be obtained. This is exponential with a jump of height 1� � at t = 0.

The distribution function is,

FW (t j �; �) = 1� �e��(1��)t; t � 0:

As above, we can use the following approximation,

FW (t) �
1

R

X
n:�(n)<1

FW
�
t j k(n);w(n); �(n); �(n); �(n)

�
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Wiper (1998) shows that, for any given G/M/ 1 system, given inde-

pendent, continuous priors on the arrival and service rates with positive

density in � = 1; the moments of the predictive distributions of waiting

time and queue size do not exist. This is thus the case here.

4. Examples

In this section, we illustrate our method with both simulated and real

data from severalG/M/ 1 systems. In each case, we estimate the general

interarrival time distribution and perform inference for the mixture

size, k: We also obtain approximations of the predictive system size

and waiting time distributions.

4.1. Simulated data

We consider three examples of G/M/ 1 queueing systems with the same

traÆc intensity � = 1=3 and the following interarrival times,

1. Exponential distribution with mean 3. (M)

2. Mixture of Erlang distributions withw =(0:2; 0:1; 0:7) ; � =(1:5; 2:5; 3:5)
and � =(200; 400; 600) : (HEr)

3. Continuous uniform distribution de�ned on (0; 6) : (U)

We have included two examples of Erlang mixtures, viz cases 1 and

2. The third case, the uniform distribution, is unrelated to the Erlang

mixture family.

For the exponential service time distribution, we here assume a �xed,

known service rate, � = 1:
For each data set, we generated samples of 200 interarrival times

and carried out the Bayesian analysis described in section 2. We ran

200000 iterations of the BDMCMC algorithm with 100000 for burn-in.

The starting point used for the BDMCMC algorithm was, in each case,

a long way from the true values of the mixture parameters, including

the initial mixture size. For each case, we have set the same birth rate,


 = 2:
Figure 1 illustrates histograms of the generated arrival data superim-

posed (in dotted line) with the estimation of the predictive interarrival

time densities for each example. The true densities are given in solid

lines. In the �rst two cases, we observe that estimated and generating

distributions are very similar. In the uniform example, the method

predicts a relatively large number of components in order to �t the

data and, as we might expect, the �t is a little bit worse.
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Figure 1. Predictive (dotted line) and true (solid line) interarrival time densities for

(a) exponential (b) Erlang mixture and (c) uniform data sets.

In Table I, we tabulate the �rst few posterior probabilities of the

mixture size, k: Note that P (k = 1 j t) ' 0:93 for the exponential data
set. Also, given k = 1, the posterior probability that the inter arrival

time distribution is exponential is estimated to be P (� = 1 j k = 1; t) �
0:9999. Thus, it is clear that the correct M/M/1 model has been well

identi�ed in this case. In the Erlang mixture case, the method identi�es

also the correct number of component although with some uncertainty.

In the uniform case, there is much more uncertainty.

The chain appears to be mixing quite well, visiting many states, in

the three cases.

For all three systems, the estimated posterior probability that the

traÆc intensity is less than one is larger than 0.99. Thus, we can as-

sume the system is stable and compute the stationary distributions of

the queue. Table II gives the estimated posterior probabilities of the

numbers of customers in each system at the arrival instants. The true

stationary probabilities given the system parameters are also shown.

Observe that these are close to the estimated ones, even in the uniform

case.
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Table I. Posterior probabilities for di�erent mixture sizes.

P (k j t) M=M=1 HEr=M=1 U=M=1

k = 1 0.928 0.000 0.000

k = 2 0.066 0.000 0.001

k = 3 0.004 0.859 0.083

k = 4 0.001 0.127 0.474

k = 5 0.000 0.012 0.319

k = 6 0.000 0.001 0.096

Table II. Estimated posterior probabilities � (j j data) (upper) and true prob-

abilities (lower) of the number of customers j in the system at the arrival

instants.

j M=M=1 HEr=M=1 U=M=1

�0
:676

:666

:904

:909

:797

:791

�1
:218

:222

:086

:083

:161

:165

�2
:079

:074

:008

:007

:033

:034

�3
:023

:025

:000

:000

:006

:007

�4
:007

:008

:000

:000

:001

:001

We have also estimated the predictive distribution of the number

of customers found by a random observer. For example, the estimated

probability of �nding an empty system is 0.676, 0.664 and 0.673; for
cases 1 to 3 respectively. Recall that the true stationary probability is

given by p (0 j �; �) = 1� � = 2=3 in all three cases.

Figure 2 shows in dotted line the estimation for the predictive wait-

ing time distribution in the queue in each example. The true distribu-

tion is also illustrated in solid line. Observe that the jump of height

1 � � at t = 0 is not represented. This value was given in Table II

because, as is well known, it is equal to �0:

4.2. Real data problem

Here, we undertake Bayesian analysis of a real data problem. We con-

sider data on arrivals and service at a cashpoint in a bank in Madrid.
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Figure 2. Predictive (dotted line) and true (solid line) waiting time densities for (a)

exponential (b) Erlang mixture and (c) uniform interarrival time systems.

Interarrival and service times of 98 customers were recorded from

10:00 a.m. to 11:30 a.m. during three days. The mean service time was

approximately 93.6 seconds. Our Bayesian density estimation method

predicts a single, exponential distribution for the service time distribu-

tion. Thus, we assume this model for the service time. We also use a

non-informative prior in (1) by setting a and b equal to zero: Thus, the
posterior distribution of the service rate parameter, �; is G (98; 9172) :

Figure 3 shows the histogram of the 98 interarrival times. The es-

timated density function using the mixture of Erlang distributions

with the BDMCMC algorithm has been superimposed. None of the

times is larger than two minutes and the distribution appears to be

bimodal. In fact, the posterior probability of having two components is

P (k = 2 j t) � 0:958:
Given this arrival and service data, the posterior probability of hav-

ing a stable system is estimated to be P (� < 1 j s; t) � 0:85: Assuming

equilibrium, the predicted probability that an arriving customer has to

wait is estimated to be

E [� j � < 1; t; s] � 0:805
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Figure 3. Histogram of interarrival time data and the estimated interarrival time

density.

and the estimated expected value of the traÆc intensity is

E [� j � < 1; t; s] � 0:896:

Figure 4 illustrates the estimated probabilities describing the num-

ber of customers found by an arriving customer and by a random

observer.
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Figure 4. Predictive probabilities for the system size found by an arriving customer

(solid line) and by a random observer (bold solid line).

5. Conclusions

In this paper, we have developed a Bayesian approach to make infer-

ence and prediction for G/M/1 systems. We have developed a density

estimation method based on mixtures of Erlang distributions in or-

der to approximate the general interarrival time distribution. To make
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inference on the arrival parameters, we have implemented an MCMC

algorithm based on births and deaths of mixture components making

use of the BDMCMC technique proposed by Stephens (2000). Some im-

portant measures of the system, such as the system size or the waiting

time, has been predicted. We have illustrated this methodology with

simulated and real data.

It is possible to extend our approach to queueing systems with c
servers. Given the system parameters, the stationary distribution of the

system size and waiting time can be easily derived, see Allen (1990).

Then, the predictive distributions can be estimated via the BDMCMC

algorithm as for the G/M/1 system. Note however that in such cases,

the computational cost can increase dramatically as the number of

servers c increases. See also Wiper (1998).

An alternative to the BDMCMC methodology is the \reversible

jump" introduced by Richardson and Green (1997). This type of this

algorithm had been used in a previous work to make inference on the

general service time distribution for a M/G/1 system, see Ausin et

al. (2001) : In practice, we have found that there both schemes perform

similarly. A disadvantage of the reversible jump scheme is that we often

�nd that mixing of the chain and thus convergence of the algorithm is

very slow because of problems due to the discrete support of �. In the

BDMCMC algorithm, as we have indicated, larger values of the birth

rate produce better mixing, but also increasing the computational cost.

We have also found some problems of non-convergence of the algorithm

if the birth rate elected is very high. Thus, it would be useful to ex-

plore methods for election of this parameter in order to optimize the

algorithm.

In this article, we have approximated the general interarrival time

using a mixture of Erlang distributions as an extension of the analysis of

the Er/M/1 system inWiper (1998). The assumption that the elements

of the parameter � are integers can be removed considering mixtures of

gamma distributions which is a more 
exible model. Wiper et al. (2001)

consider this family and describe a density estimation method using

reversible jump techniques although they do not apply their results to

G=M=1 queues. An advantage of using the Erlang mixture structure

as here is that we can directly calculate the probability that a simpler

interarrival time model (exponential, Erlang or hyperexponential) is

appropriate given the MCMC output. For example, we can estimate

the posterior probability that the interarrival distribution is a single

Erlang distribution by the proportion of times that the mixture size

k = 1 in the MCMC sample. See also Ausin et al (2001).

Many other dense families can be used to model a general distri-

bution, for example, the mixed generalized Erlang distributions. An
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advantage of this class is that the Laplace transforms of the queue

length, waiting time and busy period distributions of a system with

mixed generalized Erlang distributions for the interarrival and service

times are known, see Bertsimas and Nazakato (1992). Theoretically it

is possible to combine these results with variable dimensional MCMC

methods to make inference and prediction for G/G/1 systems. Work

on this problem is currently in progress.

References

Allen, A: Probability, Statistics and Queueing Theory with Computer Science

Applications. Academic Press, USA, 1990.

Abramowitz, M., Stegun, I.A: Handbook of Mathematical Functions. Dover, USA,

1964.

Armero, C: Bayesian analysis of M/M/1/1/FIFO queues. In J. Bernardo, M. DeG-

root, D. Lindley and A. Smith, editors, Bayesian Statistics 2, pp. 613-618, North

Holland, Amsterdam, 1985.

Armero, C. and M.J. Bayarri: 1994. Bayesian prediction in M/M/1 queues. Queueing

Systems, 15, 401-417.

Armero, C. and M.J. Bayarri: Bayesian questions and Bayesian answers in queues.

In J. Bernardo, J. Berger, A. Dawid and A. Smith, editors, Bayesian Statistics

5, pp. 3-23. Oxford, University Press, 1995.

Armero, C. and M.J. Bayarri: 1997. A Bayesian analysis of a queueing system with

unlimited service. Journal of Statistical Planning and Inference, 58, 241-261.

Armero, C. and D. Conesa: 1998. Inference and prediction in bulk arrival queues

and queues with service in stages. Applied Stochastic Models and Data Analysis,

14, 35-46.

Asmussen, S: Applied probability and queues. New York, Wiley, 1987.

Ausin, M.C., M.P. Wiper and R.E. Lillo: . Bayesian estimation for the M/G/1

queue using a phase type approximation. Working Paper, 01-30, Statistics and

Econometrics Series 43, Universidad Carlos III de Madrid, 2001.

Bagchi, T.P. and A.A. Cunningham: 1972. Bayesian approach to the design of

queueing systems. Informs, 10, 36-46.

Bertsimas D.J. and D.N. Nazakato: 1992. Transient and busy period of the GI/G/1

queue: The method of stages. Queueing Systems, 10, 153-184.

Diebolt, J. and C.P. Robert: 1994. Estimation of �nite mixture distributions. Journal

of the Royal Statistical Society, B, 56, 363-375.

Gelfand, A.E. and A.F.M. Smith: 1990. Sampling based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85, 398-409.

Green, P: 1995. Reversible jump MCMC computation and Bayesian model determi-

nation. Biometrika, 82, 711-732.

Hastings, W.K: 1970. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57, 97-109.

Hurn, M., A. Justel and C.P. Robert: 2001. Estimating mixtures of regressions.

Journal of Computational and Graphical Statistics, in press.

Kleinrock, L: Queueing Systems.Volume I: Theory. New York, JohnWiley, 1975.

Lehoczky, J: 1990. Statistical methods. In D. Heyman and M. Sobel, editors,

Stochastic Models, 225-294, North-Holland. Amsterdam.

madrid1.tex; 27/09/2001; 20:00; p.15



16

McGrath, M.F. and N.D. Singpurwalla: 1987. A subjective Bayesian approach to

the theory of queues II - inference and information in M/M/1 queues. Queueing

Systems, 1, 335-353.

McGrath, M.F., D. Gross and N.D. Singpurwalla: 1987. A subjective Bayesian

approach to the theory of queues I - Modeling. Queueing Systems, 1, 317-333.

Muddapur, M.V: 1972. Bayesian estimates of parameters in some queueing models.

Annals of the Institute of Mathematics, 24, 327-331.

Reynolds, J.F: 1973. On estimating the parameters of a birth-death process.

Australian Journal of Statistics, 15, 35-43.

Richardson, S. and P. Green: 1997. On Bayesian analysis of mixtures with an un-

known number of components. Journal of the Royal Statistical Society, B, 59,

731-792.

Rios, D., M.P. Wiper and F. Ruggeri: 1998. Bayesian analysis of M/Er/1 and

M/Hk/1 queues. Queueing Systems, 30, 289-308.

Robert , C: Mixtures of distributions : inference and estimation. In W.R. Gilks,

S.Richardson and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in

Practice, 441-464. London: Chapman & Hall, 1996.

Wiper, M.P: 1998. Bayesian analysis of Er/M/1 and Er/M/c queues. Journal of

Statistical Planning and Inference, 69, 65-79.

Wiper, M.P., D. Rios Insua and F. Ruggeri: 2001. Mixtures of gamma distributions

with applications. Journal of Computational and Graphical Statistics, in press.

madrid1.tex; 27/09/2001; 20:00; p.16


