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Abstract: P -splines were introduced by Eilers & Marx (1996). We conside semi-
parametric models where the smooth part of the model can be described by
P -splines. A mixed model representation is also considered. We set out a simple
strategy for the choice of P -spline parameters ndx, bdeg and pord, and discuss
the use of various criteria for smoothing parameter selection. We illustrate our
remarks with the analysis of a randomised block design.
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1 Introduction

The introduction of B-splines with penalties, known as P -splines, by Eilers
and Marx (1996) provided another approach to non-parametric modelling.
P -splines have many attractive properties amongst which we mention only
their exibility, their ease of computation and their connection to smooth-
ing splines and polynomial regression. The examples discussed by Eilers
and Marx were such that the �tted smooth function was the principal fo-
cus of the analysis. However, in semiparametric models it is common for
the underlying smooth function to be a nuisance parameter; it is the e�ects
of the regressor variables that are of interest.
In this paper we use P -splines to model smooth background variation in
a semiparametric model. The user of P -splines has many choices to make:
the domain, the degree of the P -spline, the order of the penalty, and the
number and location of the knots. Once a particular P -spline has been cho-
sen there is a second choice, the method of smoothing parameter selection.
Eilers and Marx recommend using AIC or GCV but there is considerable
evidence that their application in the semiparametric setting often leads to
undersmoothing; see for example, Hurvich, et al. (1998). We will consider
a number of alternatives to AIC and GCV that might be more suitable in
the semiparametric context.
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As an example we consider a randomised block experiment with a large
number of varieties and low replication. The classical model assumes that
block e�ects are �xed. However, there is a good argument for taking block
e�ects as random, and, in the same fashion, we consider smoothly varying
block e�ects as random and express the semiparametric model as a mixed
model. With this formulation we can choose the level of smoothing by
residual maximum likelihood (REML).

2 Semiparametric models and P -splines

Suppose the variable y depends smoothly on a single variable x then the
nonparametric model for y can be written y = f(x) + � where f(�) is a
smoothly varying function and � is an error term with variance �2. Eil-
ers and Marx (1996) make two assumptions: �rst, with data (xi; yi); i =
1; : : : ; n, they assume that yi �

P
ajBj(xi) where Bj(�) is a set of B-

splines; second, they suppose that the coeÆcients of adjacent B-splines
satisfy certain smoothness conditions which can be expressed in terms of
�nite di�erences of the ai's. Thus, from a least squares perspective, the
coeÆcients, a, are chosen to minimise

S(a) = (y �Ba)0(y �Ba) + �a0D0Da (1)

where D is a di�erence matrix and � is a penalty. For given �, the solution
to this optimisation problem satis�es

(B0B + �D0D)â = B0y (2)

and then ŷ = Bâ = Hy where H is the hat-matrix:

H = B(B0B + �D0D)�1B0: (3)

The extension to the semiparametric case is straightforward. Suppose we
have the model y = X� + f(x) + � then we choose � and a by minimising

S(a; �) = (y �X� �Ba)0(y �X� �Ba) + �a0D0Da: (4)

The solution to this optimisation problem satis�es

�
X 0X X 0B
B0X B0B + �D0D

� �
�̂
â

�
=

�
X 0

B0

�
y (5)

with hat-matrix HX given by

HX = H + (I �H)X[X 0(I �H)X]�1X 0(I �H) (6)

where H is de�ned in (3).
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In the case of a randomised block design with r blocks we want to �t a
separate smooth function Bai, i = 1; :::; r, to model underlying fertility in
each block. We can either use a distinct penalty �i for each block in which
case we minimise

S(a; �) =
rX

i=1

(y �Xi� �Bai)
0(y �Xi� �Bai) +

rX
i=1

�ia
0

iD
0Dai; (7)

or a common penalty � across blocks, in which case we minimise (7) with
�i = �. In both cases we obtain a solution of the form (5) but with B and
D replaced by block diagonal matrices, the number of such blocks being
equal to r, the number of blocks in the design.
One practical point is that, since B1 = 1, it follows that H1 = 1, and so
1 must not be in the span of X; in particular, intercept and block e�ects
must not be �tted in X.

3 P -splines as mixed models

In order to express the nonparametric trend Ba as the sum of a �xed and
random e�ect we need to write a =Wb+ Zu where [W : Z] is square and
non-singular andW and Z are such that whenWb+Zu is substituted for a
in (2) a set of mixed model equations result. A suitable choice ofW and Z is
as follows: let w0 = (1; 2; : : : ; k) where k is the number of columns of B and
de�ne W = (1; w; w2; : : : ; wq�1) where q is the order of the penalty; de�ne
Z = D0(DD0)�1. Then [W : Z] is square and non-singular and furthermore
equation (2) reduces to the mixed model equations for the mixed model

y = BWb+BZu+ � (8)

where u � N (0; �2uI) is a random e�ect and � � N (0; �2I). The same
transformation reduces (5) to the mixed model equations for

y = X� +BWb+BZu+ � (9)

where � and b are �xed e�ects and u is a random e�ect. The smoothing
parameter � = �2=�2u and so � can be chosen by maximising the residual
loglikelihood `(�2; �)

� 1

2
log j�j� 1

2
log jX 0��1Xj� y0(��1���1X(X 0��1X)�1X 0��1)y (10)

where, from (9), X is [X : BW ] and � = �2(I + ��1BZZ 0B0).
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FIGURE 1. AICC against Trace(HX) for ndx = 10, bdeg = 2, 3, pord = 1, 2, 3

4 An example

4.1 Choice of ndx, bdeg and pord

We use data on wheat yields from a trial conducted in Mexico with a
randomised complete block design; see Besag and Higden (1999). A plot
of the residuals from the standard variety and block model against plot
number provides clear evidence of a fertility trend in each block. We ex-
amine the e�ectiveness of a number of parameterisations of P -splines at
controlling trend in these data. In the notation of Hurvich, et al. (1998)
we choose � to minimise functions of the form log(�̂2) +  (HX) where
�̂2 = y0(I � HX)

2y=n,  (HX) is a penalty function and HX is the hat-
matrix de�ned in (6). Let t = tr(HX)=n. We consider the following choices
of  (HX): �2 log(1� t) (GCV), 2t (AIC), � log(1� 2t) (Rice), (2tr(HX)+
2)=(n � tr(HX) � 2) (AICC), and 2=(1 � t) AICL. Note that AICL is the
limit of AICC as n!1 with tr(HX)=n �nite.
Following the notation of Eilers and Marx (1996) we denote the number
of intervals per block by ndx, the degree of the P -spline by bdeg and the
order of the penalty by pord. How does one decide on suitable values for
ndx, bdeg and pord? In the simple smoothing situation Eilers and Marx
recommend plotting AIC against the trace of H. However, this is unlikely
to perform well in the semiparametric setting, so instead, we plot the AICC

criterion of Hurvich, et al. (1998) against tr(HX). Figure 1 suggests that,
with ndx = 10, we should take pord = 2 and bdeg = 2 or 3. For simplicity
we will �x on bdeg = 3. Now, with pord = 2 and bdeg = 3, Fig. 2 gives
the same plot for ndx = 10, 25 and 50. The basic philosophy of P -spline
methodology is that the penalty will look after the number of knots so
we would not expect much di�erence between models with di�erent ndx;
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FIGURE 2. AICC against Trace(HX) for ndx = 10, 25, 50, bdeg = 3, pord = 2

this is borne out by Fig. 2. We will �x on ndx = 10 for two reasons:
�rst, there is a small preference for ndx = 10 in Fig. 2; second, there is
a substantial computational advantage with ndx = 10 over both of the
other values. For example, with ndx = 50, the unrestrained model y �
X� + Ba has 208 parameters compared to 88 with ndx = 10; of course,
with the appropriate penalty both these models have an e�ective dimension
of approximately 58, as can be seen in Figs. 1 and 2.

4.2 Smoothing parameter selection

We now consider smoothing parameter selection within the family of models
with ndx = 10, bdeg = 3 and pord = 2. Figure 3 shows the �tted trend
chosen by AICC (� = 29, Tr(HX) = 58). Other criteria can result in very
di�erent �ts: AIC (� = 0:005, Tr(HX) = 82) is close to interpolation;
GCV (� = 1:9, Tr(HX) = 63); the mixed model (REML) gives � = 9:3,
Tr(HX) = 60. Figure 4 is a standardised residual plot after �tting varieties
and trend again with � = 29. The plot looks satisfactory.
This analysis assumes a common � for each block but it is possible that
the trend in each block might require smoothing on a di�erent scale, i.e.
distinct �. If we adopt the mixed model formulation we can test H0 : �i = �
v H1 : �i 6= � with REML. Under H0, we have � = 9:3, while �1 = 11:8,
�2 = 14:8 and �3 = 4:4 under H1; the residual loglikelihood increases by
0.2 so there is little evidence that distinct � are required.
We look now at the e�ect on variety means of modelling trend. Variety 18
is the variety which is most advantaged by the randomisation of the trial,
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in the sense that it has the largest downward adjustment (irrespective of
the choice of �). Figure 5 shows the adjustments for 0 < � < 60. Also
shown are the adjustments for variety 48, the most disadvantaged variety.
The adjustments to these varieties are very substantial and have a marked
e�ect on their rankings. We note also that the size of the adjustments
depends very much on the choice of � with AIC and GCV resulting in
much larger adjustments than the other criteria.
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FIGURE 3. Fitted trend and residuals y � X�̂ �tted by AICC (� = 29) with
ndx = 10, bdeg = 3 and pord = 2

Figure 6 shows how the average standard error of di�erences (SED) of
variety means depends on �. We note the following: the SED for the simple
block model is 0.59 so failure to remove the strong trend results in serious
overestimation of the SED; the average SED does not vary greatly with �
over the displayed range; the average SED given by AICC (and AICL) and
REML are very close; as �!1 the average SED tends to 0.39, the value
given by �tting a linear e�ect for blocks.

5 Concluding remarks

In this short paper we have considered semiparametric models where the
smooth part of the model can be described by P -splines. We have set out a
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2y=(n� tr(HX))

Lambda

Sh
rin

ka
ge

0 10 20 30 40 50 60

0.
4

0.
5

0.
6

0.
7

0.
8

REMLGCV AIC_L AIC_C RICE

Variety 18: mean 3.06

Variety 48: mean 1.79

FIGURE 5. Shrinkage of variety means for advantaged variety 18 and disadvan-
taged variety 48; ndx = 10, bdeg = 3, pord = 2.

simple strategy for the choice of P -spline parameters ndx, bdeg and pord,
and discussed the use of various criteria for smoothing parameter selection.
In our example, we described the e�ect of the smoothing parameter on
both the estimates of variety means and on their average standard errors.
One feature of P -splines which we �nd particularly appealling is their ease
of calculation. Equation (5) is at the heart of all calculations and, for given
�, this is a simple linear system.
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