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Abstract
This article introduces two new types of prediction errors in time series: the filtered prediction
errors and the deletion prediction errors. These two prediction errors are obtained in the same
sample used for estimation, but in such away that they share some common properties with out of
sample prediction errors. It is proved that the filtered prediction errors are uncorrelated, up to
terms of magnitude order O(T™), with the in sample innovations, a property that share with the
out-of-sample prediction errors. On the other hand, deletion prediction errors assume that the
values to be predicted are unobserved, a property that they also share with out-of-sample
prediction errors. It is shown that these prediction errors can be computed with parameters
estimated by assuming innovative or additive outliers, respectively, at the points to be predicted.
Then the prediction errors are obtained by running the procedure for al the points in the sample
of data. Two applications of these new prediction errors are presented. The first is the estimation
and comparison of the prediction mean squared errors of competing predictors. The second is the
determination of the order of an ARMA model. In the two applications the proposed filtered
prediction errors have some advantages over alternative existing methods..
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1 Introduction

Prediction errors are of clear interest in every stage of time series model building, as well as in model comparison.
There are several procedures for identification of time series models based on information criteria constructed
with the residual variance associated with a fitted model (see, for instance, Koreisha & Pukkila 1995, and
references therein). Also, model comparison and model selection are mainly done through the comparison of
out-of sample predictive accuracy (Chong and Hendry, 1986; Diebold and Mariano, 1995; West, 1996; Ashley,
1998; West and McCracken, 1998;. Clark and McCracken, 1999; White, 2000), as well as the comparison of

in-sample residuals (Ashley et al., 1980).

The above mentioned procedures use either in-sample or out-of-sample prediction errors. In-sample predic-
tion errors have the drawback of using the same information twice: for estimating the parameters of the model
and for computing the prediction errors. This data reuse decreases the possibility of detecting misspecifications,
a problem called data-snooping bias, (Lo and MacKinlay, 1990; White, 2000) and tends to select overparame-

terized models with lower values of residual variance.

Out-of-sample prediction errors, on the other hand, can avoid such data-snooping bias because the sub-
sample used for prediction contains independent information to evaluate the model. However, they can only
be obtained in a portion of the sample, inducing a larger variance in the statistics built with them than with
the in-sample prediction errors. For instance, we may wrongly conclude that the out-of-sample predictive per-
formance of several predictors is comparable. Besides, as a portion of the sample is used for estimation, the
sampling variability of the estimates will also increase, leading to select models that are too parsimonious, and
therefore suboptimal. This added variance induced by splitting the sample of data will be called data-splitting
variance. Thus, in-sample and out-of-sample prediction errors can have opposite effects, and we have to choose

between procedures that incur on data-snooping bias or data-splitting variance.

This article proposes two alternative procedures to evaluate the prediction errors of a time series model.
Both are based on in-sample forecasting errors, but evaluated in such a way that the information of the points

to be predicted is avoided in the estimation of the model. The first proposal are the filtered prediction errors.



They are computed by assuming that the innovation at the point to be predicted is equal to zero. This is
equivalent to build a model that treats the points to be predicted as innovational outliers. It can be proved
that the asymptotic covariance of the prediction and the innovation of the point to be predicted is of magnitude
order O(T~2), whereas with classical residuals it is O(T~1). Consequently, the resulting prediction errors are
very close to out-of-sample ones. Therefore, since the influence of the predicted points in the predictions is
marginal (and asymptotically null), the data-snooping bias is clearly diminished. The filtered prediction errors
are obtained by running the procedure for all the points in the sample of data. The second proposal are the
deletion prediction errors. They are computed by assuming that the points to be predicted are missing values.
This is equivalent to build a model that treats the points to be predicted as additive outliers. As they do not
take into account in the estimation the value that we want to forecast, again they are closer to out-of-sample
residuals than the ordinary residuals. We can obtain almost as many filtered or deleted prediction errors as the

sample size, and thus in both cases the data-splitting variance is avoided.

The rest of the paper is organized as follows. Section 2 introduces notation and definitions for the in-sample
and out-of-sample prediction errors. Section 3 defines the filtered prediction errors and Section 4 the deletion
prediction errors. These two types of prediction errors are compared in Section 5 to estimate the prediction
mean squared error, and in Section 6 they are used for model selection. Finally, Section 7 includes some final

remarks.

2 In sample and out-of sample prediction errors

Suppose that an observed time series, Z,, = (21, ..., z»)’ is represented by a model with parameter vector A. Let

us denote the h—steps ahead forecasts from observation z; generated by this model by
Zepn (A) = Zeen(X, Zy),

where the parameter vector is assumed to be known, Z; = (2,11, ..., 2:)’, < t < n, is the vector of past values
of the time series required by the predictor Zyyp, and 21, ..., 2, is a set of initial values. Let us also define the
population prediction errors as

€t+h = Zt+h — 5'\t+h()‘)-



When A is unknown, the prediction errors can be defined in various ways. If Xn = F(Z,) is some estimate of
the parameters using the whole span of data, we obtain the h—steps ahead forecasts

~

Zith ()\n) = gt—l—h(;\ny Zy),
and the classical residuals defined by
@t+1:2’t+1*5‘}+1(xn)7 r+1<t<n-—-1

These residuals are also the in-sample one step ahead forecast errors. The residuals depends on the estimation
method, and we assume that parameters are estimated by minimizing > e a2, that is by least squares (LS);
or by maximum likelihood (ML). If we are interested in h—step ahead forecasts, we can define the h—residuals

or in-sample h—step ahead prediction errors by
é;r_l,'_h = Zt+h — ZA’t_;'_h(An), r S t S n — h, (1)

with a1 = éinﬂ. In this situation, the parameter vector could alternatively be estimated using a criteria related
with the horizon, say X, = j\n, n = Fn(Z,), for instance minimizing éf '\, instead of S é? +1- The resulting

residuals can be used in adaptive forecasting, see i.e. Tiao and Tsay (1994).

Another type of residuals of common use in time series analysis are the predictive residuals or out of sample
prediction errors. They are defined by

~

ét(hymyj):Zt+h72t+h(A7n:Zj): rgtgn—h,

where Xm = F(Z,,), m <t is some estimation of the parameters using a set of observations Z,, previous to
z11, and Z;, m < j <t, are the past values that are assumed known in order to forecast z.yp. These residuals
are often used for checking the forecast precision of the fitted model with out of sample data. Note that the
parameters used to build the forecasts have been estimated without including the data to be forecasted. The

most important case of out of sample prediction errors are with m = j = t,
é?_?_th = ét(h7t7t) = Zt+h — gt_;,_h(xt, Zt), r S t S n—~h (2)

in which all the data previous to z;yjare included in the computation of the parameters (see, i.e., West, 1996,

for alternative schemes to obtain out-of-sample residuals).



3 Filtered prediction errors

Let 2z, t = 1,...,n, be the observed time series following the process and let z7yp, 1 < (T + h) < n, be the
point to be predicted from z7. For simplicity we consider, first, that the model is the AR(1), z: = ¢pz;—1 + ax,

h

where |p| < 1 and a; is white noise. The optimal predictor is, then, Zr1 (P, Z7) = ¢ 2y and the population

prediction error is ery, where it holds that eryp = arip+ daryp—1+--- + d)h_laTH.

The out-of-sample approach to estimate erp would first estimate the parameter z?)T = F(Zr), based on
the first T" observations, obtain the predictor 23}1’1 = E\TJF;,(QAST, Zr) = q@’%zT and then compute the prediction
error é‘:’p‘jﬁh = zpip — q@’%zT = erin + (¢ — q@%)zT, where the first and second term are independent. On
the other hand, in the in-sample approach, we first estimate z?)n = F(Z,) with the n observations, then build
21Tn+h = 2T+h(qA5n, Zr) = QASZZT and compute the prediction error éij}_‘_h = ZTJF]-L*QASZZT = eT+h+(q‘>h7qA52)zT where

now the first and second term are correlated because q@n already contains, implicitly, the values ar1, ..., ar4p.

We could alternatively estimate the prediction error by using an estimate that (i) does not include the
information provided by ar41,...,ar+n, as in the case of é%‘ﬂﬁ n» and (ii) includes the information provided by
QT4 hi1, - Ay, in order to improve the accuracy of the estimations. This can be done by building a filtered series
y; (non-observable) that is free from the effect of the innovations ar.q,...,ar4p, as follows. For ¢t = 1,..., T}
we have that y, = z;. For t =T + 1, ...,T + h; the series y; should ignore the information of the corresponding

innovations assuming that ap;q = --- = apyp = 0. Finally, for t > T + h, the series y, would take again into

account the contemporaneous innovations. Then,

Yo = zZ=¢y—1+tay; t=2,..,T,
yry1 = ¢z = dyr,
yrin = ¢z = yr,
ve = ¢ye1tar; t=T+h+1,.,n (3)

Figure 1 shows an example of this filtered series to evaluate the five-step-ahead prediction error from t = 25.

The observed series is a realization of an AR(1) with ¢ = 0.9 and n = 50. The solid line represents the observed



Observed and filtered series. T=25, h=5.
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Figure 1: Observed and filtered series from the model z; = 0.92:—1 + a:, to estimate ea5(5).

series and the filtered series is represented by the dotted line with the (+) symbol. The filtered series for
t =1,...,25 is still the original series. For t = 26, ..., 30, the filtered series are the predictions from ¢ = 25, and
are represented by circles. For ¢ = 31, ..., n, the filtered series is obtained following (3).

This filtered series can be extended to a more general ARMA case. Let us assume that z; represents

deviations from some mean p and that it admits the ARMA(p, q) representation:
¢(B)z = 0(B)a, (4)

where B is the backshift operator; ¢(B) = (1-Y.1_, #; B") and (B) = (1—->_%_, 6, B°) are polynomial operators
on B such that ¢(B) = 0 and 6(B) = 0 have all their roots outside the unit circle, and a, be a sequence of

independent identically distributed random variables with zero mean and variance o2. Let us define

h
T+j
E+ = Qy — ZaT+th( )

j=1
where Dgto) =1ift =tp and DS‘O) = 0 otherwise. The sequence ¢; verifiese; = a; if t =1,...,. T, T+h+1,...,n
and e; = 0 otherwise. The filtered series that do not contain the information of the innovations azy1,...,arn

is, therefore,
ye = 6~ (B)O(B)er = U(B)er, (5)

where 1)(B) = ¢~ '(B)0(B). The filtered series y; follows, then, the model

h
d(B)yr = 0(B) | ar — ZGTJert(TH) . (6)

Jj=1



Under the assumption of normality of the disturbances, the parameters of the filtered series can be estimated
by ML. Let us denote ¢= (¢1,...,0,)", 0 = (61,...,6,)". From (5), and taking initial values yo = (y1 = 21,92 =
22, ...,Yp = 2zp) and ap = (ap = 0,ap—1 =0, ...,ap_g+1 = 0), the conditional log-likelihood can be expressed for

a given parameter values ¢, 0 as:

~ . s n—p—~h n—p—~h 1 ..
Z l(yi|yi71:"'ay17a0:¢:9) :7L1n27{7¢1n0—27_25(¢79)7 (7)
, 2 2 20
1=p+1
i£T+1,... T+h
where

seo- Y @ ®
i=p+1
i#ET+1,.., T+h
Following Chang et al (1988), the expression (7) coincides with the concentrated log-likelihood of a model of
the original observed series z; with innovational outliers at ¢t =T + 1,...,T + h. Then, the ML estimation of

the parameters free of the effects of ar1,...,ar4s can easily be obtained by assuming innovational outliers at

points T'+ 1, ..., T + h, which leads to the model

h
$(B)z = 6(B) <at +3° wiD§T+i)> : (9)

=1

< (1o
Alternatively, a LS estimator could be obtained by minimizing the squared sum (8). Let us denote )\g )

"

((2),2[0),9,([0))/, where (}5210) = (q@%jo), e AZ(,IO))I and @gO)E (églo), ...,ééjo))/, to the parameter vector of
ML or LS estimates of A = (¢, 0)" in (9), where the subscript indicates that the estimator is based in the whole
span of data and the superscript shows that the estimation has been made treating the points to be predicted
as innovational outliers. Then, following Mann and Wald (1943),

LAY

kg3

Although the estimates are different at each T" and h, this aspect is not considered, for simplicity, in the notation.
Let 28 — 0., (A7 72) be the prediction of f ing the estimated model i) (B)z, =

T = Zr4n (A, ,Z7) be the prediction of zry; from 27 using the estimated model ¢s ' (B)z =
HA,(ZIO) (B)ay, and let é%lf}‘; be the corresponding estimated prediction error. This prediction error will be denoted

as filtered prediction errors since it is obtained from a series that has been filtered out from the innovations of

the observations to be predicted. It can alternatively be calculated from the estimates w; in (9), since it holds

that these estimates are the predictions of the innovations ary1, ..., ap4p, and also that aryq =--- = agypn =0.
Then,

~filter A NU. N ~(IO) ~(IO) A

e — 2rin — Frin <>\n 7ZT) =y, + ¢£ Moy 4+ 1#2,1)101, (10)



After estimating model (9) for T = p+ 1,...,n; we will have n — p — h h-steps ahead filtered prediction errors.

Applying the results in Pefia (1990) it can be shown that, for h =1,

sfilter éiIIﬂIJrl
T+1 (1 _ dT+1) ) ( )

sfilter

where dpyq is the so-called leverage of the observation. Therefore, as 1/n < dpy; < 1 we have that |é7. iy

>

|éi{«‘ +1| . Expression (11) helps to give a geometric interpretation of the difference between classical residuals and
the proposed filtered prediction errors. It is well known that the higher the leverage d; of an observation z,
the larger its influence on the parameter estimation and, hence, the larger the data-snooping bias in predicting
that observation with the estimated predictor. Expression (11) says that each residual should be corrected by

that leverage in order to avoid the effect of the observation in the estimation.

4 Deletion prediction errors

A second natural way to estimate the parameters free of the effect of the observations zpi1 . 2zrin is. to
assume that these observations are missing values. Pefia (1987) showed that the parameters obtained under this
hypothesis are, for large sample size, the same as those obtained assuming additive outliers at these positions.

Thus, we can obtain parameters estimates that do not contain the values z71,... 2744, by estimating the model
h
-
a =Y w D" +y(B)a,
=1
or, equivalently,

h
$(B) | 2= > w; D" | = 0(B)ay. (12)
j=1

? n n

~ ~ ~ ! ~ ~ ~ ! ~ ~ ~ !
Let us denote by AL — (qsff‘O) 9,“‘0))  with ¢ = ( (40) ...,¢§;“O>) and 097 = (af‘o), ...,05"‘0)) ,
to the parameter vector of ML or LS estimates of A = (¢,0)’ in (12), where the subscript indicates that the
estimator is based in the whole span of data and the superscript shows that the estimation has been made

treating the points to be predicted as additive outliers. Then,

< (A0
A9 2, 5
We define then the deletion prediction errors by
& 4n = 2r4n — Fns r<T <n-h,



< (A
with Q%ih = Zpap ()\2 O>, ZT). These prediction errors, for h = 1, where used by Pena (1990) for building

influence measures in time series. They are closely related with the conditional residuals (Haslett and Hayes,
1998; Hasslet, 1999), derived for linear models with general covariance structure, and with applications in many
fields (see e.g. Cressi, 1991). However, these last residuals are computed assuming that the covariance matrix
is known, or estimated using the whole sample, and so they are less useful to obtain an estimation of h—steps

ahead prediction errors free of the effect of a set of observations.

5 Application to the estimation of MSPE

5.1 General considerations

In this section, we apply the proposed prediction errors, filtered and deletion, to the evaluation of the mean
squared prediction error (MSPE) and to the comparison of competing predictors. It is well known that the
comparison of in-sample MSPEs tend to favor highly parameterized models and for this reason forecast-accuracy
comparison is usually carried out by splitting the sample and estimating the predictors in the first part and
evaluating the MSPEs on the second. This out-of-sample comparison should also be made with caution, since
there is the danger of incurring in just the opposite effect. Namely, the larger sampling variability induced for

splitting the sample will tend to mask actual features.

The potential advantage of estimating the MSPEs with the filtered prediction errors comes from the following

result, that it is proved in the Appendix.

Proposition 1 Let z; = ¢z;_1 + as, with |¢| < 1 and a; is a sequence of martingale differences with zero mean

and variance o2. Let 2%7’“ be the one-step ahead prediction of zp, 1 < T + 1 < n, using the LS estimator (7),,,

sfilter 0)

N¢
and let 2., be the prediction using the estimator (;52 that minimizes (8). Then

a) E{#,ari} =0T,
b Bl ) — 0T ).

This result indicates that the information that the predictor 2%1_7_611 contains about the future innovation
ar41, due to the estimation process, is much lower than the usual in-sample predictor 259 ', -The key element

in the proof of this proposition is that (8) explicitly excludes the residuals corresponding to the point to be

predicted. Therefore, it seems reasonable to conjecture similar results (with appropriate moments restrictions



on a;) in more general situations.

When using deletion prediction error, we explicitly get rid of the observations to be predicted zri1, ..., 2744.

For, instance, in the AR(1) case and for h = 1, we would use the estimator (obtained with a recursive procedure)

n
o - Dizgris
Dot i
where vy = z; for t ZT+1, and 741 = q/‘;(AO) (1+ $(AO)2)*1(2T+1 + z7_1). The estimated parameter does not
contain explicitly the data zp 1. However, zp t , k > 1, is correlated with zp,1 and, therefore, its information
sdel

is not completely discarded. Hence, if the process has a strong serial correlation, the predictor 277, can still

incur in a significative data-snooping bias.

5.2 Empirical comparison of MSPEs in nested models

In this subsection, we compare in a simulation study the properties of the estimated MSPE of competing
predictors using different types of prediction errors. The first type is the in-sample prediction error, éﬁ_h,
obtained from the LS estimation of the predictor 2;1 ;- From these prediction errors we compute two estimators
of MSPE : the average of squared prediction errors, yin (h), and the corrected by degrees of freedom average,

Vin-¢(p). For instance, for an AR(p) they are

Vin(p 7?:_ph (éﬁh)Q 13
A A (13)

rin-c (rin ’I’L—h—p+1
Vpre(h) =V, (h) (14)

n—h—-2p+1
The second type is the out-of-sample prediction error. For computing them, the estimation subsample

increases recursively, and the models are re-estimated by LS in order to include all past data prior to the

forecast origin. We compute two estimators of MSPE. We denote é‘t)f,f’o to the out-of-sample prediction error

when the initial estimation subsample is the 50% of the total sample, and é?f;;%

when the initial estimation
subsample is the 75% of the total sample. In both cases, the MSPE is estimated by averaging the squared

prediction errors, and the estimates are denoted as VOUt‘5O(h) and V°“t‘75(h), respectively. In the case of an



AR(p) they are

o5 (E235°0)°
Srout-50 h) = =0.5n b 1
V) = e T s (152)

—h N _ 2
i (€3%7°)

n—h—1[0.75n] +1°

VU () (15b)

where [-] represents the integer part. Finally, the third and fourth type of prediction errors are the filtered

prediction errors, é%lfﬁ and the deletion prediction errors é‘%f‘j_h, that are also obtained using LS estimation and

the MSPE is computed by averaging the available squared prediction errors. The corresponding estimators are

n—h (éﬁlter) 2

Prhilter gy _ &=t=p \tth 16

() = SR (16)
n—h (sdel )2

~ (&

Prdel(p) — &=t=p (& ) 17

() n—h—p+1 (17)

In the first experiment, the following AR(2) model is used: (1—0.9B)(1—¢B)z; = a;, where a; ~ N(0,1), and
¢ =0.3,0.2,0.1,0.0. Two competing predictors, an AR(1) and an AR(2), estimated by LS, are used to generate
predictions at h =1, ...,5 (although only h = 1,5 will be reported). In each replication, we generate a random
sample of the process of size 205. The first 100 observations are dropped to assure stationary initial conditions.
The subsequent n = 100 observations are used to estimate the predictors and the prediction errors. With these
prediction errors we estimate the MSPE for each predictor using expressions (13) to (17) and we will denote by
VP (p = 1,2) to these estimates when derived from the AR(p) model. Finally, the last 5 observations are used
to evaluate the actual out-of-sample prediction errors of the estimated predictors. The experiment has been
run two times. In the first run, the population out-of-sample MSPE of the estimated predictors is estimated by
averaging the squared errors, at each horizon, of predicting those five out-of-sample observations along 100,000
replications. Let us denote by V,, (p = 1,2) to these empirical MSPEs, at each horizon. In the second run, we

generate 20,000 replications and obtain, in each replication, the estimates (13) to (17). With these 20,000 set of

estimates we estimate some features like bias and mean squared error (MSE) of Vp using V,, as population values.

Tables 1 and 2 summarize the results. The first four columns of Table 1 shows the empirical bias, for
h=1and h =5, of Vp- This empirical bias is computed as the sampling average of Vp — V,, along the 20,000

replications. Columns fifth to eighth show the empirical mean squared error (MSE) of these estimators Vp as

10



. 2
the average of (V;) — V;)) along the replications. From this table we can extract the following conclusions:

1. Columns one to four show that, as expected, the estimator ﬁ;n has a large negative bias that it is larger

in the model with more parameters. This confirms the well known result that Vpin underestimate the

true MSPE. This effect is partly alleviated with Vpin‘c and Vpdel. However, their negative bias is still large.

Regarding Vljn‘c, it should be noted that its correction for degrees of freedom, which is designed to diminish

the bias of the one-step-ahead prediction error, can no longer be appropriate if A > 1. It is well known

(see, i.e., Fuller and Hasza, 1981) that the bias of the in-sample estimator of MSPE depends for 2 > 1 on

the dynamic structure of the model, and cannot be avoided just by a degrees-of-freedom correction. It can

then be said that the performance of the estimator V;n‘c at h > 1 is highly model-dependent. This can

explain why the relative behavior of the bias of 17;“‘6 with respect to f/lfn is better at h = 1. On the other

hand, estimators V,out-50, Veut-75

, and f/;,ﬁlter significantly reduces the bias. This bias is, in general, lower

for 1715’““50. It can be concluded that V;n, f/;n‘c, and Vpdel have high negative bias and f/po‘lt‘w, f/};’“”‘r’,

and IA/;,ﬁlter have low bias. Therefore, as expected from the theory, the proposed Vpﬁlte‘" significantly reduces

the data snooping bias with respect to other in-sample procedures.

2. Columns five to eight show that the estimators based on out-of-sample prediction errors have very large

MSE, whereas estimators that use the whole span of data are, as expected, more accurate. At h = 1, these

estimators have comparable MSE with a ranking that depends on the model. At h = 5, the estimators

with lower MSE are ‘A/Z}n—c and Vpin. At h = 5, the relative increment of MSE of Vpﬁlte‘" and Vpdel with respect

to f/;n and V;“‘C can be explained by the added variability provoked by the intervention variables in the

estimation.

We can conclude that the estimator Vpﬁlter offers a good compromise between bias and MSE. Estimators

with some lower bias (Vp"m‘f’o and 17;;"“‘75) incur into a very large MSE, and estimators with some lower MSE,

incur into large negative bias.

Table 2 shows the ability of the different estimators of MSPE to detect the more efficient predictor, based

on the previous experiment. Let us denote d = Vo — V4 to the population MSPE differential. This value is

estimated using the empirical values V,, obtained with the 100,000 replications of the first run of the experiment.

Positive values of d means that the estimated AR(1) is the efficient predictor, whereas negative values means

11



that the AR(2) is more efficient. It can be seen in Table 2 that for ¢ = 0.3 and ¢ = 0.2 the AR(2) seems to
be more efficient, whereas for ¢ = 0.1 and ¢ = 0.0, the AR(1) would be preferred. For each replication of the
second run of the experiment, we compute the differential d="Vo— Vl, for each estimator of MSPE. Columns
one and two of Table 2 show, for each estimator and value of ¢, the sampling average of the 20,000 replications
of d (denoted as E(d)). Columns three and four show the empirical average difference E(d— d). This figure is
the sampling average of d—d along the 20,000 replications. Negative values of F (czf d) means that there is a
bias toward the AR(2), and positive values represents a bias toward the AR(1). In a similar fashion, columns
five and six report the empirical MSE of d. Finally, the last two columns report the proportion of times that
the AR(2) predictor was found to have lower empirical MSPE (and therefore would be preferred), for each
estimator, than the AR(1). A good estimator of MSPE should have high values in these two last columns for
¢ = 0.3 and ¢ = 0.2, but low values for ¢ = 0.1 and ¢ = 0.0. The following conclusions can be obtained from

this table:

) f/}in, has a biased toward the AR(2). In the last two columns, the proportion of times that AR(2) is found
to be more efficient than the AR(1) is very high. This is especially relevant with ¢ = 0.1 and ¢ = 0.0,
where the AR(2) predictor is no longer efficient. This is in agreement with columns 1 to 4 of Table 1 that
showed that Vzin always incurs in negative bias in the estimation of the MSPE. Besides, this negative bias
is much larger in the AR(2). As a consequence, the estimated loss differential d has, on average, large
negative values (columns 1 and 2) which are always lower than the actual ones (columns 3 and 4 ). Then,
although the estimators of MSPE and the differential are very efficient (see columns 5 to 8 in Table 1
and columns 5 and 6 in Table 2), the high negative bias leads to the perception that the AR(2) is more

efficient than it actually is.

e Estimators VZ}H‘C and Vpdel produce a very efficient estimation of d with lower bias than Vpi“ (columns 3 to
6 ). At h =1 their behavior is very similar and they still incur in high negative bias. As a consequence,
they choose the AR(2) with probability larger than 0.5 when ¢ = 0.1, whereas the efficient predictor is
the AR(1). Also, when ¢ = 0, they still chose the AR(2) in more than 35% of the replications. At h =5,
their relative behavior differs. Regarding Vpdel, it should be noted that this estimator can still incur in

data-snooping bias, since the effect of the innovations at the predicted points is not efficiently discarded.
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Besides, since such an effect will depend on the dynamic of the process, the performance of f/;jdel can be
highly model-dependent. This model-dependency can also explain the different relative behavior of this

estimator at h = 1 with respect to h = 5.

The proposed Vpﬁlter has a high tendency to choose the more efficient predictor (see columns 7 and 8).
This can be explained by the combination of low values of E(d — d) and E [(cz - d)Q] . When ¢ = 0.3 this
estimator leads to chose the more efficient AR(2) in a proportion similar to other in-sample estimators.
When ¢ = 0.0, this estimator leads to chose the AR(1) in a proportion similar to out-of-sample estimators.

Besides, when ¢ = 0.1, this estimator leads to chose the AR(1) both at h =1 and h = 5.

The out-of-sample estimators ‘};)out-50 and Vp"“t‘m tend to favor the AR(1) model. This is a consequence of
the mentioned data-splitting variance: due to the lower amount of available data, the more parsimonious
model seems to be more efficient than they would be if the whole span of data where used. The empirical
E [(d — d)Q] is high, especially at h = 5. At h = 1, their tendency to the AR(1) is confirmed in column
7. For instance, when ¢ = 0.3, these estimator chose the AR(1) almost 50% of the times. At h = 5 the
high variability (large values of E [(cz - d)Q] ) can explain the low discriminating power of these estimators
with respect to h =1 (column 7 and 8). Therefore, although their ability to detect the efficient predictor

is bigger than with the in-sample residuals, their performance is poorer than the proposed Vpﬁlter(h).

To better understand the differences between the alternative estimators we have performed two more ex-

periments where there are more than two competing models. In the first experiment, the competing predictors

are an AR(1), an AR(2), and an AR(3). The true model is the AR(2): (1 —0.9B)(1 — ¢B)y, = a;, with

¢ = 0.3,0.1. In the last experiment the selection is an AR(p) with p = 1,2,...,5, when the true model is the

AR(3): (1—-0.9B)(1—-0.5B)(1 — ¢B)y; = az, with ¢ = 0.5,0.1. The experiments have the same structure than

the previous one. The population MSPE of each estimated predictor is estimated with 100,000 replications and

the proportion of times that each predictor is found to have lower estimated MSPE, for each estimator, is made

with 20,000 replications. Results for the first experiment are summarize in Table 3, Panel A. From this table,

the following can be concluded:

e When ¢ = 0.3, the best predictor is the AR(2). The proposed IA/pﬁlter is the estimator that chooses this

predictor with highest probability (0.698 at h = 1 and 0.505 at h = 5). The second choice for this estimator

13



is, at h = 1 the AR(3), which is also the second best predictor. However, at h = 5 it select the AR(1)
and the AR(3) with similar proportion. The remaining estimators select the AR(2) as best predictor with
lower probability than Vpﬁlter for quite different reasons. The in-sample estimators f/;n and Vpin‘c have a
higher preference for the overparameterized AR(3), especially X%,in; whereas the out-of-sample estimators
have a higher preference for the parsimonious AR(1). The out-of-sample estimators clearly select the
AR(1) as their second best predictor even though it is the least efficient. The behavior of the estimator

Vpdel is similar to Vpin‘c at h = 1. At h = 5, however, this estimator has very low discriminating power.

e When ¢ = 0.1, the best predictor is the AR(1). In this case, the estimators that chooses this predictor
with highest probability at h = 1 are IA/pout‘E’O and then the proposed Vpﬁlter. At h = 5, the estimator that
chooses the AR(1) with highest probability is %ﬁlter. The out-of-sample estimators have, in this case, two
reasons to choose the AR(1): it is very efficient and it is more parsimonious. This explains why they have
better relative performance with respect to the case with ¢ = 0.3. The remaining in-sample estimators
completely fail, at A = 1, to select the efficient predictor, due to their bias toward the more parameter-
ized (and inefficient) models. However, at h = 5, V;n‘c and Vpdel show a preference toward the AR(1),
whereas Vpin still prefers the overparameterized AR(3). The relative behavior of V;‘l‘c and Vpdel with h is,
therefore, different with ¢ = 0.3 and ¢ = 0.1. This behavior is confusing and can be explained by the high
model-dependency of these estimators. Therefore, in a real situation, it could be difficult to foresee the

performance of these estimators.

The results for the last experiment are summarized in Table 4, Panel A. For the sake of brevity, only
h = 1 is reported. The conclusions of this experiment are similar to the previous one. With ¢ = 0.5 the
more efficient predictor is the AR(3) and the proposed Vpﬁlter is the estimator that select this model with
highest probability. The remaining in-sample estimators have worse performance for their tendency to select
overparameterized models. Conversely, the out-of-sample estimators show a larger tendency to chose the more
parsimonious models, although they are less efficient. With ¢ = 0.1, the AR(2) is more efficient. As before, the

best estimators are V;)O“t‘m and V;,ﬁlter. The remaining estimators show a much lower discriminating power.
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6 Application to order selection

Many criteria for selecting the true orders p, ¢ in ARMA(p, ¢) models have been proposed, see i.e. Choi (1992).
The motivation for using these criteria is, again, to avoid the bias of in-sample prediction errors toward over-

parameterized models. Some of these criteria are based on minimization of functions of the form

G(p,q) =nlné; , + (p+q)g(n), (18)

where p = 0,1,,...,p*, ¢ = 0,1,...,q", with p*, ¢* some pre-determined upper bounds; and 6%7(1 is an estimate
of the residual variance of the fitted ARMA(p, ¢) model. The term g(n) is a penalty factor to discourage the
fitting of models with too many parameters. If g(n) = In(n), then (18) becomes the BIC ( Schwartz 1978); if
g(n) =2, we get the AIC (Akaike 1974); if g(n) = cln (Inn) expression (18) is the Hannan and Quinn’s (1979)
criterion (HQ). Another criterion is to minimize the Final Prediction Error (FPE) of Akaike (1969). The FPE

is the following estimate of the one-step MSPE:

o Nn+tp+gq
FPE:(’m—n, —.
pP—q

The main goal of the penalty function g(n) in (18) is to avoid the tendency of overparameterization of éif., ;.
Since égfl) and é(T‘jg) are also designed to avoid this effect, it is interesting to compare the capabilities of these
prediction errors in order selection, where the selected orders will be the ones that achieves lower MSPE at
h =1, estimated with the proposed prediction errors. In a similar fashion, FPE is designed to select the model

with lower MSPE at h = 1, but avoiding the downward bias of the residual variance. Again, FPE shares this

feature with the proposed prediction errors.

In order to compare the order selection criteria and the proposed prediction errors we have included these
criteria in the second experiment shown in Tables 3 and 4 Panel B (HQ criterion uses the value ¢ = 3). In Panel
B of these tables, each figure is the percentage of times that a model is selected by each criterion. From this

table we can extract the following conclusions:

e FPE and AIC have similar performance and also similar to Vpﬁlte‘". They tend to favor the most efficient

predictor.

e BIC and HQ have also similar behavior and also similar to IA/pout‘E’O and V;ut‘%, showing a tendency to

underfit the model. This tendency is more acute when ¢ = 0.1.
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We can conclude that f/;,ﬁlter at h = 1 is also useful as a order selection criterion, similar to FPE or AIC.
Besides, the filtered prediction error can be applied to build an efficient predictor at any horizon whereas FPE

and AIC only supply information related with one step ahead prediction.

7 Conclusions

In this article, we have introduced two new types of prediction errors. The motivation is to find in-sample
prediction errors with similar properties than out-of-sample ones. We have shown that the filtered prediction
errors, that are computed with parameter values estimated without taking into account the innovation at each
point, have several advantages for time series analysis. These prediction errors are easily computed by estimating
the parameters assuming and innovative outlier at each sample point. We have seen that these prediction errors
have good performance (1) for computing an efficient estimate of the forecast accuracy of the model, (2) for
comparing alternative predictors at a given horizon, and (3) for order selection. The deleted prediction errors,
that are very useful for building measures of influence on time series and have found applications outside the
time series field, are less useful for these purposes. Although our analysis is limited to some applications in
univariate time series analysis, the proposed prediction errors can also be of interest in many other time series

applications. Further research will undoubtedly extend the applicability of the proposed procedures.
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A Proof of proposition 1

a) The predictor with the LS estimator zj)n is 2%_1 = (7>nzT = zp41 — ary1, where apyq is the LS residual.
Then E(¢A>nzTaT+1) = E(zri1ar41) — E(arsiary1), with E(zriiary) = o2, Let Z = (21, 29, ..., 2n—1)’
, U = (as,as, ...,an), and U = (ag,as, ...,an)". Then, by the properties of OLS estimation: U = MU,
where M = I,, 1 — Z(Z'Z)™'Z’, and I,,_1 is the identity matrix of size n — 1. Then, it can be verified

that ary1 = ary1— (Xjp ze—1a¢/ Yy 5 22_1) zp. Therefore,

n
N 2 -1 A1
E(aryiaryr) =0 —nE <72 E ZtlatzTaTH) )
t=2

where 4, =n=t 31, 22 |. Applying a Taylor expansion of ;! around the population value ;! it can

be obtained that

E (ﬁyz_l Z Ztla/tZTa/TJrl) = ()'2 + @)

t=2

E {(’AYZ — ) ZztlatZTaT+1}] ,

t=2

where it holds that

E {(% —7z) Z ztlatzTaTH} =n! E (257121‘,71@1‘,2TCLT+1) - 7302. (19)
=2 =2 1—2

Noting that when s =¢ =T + 1 the first term on the right hand side of (19) is null, it can be written

that

n

n n n n
-1 1 2 2
n E E E 1zt 1atzTaT+1) E E( Zg_ 1zTaT+1 E E E 1zt 1atzTaT+1)

s=2 t=2 s=2 s= t=2

s#£T 1t;éT +1 (20)
It can easily be seen that n= """ , E (22_,2%a% ;) = O(1). The second term on the right hand side of
(20) is more involved. It can be seen, however, that, if s < T+ 1 and ¢ < T+ 1 it is null. The same

result is obtained if s < T +1 and ¢t > T + 1 . Therefore,

E E E (22 _yz1aczrari) E E E (22 2 1aizrars)

s=T+2 t=2
s;éT+1 t;éT+1

+ Z Z 2 1at2TaT+1) (21)

s=T+2t=T+42

It can be verified that

n T oo oo
Z ZE zamzrarg) = » Y E <Z¢iasli> > Fas

s=T+2t=2 s=T+2 t=2 i=0 3=0

<Z¢ Ap—1— z> ag <Z¢>kaT k) aT+1} =2 Z Zd’QS 2 22¢QZ ataT—i-lat 1— z)

s=T+42t=2
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Since E (afaf a7 ;) = O(1), Y 2q¢* =O(1) and,as n — oo, Y. 1., S22 = O(1), it
holds that the first term at the right hand side of (21) is O(1). Similarly, the last term in (21) verifies
Z Z E (25 1z1apzrarr) = 2 Z Z o2+ Z¢2’"E aja 107 _y) .
s=T+2¢=T+2 (=T+2 s=t+1
Since
lim Z Z @25 2TH)-1 _ Jiy @ — |:(/)2_(/)2(n7T 1) {( (/)2) (n—T _1)_~_¢2}} —0,
T T2 smt nooe (1—¢?)

it holds that the last term in (21) is null, and hence

Z Z E z 12,5 1at2TaT+1) :O(n_l). (22)
bt

t=
14£TH1

—+

S

Therefore E {(¥. — 7)Y pg 2t—1azzrar41} = O(1),. and then E(pnzraps) = E(2 japsr) = O(n™h)

stilter 5 (10)

~ (IO
Now the predictor is 2} = ¢,, 21, where d); ) is the OLS estimation of ¢ in the model z; = ¢z 1+

why+e¢, withhy, =1 ift =T+4+1 and hy =0 if £t £ T+ 1. Let us denote as w to the OLS estimator of w

~ (IO
in the previous model. Then, it can be verified that W = 2744 —(,b )zT = &glfll is the one-step ahead pre-

diction error of the predictor z%lff Let us denote h = (ha, hs, ..., hy)', Za = (22,23, ..., 2n)", and X = [Z

h]. Then afler = (WMsh) ™' WM Zs = arpr+ (W Mgh)™ W MyU; where My = I,_; — X(X'X)7'X".
After some algebra, it can be verified that &gwlfll =ary1— (Zt AT41 Z—10z />, AT+1 zf_l) zr. Therefore,

A (10)

E(¢,

zparyy) = o — E(af*ar,,), with

~filt 2 -1 A1
E(ariary) =0 —n" E o E zi—1agzpars |,
t£T+1

where 97, =n~! > AT+1 22 ;. Then, applying a Taylor expansion of &JTZI around the true value v, ! it

can be obtained that

n
E <’A7f21 ZztlatZTaTJrl) = fyz—lE Z zi_1apzrapsy | +O0 | E S (e —72) Z 2t 101270111
t=2 tAT+1 1£T+1

It can be checked that E (Zt AT 41 zt_latzTaTH) = 0. In order to see it, the following decomposition
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can be used:

T n
Y E(zuimzrarg) =Y E(zioiazrars) + Y E(ziaizrariy)
t£T+1 =1 i=T+2
T %) o0
=S E DY daai)a|Y Hari|arp
t=1 =0 3=0

+ Z E (Zd)iatli) ay ZWGTﬂ' ari
i=0 j=0

t=T+2

:ZE <¢T_t (Z ¢iat1i> aT+1a%> + Z E ¢ %al,, ZWGTﬂ' a

t=1 i=0 t=T+2 =0

T e} n 00
= Z qt)T—t Z qi)ZE ((lf,flfiaTJrla%) + Z Qst—T—Q Z QZSZE (aniagUrlat) ’
t=1 =0 =0

=142

where it can easily be seen that both FE (at,l,iaTﬂaf) and F (aT,ia%Hat) are null. Then, by (22),

E <%721 Zzt_latzTaT_H) =n"10 Z Z E{zg_lzt_latzTaT_,_l} = O(n_l).

t=2 sAT+1 t£T+1

Therefore, E(afTary1) = 02 + O(n™?) and, hence, E((Z),Ello)zTaT_i_l) = E(#%ary) = O(n™2) and

the proposition holds
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Table 1: Empirical properties of alternative estimators of the MSPE of an AR(1) and an AR(2)

at horizon h. True model: (1 —0.9B)(1 — ¢B)y: = ax.

Empirical bias Empirical MSE

B By MSE;, MSE,
h=1 h=5 h=1 h=5 h=1 h=5 h=1 h=5

(1) (@) () (4) (9) (6) (7) (8)

¢ =0.3

I:/pi“(h) -0.0281  -0.4623 | -0.0495  -0.6016 0.0279 3.4140 0.0224 2.7782
V,re(h) -0.0172  -0.3984 | -0.0291  -0.4778 0.0279 3.4275 0.0216 2.7508
V;ut"”o(h) -0.0028 0.0244 0.0011 0.0495 0.0570 7.7192 0.0443 6.7899
f/p"ut'“(h) -0.0044  -0.0496 | -0.0034  -0.0303 0.1115  14.8833 0.0868 13.6216
I?;,del(h) -0.0195  -0.2412| -0.0335  -0.2249 0.0280 3.5039 0.0219 2.9311
Iz,ﬁlter(h) -0.0065  -0.0009 [ -0.0088  -0.0784 0.0285 3.9047 0.0220 3.1077
¢ =0.2

I:/Ijn(h) -0.0277  -0.3620 | -0.0496  -0.4630 0.0236 2.0595 0.0223 1.8169
Vyre(h) -0.0172  -0.3108 | -0.0202  -0.3614 0.0236 2.0664 0.0216 1.8036
V;;’ut'f’o(h) -0.0029 0.0157 0.0010 0.0327 0.0482 4.6335 0.0442 4.4166
17],°“t'75(h) -0.0049  -0.0474 | -0.0037  -0.0365 0.0942 8.9899 0.0865 8.8339
f/pdel(h) -0.0183  -0.1721| -0.0316  -0.1714 0.0237 2.1348 0.0218 1.9333
f/pﬁ“e“(h) -0.0069  -0.0157 | -0.0088  -0.0613 0.0241 2.3479 0.0219 2.0420
=01

I:/pi“(h) -0.0279  -0.2910 | -0.0495  -0.3633 0.0215 1.3039 0.0224 1.2352
V,re(h) -0.0177  -0.2489 | -0.0291  -0.2785 0.0215 1.3073 0.0217 1.2292
I7z,°“t'50(h) -0.0036 0.0118 0.0009 0.0253 0.0437 2.9637 0.0443 2.9982
I7z,°“t'75(h) -0.0052  -0.0201 | -0.0036  -0.0225 0.0859 5.8621 0.0868 6.0253
I?;,del(h) -0.0179  -0.1266| -0.0295  -0.1357 0.0216 1.3655 0.0219 1.3198
Iz,ﬁlte“(h) -0.0078  -0.0264 | -0.0088  -0.0483 0.0219 1.4837 0.0220 1.3968
¢ =10.0

I:/Ijn(h) -0.0200  -0.2408 | -0.0496  -0.2910 0.0208 0.8514 0.0224 0.8615
V,me(h) -0.0188  -0.2055| -0.0291  -0.2190 0.0207 0.8525 0.0217 0.8589
V;;’ut'f’o(h) -0.0040 0.0085 0.0007  -0.0192 0.0421 2.0054 0.0443 2.0831
17;,0“45(}@) -0.0058  -0.0227 | -0.0036  -0.0190 0.0830 4.0377 0.0869 4.1875
f/pdel(h) -0.0180  -0.0962 | -0.0274  -0.1099 0.0209 0.9018 0.0219 0.9216
f/pﬁ“er(h) -0.0090  -0.0350 0.0089  -0.0386 0.0211 0.9660 0.0220 0.9778

Note: B1 = E(Vl — Vvl), BQ = E(va — va), VQ and Vvl are estimated with 100,000 replications. MSE] =

E |:(Vi — V1)2:| ; MSEg = E |:(V2 — ‘/2)2:| ; where E() are sampling averages with 20,000 replications.
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Table 2: Empirical properties of alternative estimators of the MSPE of an AR(1) and an AR(2)

at horizon h. True model: (1 — 0.9B)(1 — ¢B)y: = as.

¢ =03
Vin(h)
Do)
Vot0()
V;)out—?f) (h)
(7 del

%ﬁlt (h)

Vot (h)

¢ =02
Vin(h)
oS0
f/pout—75 (h)
P
V;)del (h)
Vﬁlter h

o (d{:
¢=0.1
V' (h)
%out—ggzh)
f/pout—75 (h)
f/pdel (h)
‘7pﬁlter (h)

p q—
¢ =0.0
vin(h)
P
“gjout—’h’) EZ;
f/pdel (h)
f/pﬁlter ( h)

b

MSPE differential: AR(2)-AR(1)

E(d) E(d - d) E {(d - d)2} Pr(Vs < V1)
h=1 h=5 h=1 h=5 h=1 h=5 h=1 -
(1) (2) 3) 4) (5) (6) () )
-0.0924 -0.3092 -0.0214 -0.1393 0.0048 0.1905 0.981 0.780
-0.0829 -0.2493 -0.0119 -0.0794 0.0045 0.1744 0.945 0.714
-0.0671 -0.1448 0.0039 0.0251 0.0087 0.6629 0.774 0.612
-0.0700 -0.1505 0.0010 0.0194 0.0173 1.4061 0.704 0.608
-0.0850 -0.1536 -0.0140 0.0163 0.0047 0.1250 0.948 0.627
-0.0734 -0.2474 -0.0024 -0.0775 0.0045 0.1851 0.894 0.704
-0.0710 -0.1699
-0.0464 -0.1422 -0.0219 -0.1010 0.0024 0.0714 0.901 0.701
-0.0365 -0.0919 -0.0120 -0.0507 0.0021 0.0623 0.782 0.570
-0.0206 -0.0242 0.0004 0.0170 0.0040 0.2641 0.583 0.541
-0.0233 -0.0303 0.0012 0.0109 0.0080 0.5456 0.573 0.569
-0.0378 -0.0405 -0.0133 0.0007 0.0023 0.0437 0.789 0.486
-0.0265 -0.0869 -0.0020 -0.0457 0.0021 0.0663 0.666 0.555
-0.0245 -0.0412
-0.0199 -0.0564 -0.0216 -0.0723 0.0013 0.0255 0.732 0.585
-0.0096 -0.0137 -0.0113 -0.0296 0.0009 0.0207 0.527 0.412
0.0061 0.0294 0.0044 0.0135 0.0016 0.0973 0.344 0.449
0.0034 0.0225 0.0017 0.0066 0.0033 0.1928 0.400 0.501
-0.0099 0.0068 -0.0116 -0.0091 0.0010 0.0155 0.531 0.374
0.0011 -0.0108 -0.0006 -0.0267 0.0009 0.0226 0.379 0.400
0.0017 0.0159
-0.0101 -0.0219 -0.0206 -0.0502 0.0008 0.0097 0.613 0.515
0.0002 0.0146 -0.0103 -0.0137 0.0005 0.0075 0.366 0.326
0.0150 0.0393 0.0045 0.0110 0.0009 0.0407 0.214 0.381
0.0116 0.0289 0.0011 0.0006 0.0017 0.0762 0.296 0.436
0.0011 0.0121 -0.0094 -0.0162 0.0005 0.0075 0.356 0.348
0.0106 0.0246 0.0001 -0.0037 0.0005 0.0091 0.226 0.308
0.0105 0.0283

~

Note: d = Vo — V4, estimated with 100,000 replications; d=Vo—V1.

are sampling averages of 20,000 replications.
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Table 3: Proportion of times that each model has lower empirical MSPE using different estimators of MSPE. Sample

size n = 100. True model: (1 —0.9B)(1 — ¢B)y: = a:.

¢=0.3 ¢=0.1
AR(1) AR(2) AR(3) AR(1) AR(2) AR(3)
h=1 h=5| h=1 h=5| h=1 h=5|h=1 h=5|h=1 h=5|h=1 h=5
Panel A
MSPE(h) 1.092 6.321 1.025 6.166 1.035 6.218 1.021 4.163 1.025 4.181 1.035 4.213
f/pin(h) 0.010 0.144 0.386 0.390 0.604 0.466 0.146 0.321 0.282 0.250 0.572 0.429
f/pin'C(h) 0.040 0.255 0.603 0.471 0.357 0.274 0.375 0.523 0.333 0.233 0.292 0.244
f/out-f’()(h) 0.216 0.359 0.600 0.414 0.184 0.227 0.608 0.480 0.260 0.289 0.132 0.231
V°ut 75(h) 0.277 0.360 0.485 0.374 0.238 0.266 0.522 0.419 0.277 0.296 0.201 0.285
Vdel( ) 0.036 0.331 0.560 0.395 0.404 0.274 0.372 0.550 0.325 0.191 0.303 0.259
Vﬁ“e‘(h) 0.093 0.263 0.698 0.505 0.209 0.232 0.560 0.542 0.286 0.246 0.154 0.212
Panel B
AIC 0.091 0.695 0.214 0.559 0.289 0.152
FPE 0.086 0.691 0.223 0.556 0.288 0.156
HQ 0.265 0.681 0.054 0.841 0.138 0.021
BIC 0.266 0.681 0.053 0.842 0.137 0.021

Table 4: Proportion of times that each model has lower empirical MSPE using different estimators of MSPE at horizon

h =1 and sample size n = 100. True model: (1 —0.98)(1 — 0.5B)(1 — ¢B)y; = a:.
h=1 ?»=0.5 »=01
AR(1) AR(2) AR(3) AR(4) AR(5)[AR(1) AR(2) AR(3) AR(4) AR(5)

Panel A

MSPE(1) | 2525 1.073 1.033 1.044 1055 | 1.393 1.023 1.032 1.043 1.054

X:/;jn(l) 0.000 0.017 0.191 0.234 0.558 | 0.000 0.115 0.127 0.223  0.535
Vin-e(1) 0.000 0.089 0429 0.217 0.264 | 0.000 0.396 0.198 0.177  0.229
Vout'50(1) 0.000 0.282 0490 0.128 0.100 | 0.024 0.643 0.170 0.089 0.074
VOut (1) 0.008 0295 0392 0.154 0.151 | 0.080 0483 0.186 0.121  0.130
Vdel( ) 0.000 0.042 0.278 0.234 0.446 | 0.000 0.265 0.181 0.206 0.348
V;)ﬁ“er( ) | 0.000 0.195 0529 0.155 0.121 | 0.000 0.636 0.178 0.098  0.088

Panel B

AIC 0.000 0.192 0.526 0.162 0.120 0.000 0.629 0.179 0.099 0.093
FPE 0.000 0.181 0.516 0.166 0.137 0.000 0.611 0.181 0.103 0.105
HQ 0.000 0.461 0.480 0.046 0.013 0.001 0.903 0.071 0.019 0.006
BIC 0.000 0.461 0.480 0.046 0.013 0.001 0.903 0.071 0.019 0.006
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