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1 Introduction

The main objective of this paper is to compare the ability of Generalized

Autoregressive Conditional Heteroscedastic (GARCH) and Autoregressive

Stochastic Volatility (ARSV) models to represent adequately the observed

properties of real time series with conditional heteroscedasticity.

Financial series of returns are mainly characterized by having: (1) high

kurtosis, (2) small �rst order autocorrelation of squared observations and

(3) high persistence in the autocorrelation of squared observations. These

stylized characteristics have been documented by a large number of authors;

see, for example, Liesenfeld and Jung (2000) and Loudon et al. (2000) as

two recent references.

The simplest model able to generate these e�ects is given by

yt = "t�t (1)

where "t is a serially independent and identically distributed (i.i.d.) process

with zero mean, unit variance and �nite fourth order moment, that is as-

sumed to be independent of the process �t that is known as volatility in the

�nancial literature. Under these conditions and if the conditional expecta-

tion of �t is �nite, Ghysels et al. (1996) show that the process yt, de�ned

in (1), is a martingale di�erence and it can explain volatility clustering via

autoregressive dynamics in the conditional expected value of �2t . Finally,

excess kurtosis can be obtained in either of the following ways:

(i) Heavy tails in the marginal distribution of the white noise "t.
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(ii) Conditional heteroscedasticity. The conditional variance of yt is given

by E(y2t j Yt�1) = E(�2t j Yt�1) where Yt�1 = (y1; :::; yt�1), and the

excess kurtosis of yt depends on the dynamic evolution of its conditional

variance.

(iii) An unexpected component in the volatility which does not depend on

the past.

A wide spectrum of models have been proposed in the literature to rep-

resent the dynamic evolution of �t. However, in this paper, we concentrate

our attention on the two basic parametric models widely used in the empir-

ical analysis of high frequency �nancial time series, the GARCH(1,1) model

originally proposed by Bollerslev (1986) and Taylor (1986) and the ARSV(1)

model proposed by Taylor (1986). Although, both models are able to explain

volatility clustering and excess kurtosis, they are di�erent in the measura-

bility properties of the volatility process with respect to certain benchmark

information sets; see Andersen (1992). As Taylor (1994) points out, the

fundamental di�erence between both types of models is that the volatility

of ARSV(1) models is a latent variable with an unexpected noise while in

GARCH(1,1) models, �t is observable given Yt�1. Consequently, if "t is Gaus-

sian, the excess kurtosis of yt in GARCH(1,1) models can only be explained

by the evolution of its conditional variance while in ARSV(1) models, the

excess kurtosis may depend on both the conditional variance and on the un-

expected component of volatility. Ghysels et al. (1996) suggest that this

additional source of kurtosis could make the ARSV(1) model more 
exible

to represent the observed properties of real time series. In this paper, we
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show that this is e�ectively the case.

The ability of each model to represent the empirical properties observed

in real time series has only been analyzed separately. Ter�asvirta (1996) shows

that the basic GARCH(1,1) model is not able to account for the simultaneous

presence of excess kurtosis and low �rst order autocorrelation of squared ob-

servations, even if "t has a Student-t distribution. With respect to ARSV(1)

models, Liesenfeld and Jung (2000) conclude that the ARSV(1) model with

"t being Gaussian does not adequately account for the simultaneous presence

of leptokurtic returns and the low autocorrelations of squared observations.

In this paper, we compare the capacity of GARCH(1,1) and ARSV(1)

models to generate series not only with excess kurtosis and autocorrelations

of squares characterized by a small order one autocorrelation, but also by

a slow decay. We show that the ARSV(1) model is more 
exible than the

GARCH(1,1) model in the sense that it is able to generate series with larger

excess kurtosis and smaller order one autocorrelation of squares for a wider

variety of parameter speci�cations implying di�erent degrees of persistence.

GARCH(1,1) models can only generate series with high kurtosis and low �rst

order autocorrelation of squares if the persistence is high. Consequently, we

show that ARSV(1) models are in closer conformance with the properties

usually observed in real data than GARCH(1,1) models. Our results may

also help to clarify some puzzles raised in empirical studies comparing both

models. For example, we explain why in the empirical analysis of �nancial

series, it has often been found that when the GARCH(1,1) speci�cation is

chosen, "t requires a distribution with heavy tails, while when �t is mod-

elled with an ARSV(1) model, the assumption of Gaussianity seems to be
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adequate; see, for example, Ghysels et al. (1996), Shephard (1996) and Kim

et al. (1998). We can also explain why in empirical applications, the per-

sistence of volatility implied by GARCH(1,1) models is usually higher than

that implied by ARSV(1) models; see Taylor (1994), Shephard (1996) and

Kim et al. (1998). Finally, the results obtained in this paper may explain

why the choice of the conditional distribution has systematic e�ects on the

parameter estimates of the volatility process; see, for example, Mahieu and

Schotman (1998) and Liesenfeld and Jung (2000).

The paper is organized as follows. In section 2, we describe the main

properties of the GARCH(1,1) model. Section 3 describes the basic ARSV(1)

model and shows that it is more 
exible than the GARCH(1,1) model to

represent simultaneously high kurtosis, small order one autocorrelation and

high persistence of autocorrelations of squared observations. In section 4, we

analyze twelve daily �nancial time series to illustrate the performance of both

models. Finally, section 5 concludes the paper and gives some suggestions

for future research.

2 The GARCH(1,1) model

The AutoRegressive Conditional Heteroscedasticity (ARCH) model was in-

troduced by Engle (1982) to model the conditional variance of UK in
ation.

ARCH type models have been very popular in the �nancial econometrics lit-

erature generating a huge number of papers. Some useful reviews on these

models are Bollerslev et al. (1992), Bollerslev et al. (1994), Bera and Hig-

gins (1995), Diebold and L�opez (1995) and Palm (1997). Engle (1995) is a
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survey of some of the main papers related with ARCH models. If yt follows

a GARCH(1,1) model, then

yt = "t�t (2)

�
2
t = ! + �y

2
t�1 + ��

2
t�1

where "t � NID(0; 1); and !, � and � are parameters such that ! > 0 and

�; � � 0. The positivity conditions are needed to guaranty the positivity

of the conditional variance1 and ! has to be strictly positive for the process

yt not to degenerate. Finally, if � + � < 1, the marginal variance of yt is

�nite and the process is covariance stationary. Nelson (1990) shows that yt

is strictly stationary if E[log(� + �"
2
t )] < 12. Notice that if "t is Gaussian,

this condition is satis�ed even if � + � = 1. Therefore, when � + � = 1; the

GARCH(1,1) process is strictly stationary although the marginal variance is

not �nite.

Notice that, once Yt�1 is observed, �
2
t is known. Consequently, �2t is the

conditional variance of yt and

yt j Yt�1 � N(0; �2t ) (3)

All GARCH(1,1) processes are martingale di�erences. If � + � < 1, the

marginal variance of yt is given by

1The positivity conditions for the general GARCH(p,q) model have been given by

Nelson and Cao (1992).
2The conditions for strict stationarity of general GARCH(p,q) processes have been

derived by Bougerol and Picard (1992).
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�
2
y =

!

1� �� �
(4)

The condition for the existence of the fourth order moment is 3�2+2��+

�
2
< 1; see Bollerslev (1986). If this condition is satis�ed, then the kurtosis

is given by

�y =
E(y4t )

[E(y2t )]
2
= 3 +

6�2

1� 3�2 � 2�� � �2
(5)

which is greater than 3. Therefore, the marginal distribution of returns has

fat tails. All odd moments of yt can be seen to be zero.

The dynamics of the GARCH(1,1) process appear in the acf of the squared

observations. Bollerslev (1988) shows that the autocorrelations of y2t are

given by

�2(1) =
�(1� �� � �

2)

1� 2�� � �2
(6)

�2(�) = (�+ �)��1�2(1); � > 1

The acf of squared observations has the same pattern as an ARMA(1,1)

process with autoregressive parameter � + �. Therefore, the GARCH(1,1)

model is able to generate volatility clustering. Notice that the persistence of

the volatility process depends on the value of � + �. In table 1, we report

the acf of squared observations of GARCH(1,1) process for di�erent values

of the kurtosis coeÆcient. Notice that, for a given kurtosis coeÆcient, the

order one autocorrelation �2(1) is smaller the larger the persistence. These

results are illustrated in Figure 1, which plots the acf of squared observations

7



corresponding to four selected cases. Ter�asvirta (1996) observed that, even if

the persistence of the volatility is high, high kurtosis is associate with values

of �2(1) bigger than the values often observed in practice. It is possible to

obtain the relationship between �y, �2(1) and persistence (p = �+ �), given

by

�2(1) =

q
(�y��")(1�p2)

(�"�1)�y

h
1� p

2 + p

q
(�y��")(1�p2)

(�"�1)�y

i
1� p2 +

(�y��")(1�p2)

(�"�1)�y

(7)

where, if "t is Gaussian, �" = 3. Figure 2 represents this relationship, that

introduces the persistence of shocks to volatility, measured by �+ �, a com-

ponent not considered by Ter�asvirta (1996). This Figure shows that low

values of �2(1) and high kurtosis cannot be simultaneously generated by

GARCH(1,1) models with normal errors. It is also possible to observe why

�+� could be estimated close to one, even if there is no high persistence. The

GARCH(1,1) model is only able to increase the value of �y with low values

of �2(1) by forcing �+� to be very close to 1. Since in many empirical stud-

ies, the estimates of � and � are such that b� + b� ' 1, Engle and Bollerslev

(1986) proposed the Integrated GARCH (IGARCH) process given by model

(2) with � + � = 1: However, Ter�asvirta (1996) shows that even IGARCH

models are unlikely to provide an adequate characterization of high kurtosis

and low �rst order autocorrelation of squared observations and suggests that

substituting the normal distribution of "t by a heavy-tailed distribution like,

for example, the Student-t distribution, may improve the adequacy of the

GARCH(1,1) model to characterize the stylized facts observed in practice.

The Gaussian assumption on "t has been relaxed by several authors. For

example, a Student-t distribution was suggested by Bollerslev (1987), the
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normal-poisson mixture distribution is used by Jorion (1988), the power ex-

ponential distribution in Baillie and Bollerslev (1989), the normal-lognormal

mixture distribution in Hsieh (1989) and the Generalized error distribution

(GED) in Nelson (1991). Bollerslev et al. (1994) used the Generalised-t

distribution which includes both the Student-t and the GED distributions

as particular cases. Finally, Granger and Ding (1995) and Gonz�alez-Rivera

(1997) also consider the use of the Laplace distribution in conjunction with

GARCH models. In this paper, we will focus on the properties of the

GARCH(1,1) model with "t having a Student-t distribution with � degrees of

freedom because it is the most popular one in empirical applications. Given

that "t is standardized to have variance one, the marginal variance of yt is

given by (4), like in the Gaussian case. The condition for the existence of the

fourth order moment is �"�
2 + 2�� + �

2
< 1; see He and Ter�asvirta (1999).

If this condition is satis�ed, then the kurtosis is given by

�y = �"
1� �

2 � �
2 � 2��

1� �"�
2 � 2�� � �2

(8)

where �" is the kurtosis of "t, which if � > 4 is given by �" = 3(��2)=(��4).

He and Ter�asvirta (1999) show that the autocorrelation function of y2t is

the same as in the Gaussian case. The relationship between �y, �2(1) and the

persistence of the volatility, is also given by (7) and it has been represented in

Figure 2 for GARCH(1,1) models with "t having Student-t distributions with

5 and 7 degrees of freedom. We can see that, as pointed out by Ter�asvirta

(1996), GARCH(1,1) models with a conditional Student-t distribution, seem

to be better than the Gaussian ones at explaining simultaneously the three

stylized facts observed in real time series. However, notice that the kurtosis
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of yt is heavily linked to the kurtosis of "t. Finally, looking at Figure 2, it

could be expected that the estimated parameters b� and b� depend on the

assumed distribution for "t.

3 The ARSV(1) model

ARSV models assume that �t is a latent variable that usually follows an

autoregressive process after being transformed into logarithms. Surveys on

the properties of ARSV models are given by Taylor (1994), Ghysels et al.

(1996) and Shephard (1996).

The simplest case is the ARSV(1) 3 given by:

yt = �?"t�t (9)

log�2t = � log�2t�1 + �t

where "t and �t are assumed to be white noise processes mutually indepen-

dent and normally distributed with zero mean and variances one and �
2
�

respectively. The parameter �? is a scale factor that removes the necessity of

including a constant term in the equation of log �2t and the restriction j�j < 1

guarantees the stationarity of yt. Although the assumption of Gaussianity of

�t can seem ad hoc at �rst sight, Andersen et al. (1999) show that the daily

log-volatility distribution of real �nancial series may be well approximated

by a normal distribution. Notice that �
2
� is the variance of the volatility

disturbance. When �
2
� is zero, the model in (9) is no longer identi�ed. So

et al. (1999) present an interesting interpretation of the ARSV(1) model in

3The speci�cation of the log-volatility process as an ARMA(p,q) process has been

considered, for example, by Hwang and Satchell (2000)
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(9) by decomposing the overall volatility of yt into a baseline volatility, which

represents the volatility in a typical day, and the volatility due to 
uctuating

information arrivals to the market.

In general, the distribution of yt conditional on past observations has

an unknown form. With respect to the marginal distribution, using the

properties of the log-normal distribution, it can be seen that the variance of

yt is given by

�
2
y = �

2
? exp (0:5�

2
h) (10)

where �2h = �
2
�=(1� �

2). The kurtosis of yt is given by

�y = 3 exp (�2h) (11)

which is bigger than 3. Therefore, the ARSV(1) model is also able to gen-

erate series with heavy tails. Notice that, while in the ARSV(1) model, the

condition for the existence of the fourth order moment is the stationarity

condition, i.e. j�j < 1, a GARCH(1,1) model can be stationary without

having a �nite fourth order moment.

All the odd moments of yt can be easily seen to be zero. Finally, notice

that yt is an uncorrelated process although it is not independent. The auto-

correlations of squared observations have been derived by Taylor (1986) and

are given by

�2(�) =
exp(�2h�

� )� 1

3 exp(�2
h
)� 1

(12)

Taylor (1986) shows that when �
2
h is small and/or the autocorrelations
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of log�2t are close to one, the shape of the acf of squared observations is

approximately the same as the shape of the acf of log �2t multiplied by a

factor of proportionality, i.e.

�2(�) '
exp(�2h)� 1

3 exp(�2h)� 1
�
� (13)

Consequently, the acf of squared observations is similar to that of an ARMA(1,1)

process characterized by an exponentially decaying rate determined by the

parameter �. Therefore, the persistence of shocks to volatility depends on

�. Notice that, the acf of squared observations generated by the ARSV(1)

model behaves apparently similarly to the acf of squares of the GARCH(1,1)

model in (6). It is also important to notice that, in the ARSV(1) model,

the parameter �2� governs the degree of kurtosis independently of the persis-

tence of volatility measured by �. There could be excess kurtosis even when

� = 0. As we will see later, this property makes ARSV(1) models more 
exi-

ble than GARCH(1,1) models to represent the stylized facts observed in real

data. Remember that in a GARCH(1,1) process, kurtosis and persistence

are heavily tied up.

Given that � plays a role similar to that of � + �, in table 1, we report

the acf of squared observations of ARSV(1) models for several values of the

kurtosis coeÆcient and for � = � + �. Comparing the acf of the squared

observations implied by the GARCH(1,1) and the ARSV(1) model both with

"t having a Gaussian distribution, we can see that, when � = �+� and for the

same implied kurtosis, the autocorrelations of squared observations implied

by the ARSV(1) process are smaller than the autocorrelations implied by

the GARCH(1,1) process, except when the volatility approaches the non
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stationary region, where both correlations are the same; see also Figure 1.

The relationship between kurtosis, persistence and �2(1) does not depend

on the parameter �2� and is given by

�2(1) =

�
�y

3

��
� 1

�y � 1
(14)

This relationship has been plotted in �gure 3 for the ARSV(1) model to-

gether with the corresponding relationship for the GARCH(1,1) model both

with normal errors. In this �gure it is possible to observe that the ARSV(1)

model is able to generate series with higher kurtosis and lower �2(1) than the

GARCH(1,1) model. Introducing the noise �t makes the ARSV(1) model

more 
exible in the sense that is able to generate higher kurtosis than the

GARCH(1,1) model without increasing �2(1) and without forcing the persis-

tence of volatility to be close to the non stationarity region. This fact could

explain why in practice when the volatility is represented by a GARCH(1,1)

model, usually it is necessary to specify a fat-tailed distribution of "t while

when an ARSV(1) model is used, the assumption of Gaussianity of "t may be

adequate; see Ghysels et al. (1996), Shephard (1996) and Kim et al. (1998).

Figure 3 can also explain why the persistence estimated in ARSV(1) models

is usually lower than in GARCH(1,1) models; see, Taylor (1994), Shephard

(1996) and Kim et al. (1998). Notice that, contrary to what happens in

GARCH(1,1) models, in an ARSV(1) model, given �y, higher persistence

implies higher order one autocorrelation of squared observations; see also ta-

ble 1. Therefore, it is possible to have ARSV(1) models with high kurtosis,

low �2(1) and persistence far from the non stationary region. However, in

a GARCH(1,1) model, the persistence should be high because it is the only

13



way to have both, high kurtosis and low �2(1). Notice also that, as we have

seen in table 1, the properties of both models are similar when the volatility

is close to the non stationarity region.

In �gure 4, we plot the relationship between �y, �2(1) and persistence for

ARSV(1) models with normal errors and GARCH(1,1) models with Student-

t with 7 degrees of freedom errors. Notice that the ARSV(1) model is still

able to generate series with higher kurtosis and smaller �2(1) for most of the

parameter values.

As in the case of GARCH(1,1) models, ARSV(1) models may capture

higher kurtosis by allowing "t to have a leptokurtic distribution; see Gallant

et al. (1994), Harvey et al. (1994), Ruiz (1994), Sandmann and Koopman

(1998) and Chib et al. (1998). If a Student-t distribution is assumed for "t

in (9), the variance of yt is the same as in the Gaussian case and it is given

by (10). However the kurtosis of yt is now given by

�y = �" exp (�
2
h) (15)

where �" is the kurtosis of "t. Notice that, the condition needed for the

existence of the kurtosis is that �" is �nite and j�j < 1. The parameters that

govern the dynamic evolution of the volatility are not restricted as far as the

model is stationary. This makes the ARSV(1) model even more 
exible than

the GARCH(1,1) model, since no adicional conditions need to be satis�ed.

The acf of squared observations is now given, approximately, by

�2(�) '
exp(�2h)� 1

�" exp(�
2
h)� 1

�
� (16)

where �" is the kurtosis of "t. The acf in (16) is equal to the acf of the

log �2t process multiplied by a factor of proportionality that depends on the
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distribution of "t. The smaller the kurtosis of "t; the bigger the factor of

proportionality. Therefore, considering distributions of "t with heavy tails,

the acf of the squared observations is higher the bigger is the number of

degrees of freedom and, consequently, the acf of squares is a maximum for

a normal distribution; see Ghysels et al. (1996). Finally, the relationship

between kurtosis and �2(1) is given by

�2(1) =

�
�y

�"

��
� 1

�y � 1
(17)

Figure 5 plots the relationship between �y, �2(1) and persistence for ARSV(1)

models with normal and Student-t errors. Observe that, when the Student-t

distribution is assumed for the error, the ARSV(1) model can imply nega-

tive �rst order autocorrelations of squared observations if the � parameter is

small. This could explain why estimates of � under the ARSV(1)-t speci�ca-

tion are, usually, greater than those under ARSV(1)-normal; see Mahieu and

Schotman (1998) and Liesenfeld and Jung (2000). It is rather clear that sub-

stituting a Gaussian noise by a Student-t noise, allows to have higher kurtosis

without increasing the order one autocorrelation of squared observations, in-

troducing even more 
exibility in the model. Figure 5 also illustrates the

result of Ghysels et al. (1996) previously mentioned that the correlogram of

y
2
t is at a maximum under Normality.

4 Empirical application

In order to illustrate the main empirical properties often observed in high fre-

quency �nancial time series, table 2 contains descriptive statistics of twelve

series observed daily. If we denote by pt the observed price at time t,
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we are considering as the series of interest, the returns de�ned as rt =

100(log(pt) � log(pt�1)). The series considered are returns of the US Dol-

lar against the Canadian Dollar, the Spanish Peseta, the German Mark, the

Japanese Yen, the Swiss Franc, the Swedish Krona and the British Pound

exchange rates observed from January 1993 to October 2000 and returns of

�ve international stock market indexes, the Amsterdam E.O.E. index and the

Bombay stock market index observed from October 1995 to October 2000,

the Dow Jones from January 1990 to October 2000, the IBEX 35 of the

Madrid Stock Exchange observed from January 1992 to December 1999 and,

�nally, the S&P 500 index observed from November 1987 to December 1998.

All the series have been �ltered when necessary to get rid of a small �rst order

autocorrelation in the levels and the presence of outliers 4. In this table, it is

possible to observe that all the series have zero mean and excess kurtosis. It

is also important to note that, although the series are not autocorrelated, the

squared observations are correlated. Therefore, the variables are not serially

independent. Finally, note that the autocorrelations of squared observations

start at low levels.

Figures 6 and 7 contain plots of daily returns of all the series. It is

possible to observe volatility clustering with days of large movements in prices

followed by days with large returns in absolute value. These Figures also

give kernel estimates of the marginal density of returns together with the

corresponding normal density. The density plots con�rm the results reported

in table 2 about the returns being heavy-tailed. Finally, correlograms of

4See Carnero et al. (2001) for a review on the e�ects of the simultaneous presence of

outliers and conditional heteroscedasticity on the diagnostic and estimation of GARCH

models.
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the series y2t are also plotted. The volatility clustering is re
ected in the

signi�cant correlations of squared returns. In particular, in the correlogram

of y2t the autocorrelations start at low values but are signi�cant even for very

large lags.

Table 3 reports the ML estimates of the parameters of the Normal GARCH(1,1)

model for all the series considered 5. In this table it is possible to observe that

all the series considered have signi�cant ARCH e�ects and high persistence

measured by b�+ b�. Model diagnostics are based on the standardized obser-

vations de�ned as b"t = yt=b�t, where b�t is obtained substituting the estimated

parameters in the corresponding expression of the conditional variance. In

table 3, we also report several sample moments of b"t. Note that the stan-

dardized observations have still heavy tails. However, the autocorrelations

of squares are not any longer signi�cant. Therefore, the GARCH(1,1) model

is able to represent adequately the dynamics of squares of the �nancial series

considered although it is not able to explain the excess kurtosis present in

the data. The last row of table 3 reports the number of standardized obser-

vations bigger than 3.5 standard deviations. These observations, that could

be considered as "conditional" outliers, may explain why the standardized

observations have excess kurtosis.

Given that the standardized observations by the Gaussian GARCH(1,1)

model are leptokurtic, in table 4 we report the estimation results of GARCH(1,1)-

t models �tted to the same time series. There are not big di�erences between

the parameter estimates of GARCH(1,1)-normal models in table 3. However,

notice that, except for Bombay, the estimated persistence is even greater than

5The estimation has been carried out with EViews, version 3.1.
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in table 3. Also, it is important to point out that the condition for the ex-

istence of the four order moment is violated by the estimated parameters of

US-SW, US-UK, AMST, DWJ and S&P 500. Finally, the standardized obser-

vations have, as expected, excess kurtosis, since we are assuming a Student-t

distribution for the conditional distribution.

Table 5 reports the estimates of the parameters of the ARSV(1) model.

The estimates have been obtained using the QML method proposed inde-

pendently by Harvey et al. (1994) and Nelson (1988)6. The asymptotic

standard errors of the QML estimators of the parameters �, �2� and �
2
� have

been computed using the results in Ruiz (1994). The scale parameter �2? can

be estimated using the sample variance of the heteroscedasticity corrected

observations. Under normality of "t and for large sample size, T, the variance

of this estimator is 4:93�4?=T ; see Harvey and Shephard (1993). Given that

under normality, �2� = �
2
=2, a natural test for normality in this framework is

to test the null hypothesis H0 : �
2
� = �

2
=2 using a Wald test. The test only

rejects the null for four of the twelve time series: US-CA, US-JA, US-UK

and BOMBAY. However, as in table 3, the standardized observations still

have excess kurtosis, although smaller than when the GARCH(1,1) model is

�tted. This fact can also be observed in the number of standardized obser-

vations greater than 3.5 standard deviations, which, for most of the series, is

smaller than in table 3.

Figure 8 plots density estimates of standardized observations with GARCH(1,1)

6The estimation of the parameters is based on obtaining the prediction error decom-

position of the Gaussian likelihood of the log-squared observations given by log y2t =

�+ log�2t + �t where � = log�2? +E(log "t) and �t = log "2t �E(log "t). Notice that when

"t is Normal, �t has a log(�
2
(1)) distribution with variance �2=2.
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and ARSV(1) models together with the Normal density for the US Dol-

lar/British Pound exchange rate and the Amsterdan E.O.E. index. As we

can see, the Gaussian ARSV(1) speci�cation seems to be more adequate than

the GARCH(1,1). For the rest of the series both speci�cations seem to be

very similar in terms of estimated densities for the standardized observations.

Notice that for the series US-CA, US-GE, US-UK and BOMBAY the per-

sistence estimated with the ARSV(1) model is smaller than the one estimated

with the GARCH(1,1). This could be due to the fact that the GARCH(1,1)

model need to have a persistence very close to one to explain high kurtosis

and low �2(1) and therefore, the high persistence found in these series with

the GARCH(1,1) model could be spurious. For the rest of the series the

persistence is estimated very close to one in both models, indicating that, in

fact, there is persistence in variance.

Figure 9 plots the sample kurtosis, �rst order autocorrelation and b� + b�
estimated together with the moments implied by the Gaussian ARSV(1) and

GARCH(1,1)-t10 models. Observe that the ARSV(1) model is closer to most

of the empirical points than the GARCH(1,1) model. Therefore, it seems that

ARSV(1) models are in closer conformance with real data than GARCH(1,1)

models. To illustrate more clearly this point, table 6 reports the sample mo-

ments implied by the Gaussian GARCH(1,1), GARCH(1,1)-t and Gaussian

ARSV(1) models estimated for the US Dollar/Spanish Peseta exchange rate

and the Dow Jones index. Notice that the kurtosis coeÆcients implied by

the GARCH(1,1)-t models are either not de�ned or too big compared with

the sample kurtosis in table 2. The same has been observed for all other re-

turns considered. On the other hand, comparing the moments implied by the
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Gaussian GARCH(1,1) and Gaussian ARSV(1) models, the latter is usually

closer to the sample moments in table 2. For some of the other series, the

evidence is mixed.

Finally, since in �nance there is also a big interest for the estimates of

the volatility itself we have compared the GARCH(1,1) and ARSV(1) models

with respect to the estimated volatilities. Notice that the ARSV(1) speci�-

cation of the volatility allows to obtain smoothed estimates of �t using the

whole sample, (y1; : : : ; yT ); see, for example, Harvey et al. (1994). However,

in GARCH(1,1) models, since �t is observable at time t � 1, the observa-

tions at time t and later do not modify the estimate of �t. Figure 10 plots

GARCH(1,1) and ARSV(1) estimates of the volatility for the Dow Jones and

the Ibex 35 indexes. It can be seen that the ARSV(1) speci�cation produces

smoother volatility estimates than the GARCH(1,1). ARSV(1) estimates

are less sensitive to large movements in prices than GARCH(1,1) estimates.

The dynamic shape of the two series of estimates is very similar. The only

point worth to notice is that, as can be seen in the plot od the Dow Jones

estimates, for most of the returns considered, the volatilities estimated by

the ARSV(1) model are, usually, over the GARCH(1,1) ones.

5 Conclusions

In this paper we have shown that ARSV(1) models are more 
exible than

GARCH(1,1) models to explain the excess kurtosis, low �rst order autocorre-

lation and high persistence of volatility often observed in real high frequency

�nancial time series. The properties of both models are similar when volatil-
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ity is close to the non stationarity region. Our results can explain why in the

empirical analysis of real �nancial series, it has often been observed that when

the GARCH(1,1) speci�cation is chosen for the volatility, the conditional

distribution of returns needs to have heavy tails while when the volatility

is modelled with an ARSV(1) model, the assumption of Gaussianity seems

to be adequate. We also show why the persistence of volatility estimated

in GARCH(1,1) models is usually higher than that estimated in ARSV(1)

models and why the conditional distribution assumed has systematic e�ects

on the parameter estimates of the volatility process.

Most of the papers that compare empirically ARSV(1) and GARCH(1,1)

models suggest that ARSV(1) models are more adequate than GARCH(1,1)

models to explain the stylized facts observed in real time series and the em-

pirical analysis presented in this paper con�rms these results. However, the

estimates of the volatility obtained with each of the models considered are

very similar. Therefore, it seems that the de�nite proof for these models is

to analyze their performance in predicting future returns and volatilities. So

et al. (1999) compare the predictive performance of both models analyzing

returns of �ve exchange rates. They conclude that both models have similar

performance in terms of the Mean Square Prediction Error and Mean Abso-

lute Prediction Error. Only in two of the �ve series considered, the ARSV

predictions of volatility outperform the GARCH predictions. However, it

could be interesting to compare con�dence intervals for the predicted volatil-

ity generated by each of the models. In this sense, the procedure proposed

by Pascual et al. (2000) seems to be very promising.
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Figure 1: Autocorrelation function of squared observations of GARCH(1,1)

and ARSV(1) processes with the same kurtosis and approximately the same

persistence
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Table 6: Implied moments by the estimated models

Implied by Implied by Implied by

GARCH(1,1) GARCH(1,1)-t ARSV(1)

US-ES

Mean 0.0000 0.0000 0.0000

Variance 0.4050 0.5333 0.3996

Kurtosis 3.3232 16.7163 3.8802

r2(1) 0.0784 0.1762 0.1009

r2(2) 0.0775 0.1757 0.10000

r2(5) 0.0747 0.1741 0.0973

r2(10) 0.0703 0.1715 0.0930

DOW JONES

Mean 0.0000 0.0000 0.0000

Variance 0.8305 7.1429 0.8179

Kurtosis 3.9692 @ 4.3470

r2(1) 0.1419 0.5128 0.1337

r2(2) 0.1411 0.5125 0.1333

r2(5) 0.1386 0.5114 0.1320

r2(10) 0.1346 0.5096 0.1299
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Figure 2: Relationship between kurtosis, �rst order autocorrelation of

squared observations and persistence for GARCH(1,1) models
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Figure 3: Relationship between kurtosis, �rst order autocorrelation of

squared observations and persistence for GARCH(1,1) and ARSV(1) models

with Gaussian errors
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Figure 4: Relationship between kurtosis, �rst order autocorrelation of

squared observations and persistence for GARCH(1,1)-t and Gaussian

ARSV(1) models
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Figure 5: Relationship between kurtosis, �rst order autocorrelation of

squared observations and persistence for ARSV(1)-t models
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Figure 6: Daily exchange rates
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Figure 7: Daily �nancial indexes
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Figure 8: Densities of standardized observations for US Dollar/British Pound

exchange rate and AMST. E.O.E.
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Figure 9: Relationship between �y, �2(1) and persistence for ARSV(1) and

GARCH(1,1)-t models together with the sample values
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Figure 10: Estimated volatilities with GARCH(1,1) and ARSV(1) models

for DOW JONES and IBEX 35 indexes
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