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1 Introduction

The main objective of this paper is to compare the ability of Generalized
Autoregressive Conditional Heteroscedastic (GARCH) and Autoregressive
Stochastic Volatility (ARSV) models to represent adequately the observed
properties of real time series with conditional heteroscedasticity.

Financial series of returns are mainly characterized by having: (1) high
kurtosis, (2) small first order autocorrelation of squared observations and
(3) high persistence in the autocorrelation of squared observations. These
stylized characteristics have been documented by a large number of authors;
see, for example, Liesenfeld and Jung (2000) and Loudon et al. (2000) as
two recent references.

The simplest model able to generate these effects is given by

Yt = €¢0¢ (1)

where ¢; is a serially independent and identically distributed (i.i.d.) process
with zero mean, unit variance and finite fourth order moment, that is as-
sumed to be independent of the process o, that is known as volatility in the
financial literature. Under these conditions and if the conditional expecta-
tion of oy is finite, Ghysels et al. (1996) show that the process y;, defined
in (1), is a martingale difference and it can explain volatility clustering via
autoregressive dynamics in the conditional expected value of o?. Finally,

excess kurtosis can be obtained in either of the following ways:

(i) Heavy tails in the marginal distribution of the white noise &;.



(ii) Conditional heteroscedasticity. The conditional variance of y, is given
by E(y? | Yio1) = E(07 | Yio1) where iy = (y1,...,41-1), and the
excess kurtosis of y; depends on the dynamic evolution of its conditional

variance.

(iii) An unexpected component in the volatility which does not depend on

the past.

A wide spectrum of models have been proposed in the literature to rep-
resent the dynamic evolution of ;. However, in this paper, we concentrate
our attention on the two basic parametric models widely used in the empir-
ical analysis of high frequency financial time series, the GARCH(1,1) model
originally proposed by Bollerslev (1986) and Taylor (1986) and the ARSV(1)
model proposed by Taylor (1986). Although, both models are able to explain
volatility clustering and excess kurtosis, they are different in the measura-
bility properties of the volatility process with respect to certain benchmark
information sets; see Andersen (1992). As Taylor (1994) points out, the
fundamental difference between both types of models is that the volatility
of ARSV(1) models is a latent variable with an unexpected noise while in
GARCH(1,1) models, o, is observable given Y; ;. Consequently, if £; is Gaus-
sian, the excess kurtosis of i, in GARCH(1,1) models can only be explained
by the evolution of its conditional variance while in ARSV(1) models, the
excess kurtosis may depend on both the conditional variance and on the un-
expected component of volatility. Ghysels et al. (1996) suggest that this
additional source of kurtosis could make the ARSV(1) model more flexible

to represent the observed properties of real time series. In this paper, we



show that this is effectively the case.

The ability of each model to represent the empirical properties observed
in real time series has only been analyzed separately. Terdsvirta (1996) shows
that the basic GARCH(1,1) model is not able to account for the simultaneous
presence of excess kurtosis and low first order autocorrelation of squared ob-
servations, even if £; has a Student-t distribution. With respect to ARSV(1)
models, Liesenfeld and Jung (2000) conclude that the ARSV(1) model with
¢ being Gaussian does not adequately account for the simultaneous presence
of leptokurtic returns and the low autocorrelations of squared observations.

In this paper, we compare the capacity of GARCH(1,1) and ARSV(1)
models to generate series not only with excess kurtosis and autocorrelations
of squares characterized by a small order one autocorrelation, but also by
a slow decay. We show that the ARSV(1) model is more flexible than the
GARCH(1,1) model in the sense that it is able to generate series with larger
excess kurtosis and smaller order one autocorrelation of squares for a wider
variety of parameter specifications implying different degrees of persistence.
GARCH(1,1) models can only generate series with high kurtosis and low first
order autocorrelation of squares if the persistence is high. Consequently, we
show that ARSV(1) models are in closer conformance with the properties
usually observed in real data than GARCH(1,1) models. Our results may
also help to clarify some puzzles raised in empirical studies comparing both
models. For example, we explain why in the empirical analysis of financial
series, it has often been found that when the GARCH(1,1) specification is
chosen, ¢; requires a distribution with heavy tails, while when o; is mod-

elled with an ARSV(1) model, the assumption of Gaussianity seems to be



adequate; see, for example, Ghysels et al. (1996), Shephard (1996) and Kim
et al. (1998). We can also explain why in empirical applications, the per-
sistence of volatility implied by GARCH(1,1) models is usually higher than
that implied by ARSV(1) models; see Taylor (1994), Shephard (1996) and
Kim et al. (1998). Finally, the results obtained in this paper may explain
why the choice of the conditional distribution has systematic effects on the
parameter estimates of the volatility process; see, for example, Mahieu and
Schotman (1998) and Liesenfeld and Jung (2000).

The paper is organized as follows. In section 2, we describe the main
properties of the GARCH(1,1) model. Section 3 describes the basic ARSV(1)
model and shows that it is more flexible than the GARCH(1,1) model to
represent simultaneously high kurtosis, small order one autocorrelation and
high persistence of autocorrelations of squared observations. In section 4, we
analyze twelve daily financial time series to illustrate the performance of both
models. Finally, section 5 concludes the paper and gives some suggestions

for future research.

2 The GARCH(1,1) model

The AutoRegressive Conditional Heteroscedasticity (ARCH) model was in-
troduced by Engle (1982) to model the conditional variance of UK inflation.
ARCH type models have been very popular in the financial econometrics lit-
erature generating a huge number of papers. Some useful reviews on these
models are Bollerslev et al. (1992), Bollerslev et al. (1994), Bera and Hig-
gins (1995), Diebold and Lépez (1995) and Palm (1997). Engle (1995) is a



survey of some of the main papers related with ARCH models. If y; follows

a GARCH(1,1) model, then

Y = &0y (2)

2 _ 2 2
o, = wtay;,+Bo;

where e, ~ NID(0,1), and w, a and [ are parameters such that w > 0 and
a, > 0. The positivity conditions are needed to guaranty the positivity
of the conditional variance' and w has to be strictly positive for the process
y; not to degenerate. Finally, if o + [ < 1, the marginal variance of y; is
finite and the process is covariance stationary. Nelson (1990) shows that y,
is strictly stationary if E[log(8 + as?)] < 12. Notice that if ¢, is Gaussian,
this condition is satisfied even if o + 8 = 1. Therefore, when o + 3 =1, the
GARCH(1,1) process is strictly stationary although the marginal variance is
not finite.

Notice that, once Y;_; is observed, o7 is known. Consequently, o7 is the

conditional variance of ¥, and

ye | Yier ~ N(0,07) (3)

All GARCH(1,1) processes are martingale differences. If o + 8 < 1, the

marginal variance of y, is given by

!The positivity conditions for the general GARCH(p,q) model have been given by
Nelson and Cao (1992).

2The conditions for strict stationarity of general GARCH(p,q) processes have been
derived by Bougerol and Picard (1992).
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The condition for the existence of the fourth order moment is 3a> 4+ 2a/3+
3% < 1; see Bollerslev (1986). If this condition is satisfied, then the kurtosis
is given by
E(y) 6o

W EGE T To %0205 P )

which is greater than 3. Therefore, the marginal distribution of returns has
fat tails. All odd moments of y; can be seen to be zero.

The dynamics of the GARCH(1,1) process appear in the acf of the squared
observations. Bollerslev (1988) shows that the autocorrelations of y? are

given by

a(l—af - B
1—2ap — 32
pA7) = (a+B) ' pa(1),7 > 1

The acf of squared observations has the same pattern as an ARMA(1,1)
process with autoregressive parameter o + . Therefore, the GARCH(1,1)
model is able to generate volatility clustering. Notice that the persistence of
the volatility process depends on the value of a + . In table 1, we report
the acf of squared observations of GARCH(1,1) process for different values
of the kurtosis coefficient. Notice that, for a given kurtosis coefficient, the
order one autocorrelation py(1) is smaller the larger the persistence. These

results are illustrated in Figure 1, which plots the acf of squared observations



corresponding to four selected cases. Terdsvirta (1996) observed that, even if
the persistence of the volatility is high, high kurtosis is associate with values
of pa(1) bigger than the values often observed in practice. It is possible to

obtain the relationship between r,, p2(1) and persistence (p = a + /), given

by
(15y—re)(1—p?) (15y —re)(1=p?)
)= Vs -y ™)
P2 = o (1
1—p2+ ( y(ﬁ;)l()lﬁyﬁ)

where, if ¢, is Gaussian, k. = 3. Figure 2 represents this relationship, that
introduces the persistence of shocks to volatility, measured by o + 3, a com-
ponent not considered by Terdsvirta (1996). This Figure shows that low
values of py(1) and high kurtosis cannot be simultaneously generated by
GARCH(1,1) models with normal errors. It is also possible to observe why
a+ [ could be estimated close to one, even if there is no high persistence. The
GARCH(1,1) model is only able to increase the value of , with low values
of pa(1) by forcing a+ 3 to be very close to 1. Since in many empirical stud-
ies, the estimates of o and 8 are such that & + B\ ~ 1, Engle and Bollerslev
(1986) proposed the Integrated GARCH (IGARCH) process given by model
(2) with o + 8 = 1. However, Terdsvirta (1996) shows that even IGARCH
models are unlikely to provide an adequate characterization of high kurtosis
and low first order autocorrelation of squared observations and suggests that
substituting the normal distribution of £; by a heavy-tailed distribution like,
for example, the Student-t distribution, may improve the adequacy of the
GARCH(1,1) model to characterize the stylized facts observed in practice.
The Gaussian assumption on ¢; has been relaxed by several authors. For

example, a Student-t distribution was suggested by Bollerslev (1987), the



normal-poisson mixture distribution is used by Jorion (1988), the power ex-
ponential distribution in Baillie and Bollerslev (1989), the normal-lognormal
mixture distribution in Hsieh (1989) and the Generalized error distribution
(GED) in Nelson (1991). Bollerslev et al. (1994) used the Generalised-t
distribution which includes both the Student-t and the GED distributions
as particular cases. Finally, Granger and Ding (1995) and Gonzalez-Rivera
(1997) also consider the use of the Laplace distribution in conjunction with
GARCH models. In this paper, we will focus on the properties of the
GARCH(1,1) model with £; having a Student-t distribution with v degrees of
freedom because it is the most popular one in empirical applications. Given
that ¢; is standardized to have variance one, the marginal variance of y; is
given by (4), like in the Gaussian case. The condition for the existence of the
fourth order moment is k.a? + 2a3 + 3? < 1; see He and Terésvirta (1999).

If this condition is satisfied, then the kurtosis is given by

B 1—o?—p?—2ap
—fer k.02 — 203 — (32 (®)

Ky

where k. is the kurtosis of e;, which if v > 4 is given by k. = 3(r —2)/(r —4).

He and Terisvirta (1999) show that the autocorrelation function of y? is
the same as in the Gaussian case. The relationship between r,, p2(1) and the
persistence of the volatility, is also given by (7) and it has been represented in
Figure 2 for GARCH(1,1) models with ¢, having Student-t distributions with
5 and 7 degrees of freedom. We can see that, as pointed out by Terdsvirta
(1996), GARCH(1,1) models with a conditional Student-t distribution, seem
to be better than the Gaussian ones at explaining simultaneously the three

stylized facts observed in real time series. However, notice that the kurtosis



of y; is heavily linked to the kurtosis of ;. Finally, looking at Figure 2, it
could be expected that the estimated parameters @ and B\ depend on the

assumed distribution for &;.

3 The ARSV (1) model

ARSV models assume that o; is a latent variable that usually follows an
autoregressive process after being transformed into logarithms. Surveys on
the properties of ARSV models are given by Taylor (1994), Ghysels et al.
(1996) and Shephard (1996).

The simplest case is the ARSV(1) ? given by:

Yt = 04E0¢ (9)

logoy = ¢logoi_, +m

where ¢, and 7, are assumed to be white noise processes mutually indepen-
dent and normally distributed with zero mean and variances one and 05
respectively. The parameter o, is a scale factor that removes the necessity of
including a constant term in the equation of log o7 and the restriction |¢| < 1
guarantees the stationarity of ;. Although the assumption of Gaussianity of
ny can seem ad hoc at first sight, Andersen et al. (1999) show that the daily

log-volatility distribution of real financial series may be well approximated

2

, is the variance of the volatility

by a normal distribution. Notice that o

2

+ is zero, the model in (9) is no longer identified. So

disturbance. When o

et al. (1999) present an interesting interpretation of the ARSV(1) model in

3The specification of the log-volatility process as an ARMA(p,q) process has been
considered, for example, by Hwang and Satchell (2000)

10



(9) by decomposing the overall volatility of ¢, into a baseline volatility, which
represents the volatility in a typical day, and the volatility due to fluctuating
information arrivals to the market.

In general, the distribution of 1; conditional on past observations has
an unknown form. With respect to the marginal distribution, using the
properties of the log-normal distribution, it can be seen that the variance of
Y, is given by

o) = orexp (0.507) (10)

where o} = 02/(1 — ¢*). The kurtosis of y, is given by

Ky, = 3exp (07) (11)

which is bigger than 3. Therefore, the ARSV(1) model is also able to gen-
erate series with heavy tails. Notice that, while in the ARSV(1) model, the
condition for the existence of the fourth order moment is the stationarity
condition, i.e. |¢| < 1, a GARCH(1,1) model can be stationary without
having a finite fourth order moment.

All the odd moments of y; can be easily seen to be zero. Finally, notice
that y; is an uncorrelated process although it is not independent. The auto-
correlations of squared observations have been derived by Taylor (1986) and

are given by

_ exp(oip™) — 1
3exp(o?) —1

pa(7) (12)

Taylor (1986) shows that when o7 is small and/or the autocorrelations

11



of logo? are close to one, the shape of the acf of squared observations is

approximately the same as the shape of the acf of logo? multiplied by a

factor of proportionality, i.e.

exp(o?) — 1

pa(T) = ¢" (13)

"~ 3exp(o}) — 1
Consequently, the acf of squared observations is similar to that of an ARMA(1,1)
process characterized by an exponentially decaying rate determined by the
parameter ¢. Therefore, the persistence of shocks to volatility depends on
¢. Notice that, the acf of squared observations generated by the ARSV(1)
model behaves apparently similarly to the acf of squares of the GARCH(1,1)
model in (6). It is also important to notice that, in the ARSV(1) model,
the parameter a% governs the degree of kurtosis independently of the persis-
tence of volatility measured by ¢. There could be excess kurtosis even when

¢ = 0. As we will see later, this property makes ARSV(1) models more flexi-
ble than GARCH(1,1) models to represent the stylized facts observed in real
data. Remember that in a GARCH(1,1) process, kurtosis and persistence
are heavily tied up.

Given that ¢ plays a role similar to that of a4+ [, in table 1, we report
the acf of squared observations of ARSV(1) models for several values of the
kurtosis coefficient and for ¢ = a 4+ . Comparing the acf of the squared
observations implied by the GARCH(1,1) and the ARSV(1) model both with
£, having a Gaussian distribution, we can see that, when ¢ = a-+f and for the
same implied kurtosis, the autocorrelations of squared observations implied
by the ARSV(1) process are smaller than the autocorrelations implied by

the GARCH(1,1) process, except when the volatility approaches the non
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stationary region, where both correlations are the same; see also Figure 1.
The relationship between kurtosis, persistence and p,(1) does not depend

on the parameter o, and is given by
(14)

This relationship has been plotted in figure 3 for the ARSV(1) model to-
gether with the corresponding relationship for the GARCH(1,1) model both
with normal errors. In this figure it is possible to observe that the ARSV(1)
model is able to generate series with higher kurtosis and lower py(1) than the
GARCH(1,1) model. Introducing the noise 7, makes the ARSV(1) model
more flexible in the sense that is able to generate higher kurtosis than the
GARCH(1,1) model without increasing p2(1) and without forcing the persis-
tence of volatility to be close to the non stationarity region. This fact could
explain why in practice when the volatility is represented by a GARCH(1,1)
model, usually it is necessary to specify a fat-tailed distribution of ; while
when an ARSV(1) model is used, the assumption of Gaussianity of £, may be
adequate; see Ghysels et al. (1996), Shephard (1996) and Kim et al. (1998).
Figure 3 can also explain why the persistence estimated in ARSV(1) models
is usually lower than in GARCH(1,1) models; see, Taylor (1994), Shephard
(1996) and Kim et al. (1998). Notice that, contrary to what happens in
GARCH(1,1) models, in an ARSV(1) model, given x,, higher persistence
implies higher order one autocorrelation of squared observations; see also ta-
ble 1. Therefore, it is possible to have ARSV(1) models with high kurtosis,
low py(1) and persistence far from the non stationary region. However, in

a GARCH(1,1) model, the persistence should be high because it is the only
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way to have both, high kurtosis and low py(1). Notice also that, as we have
seen in table 1, the properties of both models are similar when the volatility
is close to the non stationarity region.

In figure 4, we plot the relationship between r,, p2(1) and persistence for
ARSV(1) models with normal errors and GARCH(1,1) models with Student-
t with 7 degrees of freedom errors. Notice that the ARSV(1) model is still
able to generate series with higher kurtosis and smaller py(1) for most of the
parameter values.

As in the case of GARCH(1,1) models, ARSV(1) models may capture
higher kurtosis by allowing ¢; to have a leptokurtic distribution; see Gallant
et al. (1994), Harvey et al. (1994), Ruiz (1994), Sandmann and Koopman
(1998) and Chib et al. (1998). If a Student-t distribution is assumed for &,
in (9), the variance of y; is the same as in the Gaussian case and it is given

by (10). However the kurtosis of y; is now given by
Ky = K. exp (07) (15)

where k. is the kurtosis of ;. Notice that, the condition needed for the
existence of the kurtosis is that k. is finite and |¢| < 1. The parameters that
govern the dynamic evolution of the volatility are not restricted as far as the
model is stationary. This makes the ARSV(1) model even more flexible than
the GARCH(1,1) model, since no adicional conditions need to be satisfied.

The acf of squared observations is now given, approximately, by

exp(o?) — 1

pa(T) = ¢’ (16)

keexp(or) — 1
where k. is the kurtosis of ;. The acf in (16) is equal to the acf of the

log 07 process multiplied by a factor of proportionality that depends on the

14



distribution of ;. The smaller the kurtosis of ¢;, the bigger the factor of
proportionality. Therefore, considering distributions of £, with heavy tails,
the acf of the squared observations is higher the bigger is the number of
degrees of freedom and, consequently, the acf of squares is a maximum for
a normal distribution; see Ghysels et al. (1996). Finally, the relationship
between kurtosis and po(1) is given by

Ky d) o
(=) -t (17)

pa(1) = =1
Figure 5 plots the relationship between £, p2(1) and persistence for ARSV(1)
models with normal and Student-t errors. Observe that, when the Student-t
distribution is assumed for the error, the ARSV(1) model can imply nega-
tive first order autocorrelations of squared observations if the ¢ parameter is
small. This could explain why estimates of ¢ under the ARSV(1)-t specifica-
tion are, usually, greater than those under ARSV(1)-normal; see Mahieu and
Schotman (1998) and Liesenfeld and Jung (2000). It is rather clear that sub-
stituting a Gaussian noise by a Student-t noise, allows to have higher kurtosis
without increasing the order one autocorrelation of squared observations, in-
troducing even more flexibility in the model. Figure 5 also illustrates the

result of Ghysels et al. (1996) previously mentioned that the correlogram of

y? is at a maximum under Normality.

4 Empirical application

In order to illustrate the main empirical properties often observed in high fre-
quency financial time series, table 2 contains descriptive statistics of twelve

series observed daily. If we denote by p; the observed price at time ft,
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we are considering as the series of interest, the returns defined as r; =
100(log(p;) — log(pi—1)). The series considered are returns of the US Dol-
lar against the Canadian Dollar, the Spanish Peseta, the German Mark, the
Japanese Yen, the Swiss Franc, the Swedish Krona and the British Pound
exchange rates observed from January 1993 to October 2000 and returns of
five international stock market indexes, the Amsterdam E.O.E. index and the
Bombay stock market index observed from October 1995 to October 2000,
the Dow Jones from January 1990 to October 2000, the IBEX 35 of the
Madrid Stock Exchange observed from January 1992 to December 1999 and,
finally, the S&P 500 index observed from November 1987 to December 1998.
All the series have been filtered when necessary to get rid of a small first order
autocorrelation in the levels and the presence of outliers *. In this table, it is
possible to observe that all the series have zero mean and excess kurtosis. It
is also important to note that, although the series are not autocorrelated, the
squared observations are correlated. Therefore, the variables are not serially
independent. Finally, note that the autocorrelations of squared observations
start at low levels.

Figures 6 and 7 contain plots of daily returns of all the series. It is
possible to observe volatility clustering with days of large movements in prices
followed by days with large returns in absolute value. These Figures also
give kernel estimates of the marginal density of returns together with the
corresponding normal density. The density plots confirm the results reported

in table 2 about the returns being heavy-tailed. Finally, correlograms of

*See Carnero et al. (2001) for a review on the effects of the simultaneous presence of
outliers and conditional heteroscedasticity on the diagnostic and estimation of GARCH
models.
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the series y? are also plotted. The volatility clustering is reflected in the
significant correlations of squared returns. In particular, in the correlogram
of y? the autocorrelations start at low values but are significant even for very
large lags.

Table 3 reports the ML estimates of the parameters of the Normal GARCH(1,1)
model for all the series considered ®. In this table it is possible to observe that
all the series considered have significant ARCH effects and high persistence
measured by a + 3 Model diagnostics are based on the standardized obser-
vations defined as £; = y;/0;, where G, is obtained substituting the estimated
parameters in the corresponding expression of the conditional variance. In
table 3, we also report several sample moments of ;. Note that the stan-
dardized observations have still heavy tails. However, the autocorrelations
of squares are not any longer significant. Therefore, the GARCH(1,1) model
is able to represent adequately the dynamics of squares of the financial series
considered although it is not able to explain the excess kurtosis present in
the data. The last row of table 3 reports the number of standardized obser-
vations bigger than 3.5 standard deviations. These observations, that could
be considered as ”conditional” outliers, may explain why the standardized
observations have excess kurtosis.

Given that the standardized observations by the Gaussian GARCH(1,1)
model are leptokurtic, in table 4 we report the estimation results of GARCH(1,1)-
t models fitted to the same time series. There are not big differences between
the parameter estimates of GARCH(1,1)-normal models in table 3. However,

notice that, except for Bombay, the estimated persistence is even greater than

5The estimation has been carried out with EViews, version 3.1.
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in table 3. Also, it is important to point out that the condition for the ex-
istence of the four order moment is violated by the estimated parameters of
US-SW, US-UK, AMST, DWJ and S&P 500. Finally, the standardized obser-
vations have, as expected, excess kurtosis, since we are assuming a Student-t
distribution for the conditional distribution.

Table 5 reports the estimates of the parameters of the ARSV(1) model.
The estimates have been obtained using the QML method proposed inde-
pendently by Harvey et al. (1994) and Nelson (1988)5. The asymptotic
standard errors of the QML estimators of the parameters ¢, 0727 and 0’2 have
been computed using the results in Ruiz (1994). The scale parameter o2 can
be estimated using the sample variance of the heteroscedasticity corrected
observations. Under normality of £; and for large sample size, T, the variance
of this estimator is 4.930%/T; see Harvey and Shephard (1993). Given that
under normality, 07 = 7?/2, a natural test for normality in this framework is
to test the null hypothesis Hy : 0f = /2 using a Wald test. The test only
rejects the null for four of the twelve time series: US-CA, US-JA, US-UK
and BOMBAY. However, as in table 3, the standardized observations still
have excess kurtosis, although smaller than when the GARCH(1,1) model is
fitted. This fact can also be observed in the number of standardized obser-
vations greater than 3.5 standard deviations, which, for most of the series, is
smaller than in table 3.

Figure 8 plots density estimates of standardized observations with GARCH(1,1)

6The estimation of the parameters is based on obtaining the prediction error decom-
position of the Gaussian likelihood of the log-squared observations given by logy? =
p+logo? + & where u = logo? + E(loge;) and & = loge? — E(loge;). Notice that when
e is Normal, & has a log(x%l)) distribution with variance 2 /2.
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and ARSV(1) models together with the Normal density for the US Dol-
lar/British Pound exchange rate and the Amsterdan E.O.E. index. As we
can see, the Gaussian ARSV (1) specification seems to be more adequate than
the GARCH(1,1). For the rest of the series both specifications seem to be
very similar in terms of estimated densities for the standardized observations.

Notice that for the series US-CA, US-GE, US-UK and BOMBAY the per-
sistence estimated with the ARSV(1) model is smaller than the one estimated
with the GARCH(1,1). This could be due to the fact that the GARCH(1,1)
model need to have a persistence very close to one to explain high kurtosis
and low py(1) and therefore, the high persistence found in these series with
the GARCH(1,1) model could be spurious. For the rest of the series the
persistence is estimated very close to one in both models, indicating that, in
fact, there is persistence in variance.

Figure 9 plots the sample kurtosis, first order autocorrelation and @ + 3
estimated together with the moments implied by the Gaussian ARSV(1) and
GARCH(1,1)-t;p models. Observe that the ARSV(1) model is closer to most
of the empirical points than the GARCH(1,1) model. Therefore, it seems that
ARSV(1) models are in closer conformance with real data than GARCH(1,1)
models. To illustrate more clearly this point, table 6 reports the sample mo-
ments implied by the Gaussian GARCH(1,1), GARCH(1,1)-t and Gaussian
ARSV(1) models estimated for the US Dollar/Spanish Peseta exchange rate
and the Dow Jones index. Notice that the kurtosis coefficients implied by
the GARCH(1,1)-t models are either not defined or too big compared with
the sample kurtosis in table 2. The same has been observed for all other re-

turns considered. On the other hand, comparing the moments implied by the
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Gaussian GARCH(1,1) and Gaussian ARSV(1) models, the latter is usually
closer to the sample moments in table 2. For some of the other series, the
evidence is mixed.

Finally, since in finance there is also a big interest for the estimates of
the volatility itself we have compared the GARCH(1,1) and ARSV(1) models
with respect to the estimated volatilities. Notice that the ARSV(1) specifi-
cation of the volatility allows to obtain smoothed estimates of o; using the
whole sample, (y1,...,yr); see, for example, Harvey et al. (1994). However,
in GARCH(1,1) models, since o; is observable at time ¢ — 1, the observa-
tions at time ¢ and later do not modify the estimate of o;. Figure 10 plots
GARCH(1,1) and ARSV(1) estimates of the volatility for the Dow Jones and
the Ibex 35 indexes. It can be seen that the ARSV(1) specification produces
smoother volatility estimates than the GARCH(1,1). ARSV(1) estimates
are less sensitive to large movements in prices than GARCH(1,1) estimates.
The dynamic shape of the two series of estimates is very similar. The only
point worth to notice is that, as can be seen in the plot od the Dow Jones
estimates, for most of the returns considered, the volatilities estimated by

the ARSV(1) model are, usually, over the GARCH(1,1) ones.

5 Conclusions

In this paper we have shown that ARSV(1) models are more flexible than
GARCH(1,1) models to explain the excess kurtosis, low first order autocorre-
lation and high persistence of volatility often observed in real high frequency

financial time series. The properties of both models are similar when volatil-
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ity is close to the non stationarity region. Our results can explain why in the
empirical analysis of real financial series, it has often been observed that when
the GARCH(1,1) specification is chosen for the volatility, the conditional
distribution of returns needs to have heavy tails while when the volatility
is modelled with an ARSV(1) model, the assumption of Gaussianity seems
to be adequate. We also show why the persistence of volatility estimated
in GARCH(1,1) models is usually higher than that estimated in ARSV(1)
models and why the conditional distribution assumed has systematic effects
on the parameter estimates of the volatility process.

Most of the papers that compare empirically ARSV (1) and GARCH(1,1)
models suggest that ARSV(1) models are more adequate than GARCH(1,1)
models to explain the stylized facts observed in real time series and the em-
pirical analysis presented in this paper confirms these results. However, the
estimates of the volatility obtained with each of the models considered are
very similar. Therefore, it seems that the definite proof for these models is
to analyze their performance in predicting future returns and volatilities. So
et al. (1999) compare the predictive performance of both models analyzing
returns of five exchange rates. They conclude that both models have similar
performance in terms of the Mean Square Prediction Error and Mean Abso-
lute Prediction Error. Only in two of the five series considered, the ARSV
predictions of volatility outperform the GARCH predictions. However, it
could be interesting to compare confidence intervals for the predicted volatil-
ity generated by each of the models. In this sense, the procedure proposed

by Pascual et al. (2000) seems to be very promising.
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Figure 1: Autocorrelation function of squared observations of GARCH(1,1)
and ARSV(1) processes with the same kurtosis and approximately the same
persistence
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Table 6: Implied moments by the estimated models

Implied by Implied by Implied by
GARCH(1,1) | GARCH(1,1)-t | ARSV(1)
[ USES | | |
Mean 0.0000 0.0000 0.0000
Variance 0.4050 0.5333 0.3996
Kurtosis 3.3232 16.7163 3.8802
ro(1) 0.0784 0.1762 0.1009
r9(2) 0.0775 0.1757 0.10000
r9(5) 0.0747 0.1741 0.0973
79(10) 0.0703 0.1715 0.0930
| DOW JONES | |
Mean 0.0000 0.0000 0.0000
Variance 0.8305 7.1429 0.8179
Kurtosis 3.9692 7 4.3470
ro(1) 0.1419 0.5128 0.1337
r9(2) 0.1411 0.5125 0.1333
r9(5) 0.1386 0.5114 0.1320
79(10) 0.1346 0.5096 0.1299
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Figure 2: Relationship between kurtosis, first order autocorrelation of
squared observations and persistence for GARCH(1,1) models

Relationship between «, p,(1) and persistence for GARCH(L,1)

persistence(o:+B)

Figure 3: Relationship between kurtosis, first order autocorrelation of
squared observations and persistence for GARCH(1,1) and ARSV(1) models
with Gaussian errors
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Figure 4: Relationship between kurtosis, first order autocorrelation of

squared observations and persistence for GARCH(1,1)-t and Gaussian
ARSV(1) models
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Figure 5: Relationship between kurtosis, first order autocorrelation of
squared observations and persistence for ARSV(1)-t models
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Figure 6: Daily exchange rates
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Figure 7: Daily financial indexes
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Figure 8: Densities of standardized observations for US Dollar/British Pound
exchange rate and AMST. E.O.E.
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Figure 9: Relationship between x,, p2(1) and persistence for ARSV(1) and
GARCH(1,1)-t models together with the sample values

Relationship between k, pz(l) and persistence for GARCH(1,1)-t and SV Normal

persistence (9=0+B) ’ p,(1)
2

Figure 10: Estimated volatilities with GARCH(1,1) and ARSV(1) models
for DOW JONES and IBEX 35 indexes
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