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Abstract. This paper addresses the equivalence between the absence of arbitrage and the existence
of equivalent martingale measures. The equivalence will be established under quite weak assumptions
since there are no conditions on the set of trading dates (it may be finite or countable, with bounded or
unbounded horizon, etc.) or on the trajectories of the price process (for instance, they do not have to be
right-continuous).

Besides we will deal with arbitrage portfolios rather than free-lunches. The concept of arbitrage is
much more intuitive than the concept of free lunch and has more clear economic interpretation. Further-
more it is more easily tested in theoretical models or practical applications.

In order to overcome the usual mathematical difficulties arising when dealing with arbitrage strate-
gies, the set of states of nature will be widened by drawing on projective systems of Radon probability
measures, whose projective limit will be the martingale measure. The existence of densities between
the “real” probabilities and the “risk-neutral” probabilities will be guaranteed by introducing the con-
cept of “projective equivalence”. Hence some classical counter-examples will be solved and a complete
characterization of the absence of arbitrage will be provided in a very general framework.

Martingalas y arbitraje: un nuevo enfoque

Resumen. Analizaremos la equivalencia entre la ausencia de arbitraje y la existencia de una medida de
martingala. Esta equivalencia se establecerá bajo supuestos débiles, puesto que no hay condiciones sobre
el conjunto de fechas de negociación (puede ser finito o contable, con horizonte acotado o no acotado,
etc.) ni sobre las trayectorias del proceso de precios (por ejemplo, no tienen que ser continuas por la
derecha).

Trabajaremos con el concepto de arbitraje, y no con el defree-lunch. La noción de arbitraje es mucho
más intuitiva y tiene una interpretación económica mucho más clara, además de ser más fácil de verificar
en las aplicaciones prácticas.

Para salvar dificultades matemáticas, extenderemos el conjunto de estados de la naturaleza mediante el
uso de sistemas proyectivos de probabilidades regulares (de Radon), cuyo lı́mite proyectivo será la medida
de martingala. La existencia de densidades entre las “probabilidades reales ” y las “neutrales al riesgo” se
garantizará mediante la introducción del concepto de “equivalencia proyectiva”. Algunos contra-ejemplos
clásicos serán resueltos, y una caracterización completa de la ausencia de arbitraje será presentada en un
contexto muy general.

1 Introduction

The existence of pricing rules, discount factors or state prices is crucial in the literature on capital markets.
It is closely related to the concepts of arbitrage and equilibrium (see, for instance, Chamberlain and Roth-
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schild [8, (1983)] or Hansen and Jagannathan [15, (1997)]). Harrison and Kreps [16, (1979)] showed the
link between pricing rules and martingale measures.

Since Harrison and Kreps [16, (1979)] established the existence of martingale probabilitymeasures for
some arbitrage free pricing models their result has been extended in multiple directions, generating the Fun-
damental Theorem of Asset Pricing (henceforthFTAP). For instance, Dalang et al. [11, (1990)], Schacher-
mayer [22, (1992)] and [23, (1994)], Delbaen and Schachermayer [13, (1998)] or Jacod and Shiryaev [17,
(1998)] provide deep characterizations of the existence of martingale measures in different settings.

Nevertheless a simple version of theFTAP cannot be proved, in the sense that the arbitrage absence is
not sufficient to build martingale measures if the set of trading dates is not finite. It was pointed out in Back
and Pliska [2, (1991)], where a simple counter-example is provided. To overcome this problem Clark [10,
(1993)] introduced the concept of “free lunch”, far weaker than the concept of arbitrage. The absence of
free lunch has been the key to yield further extensions of theFTAP, even in the imperfect market case (see
for instance Jouini and Kallal [18, (1995)]).

Any free lunch can be understood as an “approximated arbitrage” in the sense that it is “quite close”
to an arbitrage portfolio. However, it is almost an arbitrage but it is not an arbitrage, it is not so intuitive
and its economic interpretation is not so clear. On the contrary it is introduced in mathematical terms and
solves a mathematical problem, but classical pricing models (binomial model, Black and Scholes model,
etc.) usually deal with the concept of arbitrage.

Besides, if possible, it may be worth to provide risk-neutral probabilities and pricing rules (martingale
measures) under simple and meaningful assumptions, as the arbitrage absence. This is in the line of many
others Representation Theorems of Mathematical Finance. For instance, the representation of coherent risk
measures (Artzner et al. [1, (1999)]) or pricing rules in one period imperfect markets (Chateauneuf et al. [9,
(1996)], De Waegenaere et al. [12, (2003)], Castagnoli et al. [7, (2004)] etc.) is addressed by using intuitive
hypotheses.

Balbás et al. [5, (2002)] have shown that it is possible to characterize the arbitrage absence if the set
of trading dates isN, the set of natural numbers. They built an appropriate countable projective system
(νn)n∈N of perfect probability measures (see Musial [21, (1980)]) that are risk-neutral for each finite subset
{0, 1, . . . , n} ⊂ N. Then they showed that the projective limitν is risk-neutral for the whole set of trading
dates (N), in the sense that the set of states of the world and the price process may be extended to a “new
price process” which is a martingale underν. The initial probability measureµ andν cannot be equivalent,
as illustrated by using the counter example of Back and Pliska. However, for any finite subset ofN, the
projections ofµ andν are equivalent, and there are Radon-Nikodyn derivatives in both directions. Balbás
et al. used this property to introduce the concept of “projective equivalence” of probability measures.

The interest of the approach above seems to be clear, since it even permits us to extend the classical
FTAP for infinitely many trading dates without using the projective equivalence, i.e., in the classical setting.
For instance, Balbás et al. [3, (2007)] have used the analysis of Balbás et al. [5, (2002)] so as to extend the
FTAP in a model with dynamically bounded Sharpe ratios. Unbounded Sharpe ratios would lead to very
high returns with bounded risk level, which is barely acceptable in Financial Economics. The findings of
Balbás et al. [3, (2007)] have some relationships with those of Föllmer and Schachermayer [14, (2008)],
where the authors show that the absence of martingale measures in the long run provokes the existence of
asymptotic arbitrage that is related to the market price of risk.

This paper follows the approach of Balbás et al. [5, (2002)] and extends the analysis bearing in mind a
much wider scope. Even usual constraints, also imposed in the literature when dealing with free lunches,
are no assumed here. For instance, there are no conditions on the set of trading dates (it may be finite
or countable, with bounded or unbounded horizon, etc.) or on the trajectories of the price process (for
example, they do not have to be right-continuous).

The existence of risk-neutral probabilities will be stated by means of projective limits of projective sys-
tems of Radon probability measures (see Schwartz [24, (1973)]), rather than projective systems of perfect
measures. These projective systems will permit us to broaden the set of states of nature and to generalize
the concept of projective equivalence.
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The outline of the article is as follows. Section2 will introduce the basic concepts and notations. Sec-
tion 3 will summarize some mathematical background that will be oftenapplied. Section4 will transform
the problem in order to introduce the “projective price process”. Section5 will be devoted to provide mar-
tingale measures when the set of trading dates is countable. The most important result is Theorem5 and
generalizes those findings of Balbás et al. [5, (2002)], since the setT of trading dates does not have to be
similar to N. For example,T can equal the set of non-negative rational numbers or, more generally,T
can have adherent points, and every adherent point may belong toT or to its complementary. It seems to
be a significant extension since, for instance,CadLag price processes are characterized for their values at
rational dates. Section6 will conclude the article.

2 Preliminaries and notations

Let (Ω,F , µ) be a probability space composed of the setΩ, theσ-algebraF and the probability measureµ.
Suppose thatT ⊂ [0,∞) is a set (finite or infinite, with finite or infinite horizon) of trading dates such
that 0 ∈ T (0 denoting the current date) andT contains at least two elements. As usual, the arrival of
information will be provided by the increasing family[Ft]t∈T of σ-algebras ofΩ such thatF0 = {∅, Ω}
andσ(

⋃

t∈T Ft) = F , σ(
⋃

t∈T Ft) being theσ-algebra generated by the algebra
⋃

t∈T Ft. The restriction
of µ to Ft will be denoted byµt for everyt ∈ T .

Considern different securities whose prices will be represented by theRn-valued adapted stochastic
process

{S(ω, t) : ω ∈ Ω, t ∈ T }.

Obviously
S(ω, t) =

(

S1(ω, t), S2(ω, t), . . . , Sn(ω, t)
)

whereSj(ω, t) ∈ R for ω ∈ Ω, t ∈ T andj = 1, 2, . . ., n, and represents the price of thej-th asset att
under the stateω. In order to simplify the notation the previous processes may be also denoted byS andSj ,
j = 1, 2, . . ., n. Analogous notations and conventions will be used for any otherR-valued orRn-valued
adapted stochastic process.

As usual, the first asset will play the role of a numeraire, and therefore we will impose that

S1(ω, t) = 1 (1)

holds for everyω ∈ Ω andt ∈ T .
For a fixedω ∈ Ω the corresponding path or trajectory ofS will be denoted byS(ω,−), while for

any fixed trading datet ∈ T the symbolS(−, t) yields the random variable providing us with prices att.
Similar notations will be used in similar situations.

Consider arbitrary an finite subsets{t0 = 0 < t1 < · · · < tk} ⊂ T . For such a subset consider any
stochastic process

x : Ω × {0 < t1 < · · · < tk} −→ R
n

adapted to the filtration[Ft]t∈{0<t1<···<tk}
. Then,x is said to be a self-financing portfolio if

[x(ω, ti) − x(ω, ti−1)] S(ω, ti) = 0 (2)

µ-a.s. andi = 1, 2, . . ., k.1 The set of self-financing portfolios will be denoted byA.
Let x ∈ A. It may be easily proved that the above set of trading dates may be extended by adding a

finite number of elements ofT and the conventionx(−, ti) − x(−, ti−1) = 0 if ti is a new element that
does not belong to the initial finite set of trading dates. Therefore it is easy to show thatα1x

1 + α2x
2 ∈ A

if xi ∈ A andαi ∈ R, i = 1, 2.

1Notice that products in (2) are scalar (or inner) products ofR
n.
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If x ∈ A then
λ(x) = x(ω, 0)S(ω, 0) ∈ R

will be its current price, while theFtk
-measurable random variable

x(ω, tk)S(ω, tk)

will be its final pay-off and will be denoted byΛ(x), or Λ(x)(ω) if necessary.
As usual, an arbitrage portfolio allows traders to obtain “money without risk”.

Definition 1 A self-financing portfoliox ∈ A is said to be an arbitrage if

a) λ(x) ≤ 0

b) Λ(x)(ω) ≥ 0, µ-a.s.

c) µ (ω ∈ Ω : Λ(x)(ω) − λ(x) > 0) > 0.

Hereafter we will assume essentially bounded prices, i.e.,Sj(−, t) ∈ L∞(Ft) for j = 1, 2, . . ., n and
t ∈ T . Thus for everyt ∈ T there exists aµ-null setZt ∈ Ft such that the inequality

‖S(ω, t)‖ ≤ ‖S(−, t)‖∞ (3)

holds for everyω ∈ Ω \ Zt.
Givent, s ∈ T , t ≤ s, it makes sense to introduce the conditional expectation ofS(−, s) with respect

toFt and will be denoted byEµ(S(−, s)|Ft). Similar notations will be used for similar cases.

Definition 2 Given a finite set{0 < t1 < · · · < tk} ⊂ T and a probability measureν : Ftk
7→ [0, 1] then

ν is said to be a martingale measure on{t0 = 0 < t1 < · · · < tk} if µtk
andν are equivalent and

Eν(S(−, ti)|Ftj
) = S(−, tj) (4)

wheneveri, j = 0, 1, . . ., k andi ≥ j.

The absence of arbitrage and theFTAP guarantee the existence of martingale measures on any finite
set of trading dates (see for instance Dalang et al. [11, (1990)], Schachermayer [22, (1992)] or Jacod and
Shiryaev [17, (1998)]).

Theorem 1 The model is arbitrage free if and only if there exists a martingale measure on every finite set
{0 < t1 < · · · < tk} ⊂ T .

Despite the previous result, the counter-example of Back and Pliska [2, (1991)] points out that the
martingale measure depends on{0 < t1 < · · · < tk}, i.e., in general, it is not possible to findν : F 7→ [0, 1]
equivalent toµ and such that (4) holds for everyti, tj ∈ T with ti ≥ tj .

3 Some mathematical background

It is worth to recall some properties concerning Radon measures and projective systems of topologi-
cal spaces and measures. Further details may be found in Kelley [19, (1955)], Bourbaki [6, (1969)],
Schwartz [24, (1973)] or Musial [21, (1980)].

If X is a Hausdorff topological space andB represents its Borelσ-algebra then a finite and positive
measureν onB is said to be a Radon measure if

ν(B) = sup{ ν(K) : K ⊂ B, K compact} (5)
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for everyB ∈ B. It is easy to show that (5) implies

ν(B) = inf{ ν(G) : G ⊃ B, G open}

for everyB ∈ B. Furthermore (5) leads to the existence of an open subsetG of X such thatν(G) = 0 and
G ⊃ G′ for everyG′ open and such thatν(G′) = 0. Its complementaryX \ G is a closed set called the
support ofν and denoted bySp(ν).

If X is compact then the setR of positive and finite Radon measures onB may be identified with the set
of R-valued, linear, continuous and positive functionals onC(X) (C(X) being the Banach space ofR-valued
and continuous functions onX), and the Alaoglu’s Theorem trivially leads to theweak∗-compactness of
R0 = { ν ∈ R : ν(X) = 1 }.

The Hausdorff topological spaceX is said to be a Radon space if every finite and positive measure on
B is a Radon measure. Every Polish space (metric, complete and separable) is a Radon space. In particular,
RC is a Radon space for every countable setC, RC being the space ofR-valued functions onC endowed
with the simple (or product) topology.

For any(F ,B)-measurable functionf : Ω → X , the measureµ induces a measure onB, called the
image measuref(µ), given byf(µ)(A) = µ(f−1(A)) for all A ∈ B.2 Obviouslyf(µ) is Radon if so is the
spaceX .

If X andY are two compact and Hausdorff spaces andf : X → Y is a continuous function thenf
induces the new functionRX ∋ ν → f(ν) ∈ RY , RX andRY being the sets of finite and positive Radon
measures onX andY respectively. It is easy to show that this transformation is continuous ifRX andRY

are endowed with their respectiveweak∗-topologies.
Let ≤ be the ordering relation of a directed setI. Consider a family of Hausdorff topological spaces

(Xi)i∈I and the continuous mapsπij : Xj → Xi, i, j ∈ I, i ≤ j. We say that((Xi, πij); i, j ∈ I, i ≤ j)
is a projective system of topological spaces ifπik = πij ◦ πjk for all i, j, k ∈ I, i ≤ j ≤ k. Its projective
limit is

X =

{

(xi)i∈I ∈
∏

i∈I

Xi : xj = πjk(xk) if j, k ∈ I, j ≤ k

}

endowed with the product topology. Clearly, the canonical projectionsπi : X → Xi, i ∈ I, are continuous
and satisfyπi = πij ◦ πj for all i, j ∈ I, i ≤ j. X may be endowed with its Borelσ-algebraB and the
cylindricalσ-algebraB0 ⊂ B generated by

⋃

i∈I

{

π−1
i (Ai) : Ai ⊂ Xi, Ai open

}

Note thatπi isB0-measurable for everyi ∈ I.
Under the notations above, ifνi is a Radon measure onXi for everyi ∈ I andπij(νj) = νi if i, j ∈ I,

i ≤ j, then(νi)i∈I is said to be a projective system of Radon measures. We will say that(νi)i∈I converges
to the measureν : B0 → R (or ν is the projective limit of(νi)i∈I ) if πi(ν) = νi for everyi ∈ I.

The following results on the existence of projective limits of projective systems of Radon measures are
adapted from Bourbaki [6, (1969)] and Schwartz [24, (1973)] respectively.

Theorem 2 Under the notations above, ifI = N then every projective system of Radon measures(νi)i∈N

has a projective limitν. Moreover,ν is unique and can be extended to a unique Radon measure defined
over the Borelσ-algebraB.

Theorem 3 (Prokhorov) Under the notations above there exists a Radon measureν : B → R such that
πi(ν) = νi for every i ∈ I if and only if for everyε > 0 there exists a compact setK ⊂ X with
νi(Xi \ πi(K)) < ε for everyi ∈ I. In the affirmative caseν is unique.

2Notice that(Ω,F , µ) may be replaced by any other measure space.
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Corollary 1 Under the notations above ifSp(νi) ⊂ Xi is compact for everyi ∈ I then there exists a
unique Radon measureν : B → R such thatπi(ν) = νi for everyi ∈ I. Furthermoreν has a compact
support andSp(ν) ⊂

∏

i∈I Sp(νi).

There is a special type of projective system of Radon measures closely related to stochastic processes.
So, considerI = PF (T ) the set of finite subsets ofT containing{0} and consider the order ofI generated
by the usual inclusion. For everyV ∈ PF (T ) we will take the (Polish and therefore Radon) topological
space(Rn)V of Rn-valued functions defined onV . Of course,(Rn)V is endowed with the product topology.
If V , U ∈ PF (T ) satisfyV ⊂ U thenπV U : (Rn)U → (Rn)V is the standard projection. It is trivial to
prove that we are facing a projective system

((

(

R
n
)V

, πV U

)

: V, U ∈ PF (T ), V ⊂ U
)

(6)

of topological spaces whose projective limit can be identified with the space(Rn)T endowed the simple
topology. FurthermoreπV : (Rn)T → (Rn)V is also the standard projection for everyV ∈ PF (T ).

As in the general case, the projective limit(Rn)T may be endowed with its Borel or cylindricalσ-
algebras, denoted by(B)T and(B0)

T respectively. When endowed with(B0)
T (the lower one) a function

f : Ω → (Rn)T is measurable if and only ifπV ◦ f : Ω → (Rn)V is measurable for everyV ∈ PF (T )
(Footnote2 also applies here).

Suppose that(νV )V ∈PF (T ) is a projective system of Radon measures associated with the above projec-
tive system of topological spaces. The following result may be established by readapting some statements
of Kopp [20, (1984)].

Theorem 4 (Daniell-Kolmogorov) Under the notations above the system of Radon measures

(νV )V ∈PF (T )

has a unique projective limitνT : (B0)
T → R.

4 Projective system approach

As in the previous section, considerI = PF (T ). Let V ∈ PF (T ) and letSV be function connecting any
state of natureω ∈ Ω and the restriction onV of the corresponding trajectory of the price processS, i.e.,
the function

Ω ∋ ω 7−→ SV (ω) ∈ (Rn)V

such thatSV (ω)(t) = S(ω, t) for ω ∈ Ω andt ∈ V . If v is the maximum ofV , thenSV is Fv-measurable
and thereforeSV (µv) is a Radon probability measure on(Rn)V . In order to simplify the notation the
previous probability measure will be represented bySV (µ) andv will be omitted. Now it is straightforward
to prove that

(

SV (µ)
)

V ∈PF (T )
(7)

is a projective system of Radon probability measures associated with (6). Notice that the support ofSV (µ)
is compact for everyV ∈ PF (T ) since it is included in (see (3))

Sp
(

SV (µ)
)

⊂
∏

t∈V

Kt (8)

where for everyt ∈ T we have thatKt represents the compact ball ofR
n with center at zero and radius

equal to‖S(−, t)‖∞.
Consider now the function

Ω ∋ ω 7−→ ST (ω) = S(ω,−) ∈ (Rn)T
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S(ω,−) being the whole path associated withω. It is easy to show that the previous function isF -
measurable if(Rn)T is endowed with the cylindricalσ-algebra(B0)

T since, according to the properties of
Section3, it is equivalent to show thatπV ◦ST = SV isF -measurable for everyV ∈ PF (T ). Consequently
it makes sense to consider its image measureST (µ) defined on(B0)

T and it is straightforward to show that
the probability measureST (µ) is the projective limit of (7), i.e.,

πV

(

ST (µ)
)

= SV (µ) (9)

for everyV ∈PF (T ). Moreover Corollary1 and (8) prove thatST (µ), projective limit of (SV (µ))V ∈PF (T ),
may be extended to a unique Radon measure defined on(B)T . If there is no confusion then bothST (µ)
and its extension will be denoted with the same symbol. Besides (8) leads to

Sp
(

ST (µ)
)

⊂
∏

t∈T

Kt. (10)

Next let us introduce the projective price process. So, for every̟ ∈ (Rn)T and everyt ∈ T we can
define

S∗(̟, t) = ̟(t).

One can consider the filtration[F∗
t ]t∈T on(Rn)T such thatF∗

t is the smallestσ-algebra for whichS∗(−, t′)
is F∗

t -measurable ift′ ∈ T andt′ ≤ t. By construction[F∗
t ]t∈T is increasing and all of them are included

in the cylindricalσ-algebra(B0)
T because the random variableS∗(−, t) is clearly(B0)

T -measurable for
everyt ∈ T .

Our major objective is to establish the existence of a probability measureν : (B0)
T → [0, 1] so that the

projective price processS∗ can be a martingale with respect toν, solving this way the drawback pointed out
after Theorem1. Besidesν andST (µ) should satisfy “some kind of equivalence”, since the existence of
Radon-Nikodyn densities seems to be desirable. We will show that the complete equivalence between both
probability measures does not necessarily hold in general but we can introduce a weaker concept. Thus
following the approach of Balbás et al. [5, (2002)], or Balbás and Downarowicz [4, (2007)] for a one period
model with infinitely many securities, we have:

Definition 3 Two arbitrary probability measuresν : (B0)
T → [0, 1] andξ : (B0)

T → [0, 1] are said to be
projectively equivalent ifπV (ν) andπV (ξ) are equivalent for everyV ∈ PF (T ).

Obviously, ifν andξ are equivalent then they are projectively equivalent too. It will be shown that the
converse does not hold in general (see also Balbás et al. [5, (2002)]).

In order to establish the existence of projectively equivalent martingale measures it is convenient to
translate the arbitrage absence in terms of the projective price processS∗. So we present a result whose
proof is very simple and therefore omitted.

Proposition 1 If the initial price processS is arbitrage free then the projective price processS∗ is arbi-
trage free.

The projective price process has been built without imposing special assumptions on the set of trading
datesT . In particular,T might be finite. Consequently, the procedure also applies when considering any
V ∈ PF (T ) instead ofT . In such a case, ift ∈ V thenFV ∗

t denotes the smallestσ-algebra of(Rn)V

allowing the natural sections (the projective price process)(Rn)V ∋ ̟ → SV ∗(̟, t′) = ̟(t′) ∈ R
n to be

FV ∗
t -measurable for everyt′ ∈ V , t′ ≤ t. It is clear that(FV ∗

t )t∈V is a increasing filtration.

Next we will translate Theorem3 into the projective system setting. Once again we omit the proof.

Proposition 2 Let V = {t0 = 0 < t1 < · · · < tk} ∈ PF (T ) and letν be a martingale measure in the
sense of Definition2. Thenν∗

V = SV (ν) andSV (µ) are equivalent and

Eν∗

V

(

SV ∗(−, ti)|F
V ∗
tj

)

= SV ∗(−, tj), (11)

i, j = 0, 1, . . ., k, i ≥ j. Moreoverν∗
V has a compact support included in

∏

t∈V Kt.
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As a consequence of the latter proposition if we were able to build a projective system by “correctly
connectingν∗

V asV grows” then the projective limit, whose existence is guaranteed by Corollary1, could
be an adequate candidate to be our “risk-neutral martingale measure”. The construction of this projective
system will be the major goal of Section5.

5 Count able sets of trading dates

Throughout this section we will assume thatT is countable. Thus there exists a bijectionΦ: N ↔ T such
thatΦ(0) = 0. Denotetm = Φ(m) for everym ∈ N. Then the equality

N =
∞
⋃

m=1

{0, 1, . . . , m}

leads to

T = Φ(N) =

∞
⋃

m=1

Φ({0, 1, . . . , m}) =

∞
⋃

m=1

Tm,

whereTm denotes the finite set{0, t1, . . . , tm}. Hence the following result has been stated:

Lemma 1 There exists an increasing sequence(Tm)m∈N of finite subsets ofT such that

T =
⋃

m∈N

Tm (12)

and 0 ∈ Tm for everym ∈ N. Furthermore,(Rn)T can be identified with the projective limit of the
projective system of topological spaces

(

(

(Rn)Tr , πr,s

)

: r, s ∈ N, r ≤ s
)

(13)

whereπr,s denotes the standard projection of(Rn)Ts onto(Rn)Tr .

The sequence of (12) and the system (13) will be fixed throughout this section. To simplify the notation
(Rn)Tr will be represented by(Rn)r for everyr ∈ N.

Suppose that the initial model is arbitrage free and fixr ∈ N. Proposition2 ensures the existence
of Radon probability measuresν∗

r on any(Rn)r equivalent toπV (ST (µ)) and with support included in
∏

t∈Tr
Kt, such that the restriction to(Rn)r of the projective price process is a martingale with respect to

the filtration(Fr∗
t )t∈Tr

.3 Consider the setMrr of Radon probability measures satisfying these properties.
Now if s ≥ r considerMrs = πrs(Mss) = { πrs(ν

∗
s ) : ν∗

s ∈ Mss } and it is easily proved that
Mrr ⊃ Mrs. DefineMr =

⋂∞
s=r Mrs ⊂ Mrr.

Lemma 2 The setsMrr andMr are non void andweak∗-compact for everyr ∈ N.

PROOF. Proposition2 guarantees thatMss is non void for everys ≥ r. Moreover, every probability
measure ofMss has a compact support included in

∏

t∈Ts
Kt so they can be considered Radon measures

on this compact space. It is easy to see thatMss is weak∗-closed. Then the results of Section3 show that
Mss is weak∗-compact and theweak∗-continuity ofMss ∋ ν∗

s → πrs(ν
∗
s ) ∈ Mrr (see Section3) shows

that everyMrs is weak∗-compact. Thus it is sufficient to show that every finite subset of{Mrs : s ≥ r }
has non void intersection. But given any finite subset{Mrs : s = s1 > s2 > · · · > sk ≥ r } one can take
s0 ≥ s1 and we have that∅ 6= πrs0

(Ms0s0
) = πrsj

πsjs0
(Ms0s0

) ⊂ πrsj
(Msjsj

) for j = 1, 2, . . ., k.
�

3Notice that the notation has been simplified andFr∗
t

representsFTr∗

t
. Analogously,Sr∗

t
will representSTr∗

t
.
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Theorem 5 Suppose thatT is countable. If the initial model is arbitrage-free then there exists a Radon
probability measureν∗ on (Rn)T such thatSp(ν∗) ⊂

∏

t∈T Kt, ν∗ andST (µ) are projectively equivalent
and the projective price processS∗ is a martingale with respect toν∗ and the increasing filtration[F∗

t ]t∈T .

PROOF. ConsiderH composed of those elements

(

(ν∗
r )r∈P : P ⊂ N, ν∗

r ∈ Mr andπrs(ν
∗
s ) = ν∗

r if r, s ∈ P andr ≤ s
)

. (14)

The latter lemma proves thatH is non void. Consider the natural order ofH, i.e., a new element ofH
is greater than the element above ifP increases toP ′ and the previous measuresν∗

r remain constant for
r ∈ P . It is easy to see thatH is inductive, so the Zorn’s Lemma ensures the existence of a maximal element.
Suppose that (14) is this maximal. IfP is cofinal with N then it is easy to see that (14) is a projective system
of Radon measures whose associated projective system of topological spaces has a projective limit that can
be identified with(Rn)T . Moreover, Theorem2 ensures the existence ofν∗, projective limit of (ν∗

r )r∈P ,
and it is easy to prove thatν∗ satisfies the required conditions. In particular,Sp(ν∗) ⊂

∏

t∈T Kt trivially
follows from (10) and the projective equivalence betweenν∗ andST (µ).

Suppose thatP is not cofinal. Then there exists its maximum valuer ∈ P . Sinceν∗
r ∈ Mrs for ever

s ≥ r, set(ν∗
s )∞s=r such thatν∗

s ∈ Mss and

ν∗
r = πrs(ν

∗
s ). (15)

Set

ν∗
r+1,s = πr+1,s(ν

∗
s ) (16)

for everys > r. Expression (15) shows thatν∗
r = πr,r+1(ν

∗
r+1,s) for everys ≥ r. If we were able to prove

the existence ofν∗
r+1, agglomeration point of(ν∗

r+1,s)
∞
s=r+1, we would have that

ν∗
r = πr,r+1(ν

∗
r+1) (17)

Furthermore, beingν∗
r+1 agglomeration point of(ν∗

r+1,s)
∞
s=r+1 and taking into account that (16) leads to

ν∗
r+1,s ∈ Mr+1,s ⊂ Mr+1,r+1 (18)

for everys ≥ r + 1, one has thatν∗
r+1 ∈ Mr+1 =

⋂∞
s=r+1 Mr+1,s from where (17) generates a contra-

diction since (14) is not maximal. ThusP must be cofinal.
It only remains to prove the existence of the agglomeration pointν∗

r+1 but this is an obvious consequence
of (18) and theweak∗-compactness ofMr+1,r+1. �

It is worth to remark that minor modifications of the proof above can allow us to use a simple induction
method rather than the Zorn’s Lemma. Therefore, a more constructive proof of Theorem5 may be available.

Notice that there are countable sets that are dense in the real line, which (under special assumptions
such as continuous paths) might lead to new proofs of Theorem5 that do not require the Zorn’s Lemma,
butstrictly weaker axioms.

As said in the introduction this result extends those findings of Balbás et al. [5, (2002)], since there are
no additional conditions on the countable setT . Nevertheless there are many relationships between both
analyses. So, in both cases the projective system approach has enlarged the set of states of the world so that
the new set of states can contain the whole family of feasible paths of the price process (notice that the new
set of states of nature is(Rn)T in the present case). As pointed out in Balbás et al. [5, (2002)], this fact
implies thatν∗ andST (µ) cannot be equivalent sinceν∗ must vanish over the set of new states that can not
be identified with anyω ∈ Ω. Consequently we have that the concept of projective equivalence is strictly
weaker than the concept of equivalence (see Balbás et al. [5, (2002)] for further details).
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6 Conclusions

Representation Theorems have shown to be crucial in Mathematical Finance. Regarding pricing rules of
perfect markets, for an infinite number of trading dates the characterization of the absence of arbitrage
by the existence of equivalent martingale measures presents some difficulties, and the price process of the
assets needs less intuitive notions such as “no free lunch” or “no free lunch with bounded risk”, generalizing
the concept of “no arbitrage”. Moreover some constraints on the trajectories of the price process are usually
required.

This paper considers a countable set of trading dates and draws on the projective system approach. Then
we establish the equivalence between the absence of arbitrage and the existence of martingale measures.
The equivalence holds under quite general assumptions since there are no conditions on the set of trading
dates or on the trajectories of the price process.

The projective system approach allows us to enlarge the set of states of nature and to identify this set
and the set of feasible trajectories. Thus a complete equivalence between the initial probability measure
and the martingale measure does not hold in general. However the existence of densities between the “real”
probabilities and the “risk-neutral” probabilities is guaranteed by introducing the concept of “projective
equivalence”, in the sense that both the martingale measure and the initial probability measure generate
equivalent projections.
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[5] BALB ÁS, A., M IRÁS, M. AND MUÑOZ-BOUZO, M. J., (2002). Projective system approach to the martingale
characterization of the absence of arbitrage,J. Math. Econom., 37, 4, 311–323.
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