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Abstract.  This paper addresses the equivalence between the absence of arbitrage and the existence
of equivalent martingale measures. The equivalence will be established under quite weak assumptions
since there are no conditions on the set of trading dates (it may be finite or countable, with bounded or
unbounded horizon, etc.) or on the trajectories of the price process (for instance, they do not have to be
right-continuous).

Besides we will deal with arbitrage portfolios rather than free-lunches. The concept of arbitrage is
much more intuitive than the concept of free lunch and has more clear economic interpretation. Further-
more it is more easily tested in theoretical models or practical applications.

In order to overcome the usual mathematical difficulties arising when dealing with arbitrage strate-
gies, the set of states of nature will be widened by drawing on projective systems of Radon probability
measures, whose projective limit will be the martingale measure. The existence of densities between
the “real” probabilities and the “risk-neutral” probabilities will be guaranteed by introducing the con-
cept of “projective equivalence”. Hence some classical counter-examples will be solved and a complete
characterization of the absence of arbitrage will be provided in a very general framework.

Martingalas y arbitraje: un nuevo enfoque

Resumen. Analizaremos la equivalencia entre la ausencia de arbitraje y la existencia de una medida de
martingala. Esta equivalencia se establecera bajo supuestos débiles, puesto que no hay condiciones sobre
el conjunto de fechas de negociacion (puede ser finito o contable, con horizonte acotado o no acotado,
etc.) ni sobre las trayectorias del proceso de precios (por ejemplo, no tienen que ser continuas por la
derecha).

Trabajaremos con el concepto de arbitraje, y no con &kedelunch La nocion de arbitraje es mucho
mas intuitiva y tiene una interpretacion economica mucho mas clara, ademas de ser mas facil de verificar
en las aplicaciones practicas.

Para salvar dificultades matematicas, extenderemos el conjunto de estados de la naturaleza mediante el
uso de sistemas proyectivos de probabilidades regulares (de Radon), cuyo limite proyectivo sera la medida
de martingala. La existencia de densidades entre las “probabilidades reales " y las “neutrales al riesgo” se
garantizara mediante la introduccion del concepto de “equivalencia proyectiva”. Algunos contra-ejemplos
clasicos seran resueltos, y una caracterizacion completa de la ausencia de arbitraje sera presentada en un
contexto muy general.

1 Introduction

The existence of pricing rules, discount factors or state prices is crucial in the literature on capital markets.
It is closely related to the concepts of arbitrage and equilibrium (see, for instance, Chamberlain and Roth-
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schild [8, (1983)] or Hansen and Jagannathas, [1997)]). Harrison and Krepslp, (1979)] showed the
link between pricing rules and martingale measures.

Since Harrison and Kreps§, (1979)] established the existence of martingale probalmigégsures for
some arbitrage free pricing models their result has been extended in multiple directions, generating the Fun-
damental Theorem of Asset Pricing (hencef@®AP). For instance, Dalang et alL], (1990)], Schacher-
mayer [22, (1992)] and £3, (1994)], Delbaen and Schachermayer, [(1098)] or Jacod and ShiryaeV/{

(1998)] provide deep characterizations of the existence of martingale measures in different settings.

Nevertheless a simple version of tREFAP cannot be proved, in the sense that the arbitrage absence is
not sufficient to build martingale measures if the set of trading dates is not finite. It was pointed out in Back
and Pliska 2, (1991)], where a simple counter-example is provided. To @reecthis problem Clark10,

(199)] introduced the concept of “free lunch”, far weaker than the concept of arbitrage. The absence of
free lunch has been the key to yield further extensions oFfhi&P, even in the imperfect market case (see
for instance Jouini and Kallal.B, (1995)]).

Any free lunch can be understood as an “approximated arbitrage” in the sense that it is “quite close”
to an arbitrage portfolio. However, it is almost an arbitrage but it is not an arbitrage, it is not so intuitive
and its economic interpretation is not so clear. On the contrary it is introduced in mathematical terms and
solves a mathematical problem, but classical pricing models (binomial model, Black and Scholes model,
etc.) usually deal with the concept of arbitrage.

Besides, if possible, it may be worth to provide risk-neutral probabilities and pricing rules (martingale
measures) under simple and meaningful assumptions, as the arbitrage absence. This is in the line of many
others Representation Theorems of Mathematical Finance. For instance, the representation of coherent risk
measures (Artzner et all,[(1999)]) or pricing rules in one period imperfect markets (@haneuf et al.9,

(199%)], De Waegenaere et al.F, (2003)], Castagnoli et al7[ (2004)] etc.) is addressed by using intuitive
hypotheses.

Balbas et al.§, (2002)] have shown that it is possible to characterize thérags absence if the set
of trading dates i, the set of natural numbers. They built an appropriate countable projective system
(vn)nen Of perfect probability measures (see Musial,[(1980)]) that are risk-neutral for each finite subset
{0,1,...,n} C N. Then they showed that the projective limits risk-neutral for the whole set of trading
dates V), in the sense that the set of states of the world and the price process may be extended to a “new
price process” which is a martingale underThe initial probability measurg andr cannot be equivalent,
as illustrated by using the counter example of Back and Pliska. However, for any finite subsehef
projections ofi, andr are equivalent, and there are Radon-Nikodyn derivatives in both directions. Balbas
et al. used this property to introduce the concept of “projective equivalence” of probability measures.

The interest of the approach above seems to be clear, since it even permits us to extend the classical
FTAP forinfinitely many trading dates without using the projective equivalence, i.e., in the classical setting.
For instance, Balbas et aB,[(2007)] have used the analysis of Balbas et7l(2002)] so as to extend the
FTAP in a model with dynamically bounded Sharpe ratios. Unbounded Sharpe ratios would lead to very
high returns with bounded risk level, which is barely acceptable in Financial Economics. The findings of
Balbés et al. 3, (2007)] have some relationships with those of Follmer anda8wrmayer 14, (2008)],
where the authors show that the absence of martingale measures in the long run provokes the existence of
asymptotic arbitrage that is related to the market price of risk.

This paper follows the approach of Balbas et &).(002)] and extends the analysis bearing in mind a
much wider scope. Even usual constraints, also imposed in the literature when dealing with free lunches,
are no assumed here. For instance, there are no conditions on the set of trading dates (it may be finite
or countable, with bounded or unbounded horizon, etc.) or on the trajectories of the price process (for
example, they do not have to be right-continuous).

The existence of risk-neutral probabilities will be stated by means of projective limits of projective sys-
tems of Radon probability measures (see Schwariz(L973)]), rather than projective systems of perfect
measures. These projective systems will permit us to broaden the set of states of nature and to generalize
the concept of projective equivalence.



The outline of the article is as follows. Secti@mwill introduce the basic concepts and notations. Sec-
tion 3 will summarize some mathematical background that will be offgrlied. Sectiord will transform
the poblem in order to introduce the “projective price process”. Sediiwill be devoted to provide mar-
tingale measures when the set of trading dates is countable. The most important result is Thandem
gereralizes those findings of Balbas et &, [2002)], since the sef of trading dates does not have to be
similar toN. For example;7 can equal the set of non-negative rational numbers or, more genérally,
can have adherent points, and every adherent point may beldh@tdo its complementary. It seems to
be a significant extension since, for instanCe¢dLag price processes are characterized for their values at
rational dates. Sectiohwill conclude the article.

2 Preliminaries and notations

Let (Q2, F, 1) be a probability space composed of the@etheo-algebraF and the probability measure
Suppose thaf C [0,00) is a set (finite or infinite, with finite or infinite horizon) of trading dates such
that0 € 7 (0 denoting the current date) arfd contains at least two elements. As usual, the arrival of
information will be provided by the increasing familf,|,., of o-algebras of2 such thatF, = {0, Q}
ando(U,c7 Ft) = F, 0(U,cr Ft) being thes-algebra generated by the algebjg. - ;. The restriction
of u to F; will be denoted by, for everyt € 7.

Considern different securities whose prices will be represented byRhevalued adapted stochastic
process

{S(w,t):we, teT}.

Obviously
S(w, t) = (Sl(w,t), Sa(w,t), ..., Sn(w,t))

whereS;(w,t) € Rforw € Q,t € T andj = 1, 2, ..., n, and represents the price of tli¢h asset at
under the state. In order to simplify the notation the previous processes may be also denatearuls;,
j =1,2,...,n. Analogous notations and conventions will be used for any dthealued orR™-valued
adapted stochastic process.

As usual, the first asset will play the role of a numeraire, and therefore we will impose that

Si(w,t) =1 1)

holds for everyw € Q andt € 7.

For a fixedw € Q the corresponding path or trajectory 8fwill be denoted byS(w, —), while for
any fixed trading daté € 7 the symbolS(—, t) yields the random variable providing us with prices.at
Similar notations will be used in similar situations.

Consider arbitrary an finite subseis) = 0 < t; < --- < t5} C 7. For such a subset consider any
stochastic process

2 Ax{0<t <<t} —R"

adapted to the filtratiofiF; }- Then,z is said to be a self-financing portfolio if

]te{o<t1<w<tk
[2(w,t;) — z(w,ti—1)] S(w,t;) =0 2)

p-a.s.and = 1,2, ..., k.! The set of self-financing portfolios will be denoted dy
Letxz € A. It may be easily proved that the above set of trading dates may be extended by adding a
finite number of elements &f and the convention(—, ¢;) — z(—,t,—1) = 0if ¢; is a new element that
does not belong to the initial finite set of trading dates. Therefore it is easy to show that- as2? € A
if 2 € Aando; € R, i =1, 2.

INotice that products in2) are scalar (or inner) products Bf*.



If x € Athen
AMz) = 2(w,0)S(w,0) € R

will be its current price, while thé;, -measurable random variable
x(w, ) S (w, tr)

will be its final pay-off and will be denoted by (x), or A(x)(w) if necessary.
As usual, an arbitrage portfolio allows traders to obtain “money without risk”.

Definition 1 A self-financing portfolia: € A is said to be an arbitrage if
a) \z) <0
b) A(z)(w) >0, p-as.
C) nlwe: Alz)(w) —Ax) >0) >0.

Hereafter we will assume essentially bounded prices,S€,t) € L>(F;) forj =1,2,...,nand
t € 7. Thus for every € 7 there exists a-null setZ; € F; such that the inequality

[S(w, )l < 15(= )lloo @)

holds for everyw € Q \ Z;.
Givent, s € 7, t < s, it makes sense to introduce the conditional expectatid#( ef, s) with respect
to F; and will be denoted by, (S(—, s)|F;). Similar notations will be used for similar cases.

Definition 2 Given a finite se{0 < ¢; < --- < ¢;,} C 7 and a probability measure: F;, — [0, 1] then
v is said to be a martingale measure ¢ty = 0 < t; < --- < {3} if 4, andv are equivalent and

E,(S(=,t:)|F;) = S(=,15) 4
whenevei, j = 0,1, ...,k andi > j.

The absence of arbitrage and tH&AP guarantee the existence of martingale measures on any finite
set of trading dates (see for instance Dalang etldl. (1990)], Schachermaye?}, (1992)] or Jacod and
Shiryaev [L7, (1998)]).

Theorem 1 The model is arbitrage free if and only if there exists a martingale measure on every finite set
{0<ty < <t} CT.

Despite the previous result, the counter-example of Back and Plisk@$91)] points out that the
mattingale measure depends fh< ¢; < --- < tx}, i.e., in general, itis not possible to find F — [0, 1]
equivalent tqu and such that4) holds for everyt;, t; € 7 with¢; > ¢;.

3 Some mathematical background

It is worth to recall some properties concerning Radon measures and projective systems of topologi-
cal spaces and measures. Further details may be found in Kelley1255)], Bourbaki §, (1969)],
Schwartz [24, (1973)] or Musial 1, (1980)].

If X is a Hausdorff topological space ari#l represents its Boret-algebra then a finite and positive
measure’ on 3 is said to be a Radon measure if

v(B) =sup{v(K): K C B, K compact (5)



for everyB € B. Itis easy to show thatf implies
v(B) =inf{v(G) : G D B, G open}

for every B € B. Furthermoreg) leads to the existence of an open sulisetf X such thatv(G) = 0 and
G D G’ for everyG’ open and such that(G’) = 0. Its complementanX \ G is a closed set called the
support ofv and denoted b§p(v).

If X is compactthen the s& of positive and finite Radon measures®may be identified with the set
of R-valued, linear, continuous and positive functional€¢K ) (C(X) being the Banach spacekfvalued
and continuous functions o), and the Alaoglu’s Theorem trivially leads to theeak -compactness of
Ro={rveR:v(X)=1}

The Hausdorff topological spac€ is said to be a Radon space if every finite and positive measure on
B is a Radon measure. Every Polish space (metric, complete and separable) is a Radon space. In particular,
R® is a Radon space for every countableGeR“ being the space @&-valued functions o’ endowed
with the simple (or product) topology.

For any(F, B)-measurable functiorf: 2 — X, the measure induces a measure d, called the
image measuré(u:), given by f(11)(A) = pu(f~1(A)) forall A € B.2 Obviouslyf () is Radon if so is the
spaceX.

If X andY are two compact and Hausdorff spaces gndX — Y is a continuous function thefi
induces the new functioRX = v — f(v) € RY, R¥ andR" being the sets of finite and positive Radon
measures oiX andY respectively. It is easy to show that this transformation is continusRs iandRY
are endowed with their respectiveak -topologies.

Let < be the ordering relation of a directed detConsider a family of Hausdorff topological spaces
(Xi)icr and the continuous maps; : X; — X, 1,7 € I,i < j. We say tha{(X;, m;;); i,j € I, i < j)
is a projective system of topological spacesif = m;; o mj;, forall ¢, j, k € 1,7 < j < k. Its projective
limitis

X = { (zi)ier € HXi cwj =mip(ze)ifj kel j< k}
il
endowed with the product topology. Clearly, the canonical projectipnsX’ — X, i € I, are continuous
and satisfyr; = m;; om; forall ¢, j € 1,7 < j. X may be endowed with its Borel-algebra3 and the
cylindrical o-algebraB, C B generated by

U {7 "(4): A; C Xi, A; open}

i€l

Note thatr; is By-measurable for everye 1.
Under the notations aboveif is a Radon measure oXy; for everyi € I andm;;(v;) = v; if i, j € I,
1 < j,then(y;);es is said to be a projective system of Radon measures. We will sayuthat; converges
to the measure: By — R (or v is the projective limit of(v;);¢ 1) if m;(v) = v; for everyi € I.
The following results on the existence of projective limits of projective systems of Radon measures are
adapted from Bourbakb] (1969)] and Schwart24, (1973)] respectively.

Theorem 2 Under the notations above, if= N then every projective system of Radon meas@wgscn
has a projective limitz. Moreover,v is unique and can be extended to a unique Radon measure defined
over the Boreb-algebral5.

Theorem 3 (Prokhorov) Under the notations above there exists a Radon measute — R such that
mi(v) = v; for every: € I if and only if for everye > 0 there exists a compact s&f C X with
v;(X; \ m(K)) < e for everyi € I. In the affirmative case is unique.

2Notice that(£2, , 1) may be replaced by any other measure space.



Corollary 1 Under the notations above Bp(v;) C X, is compact for every € [ then there exists a
unique Radon measure: B — R such thatr;(v) = v; for everyi € I. Furthermorer has a compact

supportandp(v) C [[;c; Sp(vi).

There is a special type of projective system of Radon measures closely related to stochastic processes.
So, considel = Pr(7) the set of finite subsets @f containing{0} and consider the order dfgenerated
by the usual inclusion. For evelly € Pr(7) we will take the (Polish and therefore Radon) topological
spacgR")" of R"-valued functions defined dri. Of course(R™)" is endowed with the product topology.
If V,U € Prp(7) satisfyV C U thenmyy: (R")Y — (R™)Y is the standard projection. It is trivial to
prove that we are facing a projective system

(((R”)V,ﬂm) V.U € Pp(T), VCU) (6)

of topological spaces whose projective limit can be identified with the sg&eg’ endowed the simple
topology. Furthermorey : (R™)7 — (R")Y is also the standard projection for evéryc Pr(T).

As in the general case, the projective limik™)” may be endowed with its Borel or cylindricak
algebras, denoted by8)” and(B,)? respectively. When endowed witiB;)? (the lower one) a function
f:Q — (R™)7 is measurable if and only ify o f: © — (R™)Y is measurable for every € Pr(7)
(Footnote2 also applies here).

Suppose thaivy )y cp, (1) is a projective system of Radon measures associated with the above projec-
tive system of topological spaces. The following result may be established by readapting some statements
of Kopp [20, (1984)].

Theorem 4 (Daniell-Kolmogorov)  Under the notations above the system of Radon measures

(W)vepe(T)

has a unique projective limity : (B9)7 — R.

4 Projective system approach

As in the previous section, considet= Pr (7). LetV € Pp(7) and letSy be function connecting any
state of naturey € ) and the restriction o of the corresponding trajectory of the price procgsse.,
the function

Q35w Sy(w) € (RY)Y
such thatSy (w)(t) = S(w,t) forw € Q andt € V. If v is the maximum o¥/, thenSy, is F,-measurable
and thereforeSy (11,) is @ Radon probability measure ¢R™)Y. In order to simplify the notation the

previous probability measure will be representedky 1) andv will be omitted. Now it is straightforward
to prove that

(SV(H’))VGPF(T) (7)
is a projective system of Radon probability measures associated WitNd6ce that the support oy (1)
is compact for everyy’ € Pr(7) since itis included in (se€))
Sp (Sv(w) c [] K ®
teV

where for every € 7 we have that<, represents the compact ball B with center at zero and radius
equal to|[.S(—, t)||ec-
Consider now the function

Q3w+ S7(w) = S(w,—) € (R")7



S(w,—) being the whole path associated with It is easy to show that the previous function#s
measurable ifR™)7 is endowed with the cylindricat-algebra(B,)7 since, according to the properties of
Section3, itis equivalent to show thaty o ST = Sy is F-measurable for every € Pr (7). Consequently
it makes sense to consider its image measyrg:) defined on(3,)7 and it is straightforward to show that
the probability measur€ () is the projective limit of 7), i.e.,

v (ST() = Sv(w) (©)

foreveryV € Pr (7). Moreover Corollaryi and @) prove thatSr(u), projective limit of (Sv (1)) v epp (1),
may be extended to a unique Radon measure defingé#)on If there is no confusion then botir (1)
and its extension will be denoted with the same symbol. Besigded@s to

Sp (S7(w) < [ & (10)

teT

Next let us introduce the projective price process. So, for exery (R")7 and everyt € 7 we can

define
S*(w,t) = w(t).

One can consider the filtratig#; ], - on(R")7 such thatF; is the smallest-algebra for whicts™ (—, ')
is 7y -measurable it’ € 7 andt’ < t. By constructior{¥;], ., is increasing and all of them are included
in the cylindricalo-algebra(B;)? because the random variat#é(—, t) is clearly (B,)7 -measurable for
everyt € 7.

Our major objective is to establish the existence of a probability measuis,)? — [0, 1] so that the
projective price process* can be a martingale with respecttpsolving this way the drawback pointed out
after Theoreni. Besidess and S (1) should satisfy “some kind of equivalence”, since the existence of
Radon-Nikodyn densities seems to be desirable. We will show that the complete equivalence between both
probability measures does not necessarily hold in general but we can introduce a weaker concept. Thus
following the approach of Balbas et ah, [2002)], or Balbas and Downarowicz, [(2007)] for a one period
model with infinitely many securities, we have:

Definition 3 Two arbitrary probability measures: (B,)7 — [0, 1] andé¢: (By)? — [0,1] are said to be
projectively equivalent ifry (v) andry (€) are equivalent for every € Pr(T).

Obviously, ifv and¢ are equivalent then they are projectively equivalent too. It will be shown that the
converse does not hold in general (see also Balbas et §(062)]).

In order to establish the existence of projectively equivalent martingale measures it is convenient to
translate the arbitrage absence in terms of the projective price pr6tesso we present a result whose
proof is very simple and therefore omitted.

Proposition 1  If the initial price processS is arbitrage free then the projective price processis arbi-
trage free.

The projective price process has been built without imposing special assumptions on the set of trading
dates7 . In particular,7 might be finite. Consequently, the procedure also applies when considering any
V € Pp(T) instead of7. In such a case, if € V thenF}* denotes the smallestalgebra of(R™)"
allowing the natural sections (the projective price procéR8)" > w — SV*(w,t') = w(t') € R" to be
FY*-measurable for every € V, ' < ¢t. Itis clear that 7} *),cv is a increasing filtration.

Next we will translate Theore®into the projective system setting. Once again we omit the proof

Proposition2 LetV = {t) =0 < t; < --- < t;} € Pp(7) and letr be a martingale measure in the
sense of Definitio@. Thenvj, = Sy (v) andSy (n) are equivalent and

By, (SV5(—t)lFY) = 8V (1), (11)

i,j=0,1,..., k,i > j. Moreoveryy, has a compact support includedmtev K;.



As a consequence of the latter proposition if we were able to build a projective system by “correctly
connectingyy, asV grows” then the projective limit, whose existence is guaranteed by Cordljaxguld
be ar adequate candidate to be our “risk-neutral martingale measure”. The construction of this projective
system will be the major goal of Sectién

5 Count able sets of trading dates

Throughout this section we will assume tifais countable. Thus there exists a bijectibnN < 7 such
that®(0) = 0. Denotet,, = ®(m) for everym € N. Then the equality

oo

N= ul{o,L...,m}

leads to

o0 (oo}

T=oN) = J2{0.1,....m}) = | Zu.

m=1 m=1

where7,, denotes the finite sé0, ¢4, . .., ¢,, }. Hence the following result has been stated:

Lemmal There exists an increasing sequeli@g, ),,en Of finite subsets df such that

T= U IZ;n (12)

meN

and0 ¢ 7, for everym ¢ N. Furthermore,(R")7 can be identified with the projective limit of the
projective system of topological spaces

(((R")Tr,m,s) crseN, r< s) (13)

wherer,. , denotes the standard projection @)% onto (R")7.

The sequence ofl@) and the systemil@) will be fixed throughout this section. To simplify the notation
(R™)7 will be represented b§R™),. for everyr € N.

Suppose that the initial model is arbitrage free andrfie N. Proposition2 ensures the existence
of Radon probability measures® on any(R"),. equivalent tory (S (1)) and with support included in
[,c7. Kt such that the restriction t@®™), of the projective price process is a martingale with respect to
the filtration (F7*);c7..2 Consider the seM,.,. of Radon probability measures satisfying these properties.
Now if s > r considerM,, = m.s(Mys) = {ms(vF) : vE € My} and it is easily proved that
My D Mys. DeﬁneMr = mfi,, M;s T Moy

Lemma 2 The setsM,.,. and M,. are non void andveak:-compact for every € N.

PROOF  Proposition2 guarantees thad, is non void for everys > r. Moreover, every probability
measure of\M; has a compact support included[ify. - K so they can be considered Radon measures
on this compact space. Itis easy to see thaf is weak-closed. Then the results of Secti8ishow that
M is weak*-compact and theveak -continuity of M5 > vi — m,5(v) € M, (see Sectior) shows

tha everyM,., is weak -compact. Thus it is sufficient to show that every finite subsétdt, s : s > r}

has non void intersection. But given any finite subsétl,; : s = s; > so > -+ > s > r } one can take

S0 = 81 and we have thaﬁ 7é Trso (MSDSO) = ﬂ-TS]'TrSjSO(MSUSD) - Trs; (Mstj) forj =12.., k.

[ |

SNotice that the notation has been simplified Gl representg-‘z—r*. Analogously,S;™* will representStTr*.



Theorem 5 Sippose that7 is countable. If the initial model is arbitrage-free then there exists a Radon
probability measure* on (R™)7 such thaSp(v*) C [I,cr K¢, v* andS7(u) are projectively equivalent
and the projective price process is a martingale with respect te* and the increasing filtratiof7; |, ..

PROOF  ConsiderH composed of those elements
(vf)pep: PCN, v € M, andm,s(v}) = v} if r,s € Pandr <s). (14)

The latter lemma proves thaf is non void. Consider the natural order&f i.e., a new element of{
is greater than the element aboverifincreases td?’ and the previous measurgs remain constant for
r € P. Itis easy to see th&{ is inductive, so the Zorn’'s Lemma ensures the existence of a maximal element.
Suppose thatl@) is this maximal. IfP is cofinal with N then it is easy to see thélt4) is a projective system
of Radon measures whose associated projective system of topological spaces has a projective limit that can
be identified with(R™)7. Moreover, Theoren2 ensures the existence of, projective limit of (v*),.<p,
and it is easy to prove that" satisfies the required conditions. In particubiys(v*) C [],., K trivially
follows from (10) and the projective equivalence betwegrand St (u).
Suppose that” is not cofinal. Then there exists its maximum value P. Sincev) € M, for ever
s >r, set(v¥)s2, such thav! € M, and

vh = mps(V5). (15)

Set
V:+17s =mry1,s(V7) (16)

for everys > r. Expression15) shows thav;: = 7, ,+1 (v, ;) for everys > r. If we were able to prove
the existence of;’, ;, agglomeration point ofv;", ; )32, ;, we would have that

v = 7"7‘.,r+1(’/:+1) 17
Furthermore, being;, ; agglomeration point ofv;,; )32, ,; and taking into account that (L@ads to
V:Jrl,s € MrJrl,s C Mv'+1,r+1 (18)

for everys > r + 1, one has that;, ;, € M, = ﬂ;";rﬂ M, 41,5 from where (7) generates a contra-
diction since (4) is not maximal. Thug® mug be cofinal.

It only remains to prove the existence of the agglomeration pgint but this is an obvious consequence
of (18) and theweak -compactness oM, 1 ,;. W

It is worth to remark that minor modifications of the proof above can allow us to use a simple induction
method rather than the Zorn’s Lemma. Therefore, a more constructive proof of Thearaybe available.

Notice that there are countable sets that are dense in the real line, which (under special assumptions
such as continuous paths) might lead to new proofs of The&rdérat do not require the Zorn's Lemma,
butstrictly weaker axioms.

As said in the introduction this result extends those findings of Balbas &t é27002)], since there are
no alditional conditions on the countable sEt Nevertheless there are many relationships between both
analyses. So, in both cases the projective system approach has enlarged the set of states of the world so that
the new set of states can contain the whole family of feasible paths of the price process (notice that the new
set of states of nature {(®")7 in the present case). As pointed out in Balbas et al(3602)], this fact
implies thatv* and S (1) cannot be equivalent sineé must vanish over the set of new states that can not
be identified with anyw € Q. Consequently we have that the concept of projective equivalence is strictly
weaker than the concept of equivalence (see Balbas &t §2(002)] for further details).



6 Conclusions

Representation Theorems have shown to be crucial in Mathematical Finance. Regarding pricing rules of
perfect markets, for an infinite number of trading dates the characterization of the absence of arbitrage
by the existence of equivalent martingale measures presents some difficulties, and the price process of the
assets needs less intuitive notions such as “no free lunch” or “no free lunch with bounded risk”, generalizing
the concept of “no arbitrage”. Moreover some constraints on the trajectories of the price process are usually
required.

This paper considers a countable set of trading dates and draws on the projective system approach. Then
we establish the equivalence between the absence of arbitrage and the existence of martingale measures.
The equivalence holds under quite general assumptions since there are no conditions on the set of trading
dates or on the trajectories of the price process.

The projective system approach allows us to enlarge the set of states of nature and to identify this set
and the set of feasible trajectories. Thus a complete equivalence between the initial probability measure
and the martingale measure does not hold in general. However the existence of densities between the “real”
probabilities and the “risk-neutral” probabilities is guaranteed by introducing the concept of “projective
equivalence”, in the sense that both the martingale measure and the initial probability measure generate
equivalent projections.
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