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Abstract

This paper studies incentive provision with limited punishments. It
revisits the moral hazard problem with risk neutral parties and solves
for optimal compensation schemes in situations where agents’ partici-
pation is implied by a limited liability constraint. Providing minimum
cost incentives to teams or individuals requires awarding high bonuses
only when extreme performances are observed. Even when the first-
best is attainable, the principal may prefer to induce more (or less)
effort than it is sociably desirable because she only cares about the
marginal cost of motivation. With positive production externalities
joint bonuses are optimal. With limited liability on the principal’s
side, the optimal scheme becomes a tournament–even in the absence
of externalities. The paper also looks at conditions that favor one
incentive scheme over another when agents adapt their strategies as
information becomes available.
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1 Introduction

Over the past thirty years there has been a great effort to understand how
firms provide incentives to their employees. Although there is strong evidence
regarding the importance of economic incentives in motivating workers, there
is little agreement on whether firms use the optimal schemes predicted by
the theory (see Prendergast (1999) and references therein). First, optimal
trade-off between insurance and incentives (Holmstrom (1979, 1982), Shavell
(1979)) results in more complicated contracts than the ones observed in prac-
tice. Second, specific models that yield simpler contracts like piece rates
(Holmstrom and Milgrom (1987)), stock options (Innes (1990)), efficiency
wages (Shapiro and Stiglitz (1984)), or promotion tournaments (Lazear and
Rosen (1981), and Green and Stokey (1983)) do not offer a systematic ex-
planation for why an employer should select one contract over another.
This paper sheds some new light on the conditions affecting the choice of

compensation contracts. The point of departure is the non binding partici-
pation constraints of a risk neutral agent. The optimal contract solution is
stark, offering a very high bonus for extreme (but rare) performances. Adding
different institutional constraints (such as limited liability for the principal
and no arbitrage) yields more commonly observed contracts such as bonuses
and stock options. Through extending the model to multiple agents and al-
lowing for externalities in agents’ production, it is shown that individual and
joint bonus schemes, as well as tournaments arise as minimum cost incentive
schemes.
In the standard principal-agent analysis, contract design is driven by (i) a

trade-off between risk-sharing and incentive provision, and (ii) matching the
reservation utility of the agent. In the standard model, the cost of providing
incentives depends largely on (ii), the agent’s participation constraint. I drop
risk aversion and individual rationality considerations, replacing them with
a limited liability condition that bounds payments to the agent from below.
I examine the cost of putting in place an incentive scheme that achieves a
given effort target.
But why is the problem relevant for practice in spite of the above simplifi-

cations? First, because it is reasonable to assume that firms try to minimize
cost when designing compensation incentives. Second, in a limited liability
world agents are not exposed to dramatic punishments which relaxes their
need for insurance. Third, if motivation for different tasks can be viewed
as being additive, the cost of giving incentives for an additional task may
be examined independently. If this is the case, marginal incentives for a
secondary task would not necessarily need to be subject to participation re-
strictions. Moreover, if incentives come from many dimensions of work, one
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would expect risk neutrality to be a good approximation of agents behav-
ior with respect to income changes due to one of the tasks. For example, a
firm may use efficiency wages to maintain a hard working team. By offering
higher wages than the competition, the firm induces effort from agents that
fear being let go. However, suppose the firm desires to give additional in-
centives, for example, to workers that bring new sales. Although insurance
and participation considerations may be important for the efficiency wage
scheme, they play no role for designing additional incentives. Hence, the
latter should respond to a minimum cost criterion.
Section 2 deals with the case of a principal contracting with a single agent.

Mirrlees (1974, 1999) conjectures that penalizing individuals for rare events
that are strong indicators about deviations is a powerful incentive. Holm-
strom (1982) formalizes this idea showing that, under restrictive conditions,
the first-best effort can be induced at negligible cost using either penalties or
bonuses. The first result is an extension of Holmstrom and Mirrlees’ observa-
tion. Here I relax the conditions (extreme events need not be strong evidence
of the effort choice) and show that such contracts may still minimize the cost
of motivating agents, even though the cost may not be negligible. The con-
tract pays a high bonus only when the best possible outcome is observed.
This is a zero probability event in the model, thus the bonus has to be in-
finite; however, its expected value exists and the minimum cost of inducing
any action is associated with a limit.
Given the unpractical nature of optimal contracts, the paper goes on to

consider restrictions on the contract space corresponding to natural institu-
tional constraints. In particular, with double-sided limited liability (com-
pensation schemes bounded above and below), the optimal contract becomes
a more reasonable form of bonus, i.e. a one step function. Imposing self-
financing and no arbitrage conditions yields similar findings to those of
Innes (1990), and Oyer (2000). Specifically, corollary 7 shows that debt–
equivalently, stock option plans–are optimal incentives when both parties
require their payments to be non-decreasing in output.
Section 3 extends the model by considering multiple agents. In the same

vein that Mookherjee (1984), the paper allows for externalities among agents,
and for individual output signals. The difference in results is mostly due to
the emphasis here on limited liability considerations, risk-neutrality and, to
a lesser extent, on using a continuous model (in efforts and outputs). The
same result as in the single agent case obtains: large bonuses for rare events
minimize the cost of providing incentives. Proposition 11 shows that un-
der positive externalities the most effective compensation scheme is a joint
bonus; while if externalities are negative it is an extreme form of relative per-
formance evaluation (RPE)–a tournament that requires a large gap between
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the winner and the runner-up.
More interestingly, Proposition 16 shows that adding a limited liability

condition to the principal, tournaments with a single prize are the unique
optimal scheme in all cases. This result parallels the findings of Levin (2002)
in a dynamic setting, and is new to the theory of tournaments. Even in the
case of independent outputs, as well as with complementarities, the principal
benefits from using all other agents’ outputs in each agent’s compensation
scheme. This result seems to defy the logic of the sufficient statistics results
of Holmstrom (1979, 1982). The explanation for this discrepancy is quite
simple: even though output functions are independent, the principal’s limited
liability condition affects all compensation schemes simultaneously. Ex-ante,
the most efficient way to induce effort is to reward very high outputs. Hence,
it is in the best interest of the principal to use the ex-post information, and
allocate the scarce motivational resources by comparing outputs.
The literature on tournaments does not present a strong argument for

why such compensation schemes are used so broadly. The pioneering work is
Lazear and Rosen (1981); it shows that contests can achieve the same results
as other incentive schemes, and argue that implementing contests requires
less monitoring and information than other schemes. Probably the strongest
and most common argument in favor of RPE schemes in general is that they
filter noise that affects all agents in the same way (see Green and Stokey
(1983), and Nalebuff and Stiglitz (1983a)). However, Mookherjee (1984)
shows that when agents are risk-averse, rank order tournaments are optimal
schemes only under the restrictive condition that rank order is a sufficient
statistic. This paper then adds an argument for tournaments based on the
cost of implementing incentive schemes. Moreover, this seems to answer
what Prendergast (1999 p.36) finds puzzling about why tournaments are
much more prevalent than the theory would predict.
Before concluding in Section 5, Section 4 deals with the agents’ reac-

tion to partial revelation of information. There has been little work devoted
to understanding the adaptation of behavior halfway through the monitor-
ing period. A number of empirical studies show evidence of agents gaming
the incentive schemes presented to them (e.g. Oyer (1998), Asch (1990),
Ehrenberg and Bognanno (1990), Zenger (1992)). Holmstrom and Milgrom
(1987) makes an important theoretical contribution on this issue showing that
piece-rate schemes–which agents find hard to game–are optimal in certain
circumstances. Cabral (2002) and Oyer (2000), among others, present the-
oretical examples of such gaming showing that under non-linear incentive
schemes, under-performers would tend to choose risky actions. Similar ideas
can be found in the literature on R&D races (e.g. Athey and Schmutzler
(2001)).
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I use a two-agent version of the model to explore agents’ reaction to par-
tial interim revelation of information. I investigate agents’ behavior under
three compensation schemes suggested in Sections 2 and 3: individual perfor-
mance evaluation (IPE), joint performance evaluation (JPE), and a partic-
ular form of relative performance evaluations (RPE): tournaments. On the
negative side, the results confirm the broad intuition that such schemes are
not robust and that agents will game the system. On the positive side, the
analysis reveals some conditions that favor one scheme over another. Specif-
ically, positive correlation in production favors a tournament, while negative
correlation favors a joint bonus scheme. In a tournament, agents exert high
levels of effort when their competitors are close. If there is a large gap, the
laggard finds it too hard to catch up, the leader can comfortably stay ahead,
and none of them will exert much effort. Similarly, under a bonus scheme
high levels of effort will be observed when there is a reasonable chance to
get the reward. If a worker has already reached the reward level she may
stop working; if she is too far behind, she will see no point in trying hard. If
output is positively correlated, there is a better chance that competition will
be tight at the time information is revealed. If the correlation is negative,
there is a good chance that a bonus for joint output will keep incentives high.

2 Motivating a Single Agent

A firm’s output x depends (at least partially) on an agent’s choice of action
a. The firm cannot observe the agent’s action, nor can it infer the action
perfectly from the observed output. More specifically, X (a) is a random
variable with support in [0, x̄] with continuous differentiable density function
f (x|a) > 0.
The action is assumed to be a scalar a ∈ A ⊂ R. Moreover assume that

a higher action yields a better distribution of output in the likelihood ratio
order sense: a > a0 implies f(x|a)

f(x|a0) is a non-decreasing function of x; and write
it as: f (·|a) ºLR f (·|a0). The choice of action is costly; c (a) represents the
disutility to the agent of choosing action a, throughout it is assumed that
c ≥ 0; c0 (0) = 0, c00 > 0, and if ā = sup {a ∈ A} , then lima↑ā c (a) =∞.
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Consider the following program:

max
a,s(x)

Z x̄

0

(x− s (x)) f (x|a) dx (1)

s.t. (i)

Z x̄

0

s (x) f (x|a) dx− c (a) ≥ ū

(ii) a solves max
â∈A

Z x̄

0

s (x) f (x|â) dx− c (â)
(iii) s (x) ≥ L

This is a typical moral hazard problem between risk neutral principal and
agent. The principal seeks an output contingent contract s (x) to motivate
the agent. The agent is free to choose the action a from the set A ⊂ R.
Disregarding the limited liability constraint (iii) it is well known that a simple
solution is to sell the project x to the agent at the maximum price she would
be willing to pay. That is s (x) = x − k, where k solves (i) with equality.
Of course, there are other solutions that induce the same effort level, while
giving the agent her outside option. With risk-averse agent (and principal),
the issue becomes one of trading off risk and incentives. Similarly, when
the limited liability constraint (iii) is taken into account, the design of the
contract becomes crucial; here it is a question of using incentive instruments
in the most efficient way. This effect is most striking when the limited liability
constraint implies the participation constraint (i) —e.g. if L ≥ ū+max c (a) .
An useful way of solving moral hazard problems, following Grossman

and Hart (1983), is to investigate first the optimal contract that induces a
particular level of effort. Then one considers what effort level will be desirable
to induce. This intuitive approach fits perfectly here since it will emphasize
the shape of a contract that achieves a particular effort goal at minimum
cost.
A further simplification of the problem is obtained using the so-called

first-order approach, which replaces the incentive compatibility constraint
(ii) with its first order condition. Once a solution to the problem is found,
one can verify that it satisfies the global incentive compatibility constraint
of the agent.
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I start by considering the following version of the problem,

min
s(x)

Z x̄

0

s (x) f (x|a) dx (P)

s.t. (i)

Z x̄

0

s (x) f (x|a) dx− c (a) ≥ ū

(ii)’

Z x̄

0

s (x) fa (x|a) dx = c0 (a)
(iii) s (x) ≥ L

Note that the objective was changed, so that the new program minimizes the
payment to the agent, and the only decision variable is the payment schedule
(effort has been fixed). Constraint (ii)’ is the first order condition for (ii).
In fact, most of the results below deal with a relaxed version of the moral
hazard program, one that neglects the participation constraint.

min
s(x)

Z x̄

0

s (x) f (x|a) dx (RP)

s.t. (ii)’

Z x̄

0

s (x) fa (x|a) dx = c0 (a)
(iii) s (x) ≥ L

There are two reasons for disregarding participation considerations. First,
working with the less constrained problem will highlight the features of con-
tract design that deal exclusively with incentive provision. In other words,
the shape of the optimal contract will represent the least costly way of pro-
viding incentives, rather than the optimal way of motivating the agent while
ensuring a minimum transfer of utility.
Second, in this way the model captures some applications that have not

been addressed in the literature. There are many circumstances in which
it is important to motivate agents whose participation in the contract is
somehow guaranteed by the limited liability condition. Take the case of
locked-in employees. A firm may have some workers that have a very specific
experience, whose outside option is much lower than their current wage, but
are highly valuable for the firm. Athletes and other potential superstars face a
similar dilemma at the beginning of their careers. Their outside alternatives
may be represented by similar jobs to those they perform anyhow while
training to make it into professional leagues.
As will be seen, with a binding participation constraint there will be a

larger class of solutions. That is, optimal contract-design becomes more flex-
ible when the agent’s participation is not guaranteed by the limited liability
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constraint. The following proposition shows that whenever the participation
constraint binds, program P has a one step (bonus contract) solution.

Proposition 1 Given effort a, if

ū+ c (a) > L+ c0 (a)
f (x̄|a)
fa (x̄|a) (2)

then, there exists some x̃ ∈ [0, x̄] , k ≥ 0, and M ≥ L such that problem P
has a solution of the form1

s (x) =M + k1x≥x̃ (3)

Proof. in the appendix.
Of course, the solution proposed above is not unique. For example, it

is well known (Harris and Raviv (1976)) that when L is sufficiently low,
selling the project to an agent achieves the efficient level of effort. Similarly,
different effort targets can be achieved by selling a share of the project when
the agent’s liability is flexible enough (L is small). The contracts proposed
here are similar to those proposed by Mirrlees (1974) and Holmstrom (1982),
where they make the point that first best can be achieved at negligible cost
under more restrictive conditions. In this direction, proposition 1 suggests a
lower bound for the cost of motivating agents in a more general framework;
proposition 3 will show that this bound is tight.
Notice that in the standard moral hazard problem considered in the liter-

ature —e.g. Holmstrom (1979, and 1982)— the participation constraint deter-
mines the expected transfer the agent receives. The last proposition shows
that there is no loss to restrict attention to bonus (one step) contracts to
achieve optimality in such cases. When the principal does not need to in-
duce participation, the relevant question becomes at what price can she im-
plement a desired level of effort. Such questions are particularly important
in the context of motivating a team (which will be handled in section 4); but
most of the intuition will come from the single agent case.
Proposition 3 shows that when the IR constraint does not bind, the least

cost of motivating the agent is achieved by an extreme form of bonus contract:
one that would only pay for the best possible outcome. Under the assump-
tions so far, such an event has zero probability and therefore the bonus must
be infinite. In reality such a contract is not feasible. However, the proposition
will show that the bound proposed in proposition 1 is tight; validating the
simple one-step approximations used in proposition 1. Moreover, it gives rise

11A will denote the indicator function of the set A. That is 1A (x) = 1 if A occurs, and
0 otherwise.
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to the structure of optimal contracts under several institutional constraints
as the corollaries will illustrate.
Before proceeding, it will be useful to recall the definition of the Dirac-

delta function —taken from Luenberger (1964 p. xvi). This is the mathemat-
ical representation of the stark solution in proposition 3.

Definition 2 The Dirac delta function δ (·) is defined by the relationZ b

a

f (t) δ (t) dt = f (0)

for every continuous function f in [a, b], where 0 ∈ (a, b) .

Proposition 3 s (x) = L + c0(a)
fa(x̄|a)δ (x− x̄) is a solution to problem (RP).

That is, a Dirac function that recognizes only a “super-bonus” for the best
possible outcome is the least expensive way of providing high-powered incen-
tives. Moreover, if f (x̄, a) is a concave function of a, then the global incentive
constraint (ii) is also satisfied.

Proof. in the appendix.
The proof is very intuitive. The first-order-condition of the incentive

constraint determines the quantity of incentives required. Incentives need to
take the form of a premium wage for some observed output levels. There is
a shadow cost of providing incentives at each level of performance, and the
cost is lowest when observed output is a better signal of more effort. The
likelihood ratio ordering assumption implies that the best signal for increased
effort are the very best performances. Hence, offering all the required incen-
tives for the best possible result is the least costly way to induce the agent
to exert up to the desired level of effort.
As corollary, the minimum (expected) cost of motivating the agent to

exert effort a is

m (a) := c0 (a)
f (x̄|a)
fa (x̄|a) .

An interesting point regarding the type of super-bonus contracts of propo-
sition 3 is that the principal may implement an inefficient level of effort
(either above or below the first best). Specifically, given the minimum cost
of implementing effort a, the principal will implement a∗ that solves

max
a∈A

E [x|a]−m (a) .
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Whereas a social planner would implement the first-best level of effort: aFB,
a solution to

max
a∈A

E [x|a]− c (a) .

Consequently, the principal will induce the agent to work too much with
respect to the social optimum

¡
a∗ > aFB

¢
when m0 (·) < c0 (·) . And she will

induce less effort than desirable if m0 (·) > c0 (·); both cases being plausible.
This could be the case of some sports, like cycling, where being one step

ahead of anti-dopping policies is the name of the game. The rules of com-
petition (explicit and implicit) force athletes to go beyond their capabilities;
the additional rents from more spectacular performances outweigh the ad-
ditional cost of inducing more effort than desirable. That is, even though
social surplus decreases for a above the efficient level; the rents that the agent
claims, m (a) − c (a) , may decrease faster with respect to induced effort a;
consequently, the principal finds in her own advantage to induce more effort
than desirable. The following corollary shows, with a mathematical example,
that such cases are in fact possible.

Corollary 4 The level of effort that the principal induces, a∗, may be lower
or higher than the first-best level aFB.
There are rare cases in which the principal desires to induce more effort than
first-best; in the following example I choose appropriate functional forms of
costs and distributions to show that over production of effort may arise. Let
c (a) = ea−1

3
, and f (x, a) =

With a binding participation constraint, there would still be a solution
of the form found in proposition 3–although the minimum payment may
need to be higher than L. The following corollary relates Propositions 1 and
3 by showing that one-step contracts of the type used in Proposition 1 are
constrained optima when limited liability affects both parties.

Corollary 5 Suppose the transfer from the principal cannot exceed some
amount W > L. Then, if there exists a solution to RP with the additional
constraint, it has the form

s (x) =

½
L x < x∗

W x ≥ x∗

for some x∗ ∈ [0, x̄] .
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Proof. (sketch) With the additional constraint, the program becomes:

min
s(x)

Z x̄

x̂

(s (x)− L) f (x|a) dx

s.t. (ii)’

Z x̄

x̂

(s (x)− L) fa (x|a) dx = c0 (a)
(iii)’ W − L ≥ s (x)− L ≥ 0

As before, the solution consists of using the region where f(x|a)
fa(x|a) is minimum

up to the point that (ii)’ is satisfied. Hence x∗ will be defined byZ x̄

x∗
(W − L) fa (x|a) dx = c0 (a)

Under many institutions, contracts take the form of simple sharing rules.
For example in sharecropping, parties decide how to split the value of the
crops, but no party makes payments greater than the value of the harvest.
The same holds for debt contracting. In light of the above results, it is not
surprising that the least costly way to motivate the agent is to give her all
the output in good states of the world (high values of x), and zero in bad
states. Innes 90 obtains such a result, which can be stated as a corollary to
proposition 3.

Corollary 6 (Innes 90) Consider program RP with the additional constraint

(iii)” 0 ≤ s (x) ≤ x.
The solution has the form

s (x) =

½
0 x < x∗

x x ≥ x∗
for some x∗.

These type of contracts are hardly seen in reality. Both parties would
have a strong incentive to misrepresent information when output is close to
the threshold level x∗. A reasonable condition that one may want to impose
is that the share of both parties should be non-decreasing in x. This could be
interpreted as a no-arbitrage condition: neither party benefits from throwing
away output, or from buying additional amounts. The new requirement
is that both s (x) , and x − s (x) must be non decreasing. Innes 90 [13]
also studies this case and finds that the optimal incentive scheme is a debt
contract; that is s (x) = max {0, x− d} for some d. As with the previous
corollary, the proof is a simple extension of proposition 3 and will be omitted.
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Corollary 7 (Innes 90) Consider program RP with the additional constraints

(iii)000 0 ≤ s (x)− s (x0) ≤ x− x0 for all x > x0
The solution is a debt contract s (x) = max {0, x− d} for some d.

Obviously, under such constraints it may be impossible to implement high
levels of effort. In particular, a debt contract with a positive repayment value
(d > 0) cannot achieve the first-best level of effort. This is in contrast to the
type of contracts described in corollary 6, which can implement first-best
(and even higher) levels of effort.

3 Motivation for Teams

This section extends the model to incentive schemes for a team. I shall
consider a principal that observes individual output signals from a group of
agents and who is interested in the sum of their outputs. The model will
allow for positive as well as negative externalities among agents’ production
technologies. Some of the results also apply to situations where the number of
signals observed differs from the number of agents. For example, where there
are different dimensions to each agent’s output and the principal is interested
in the sum of such components. However, as in the previous section, the effort
choice is just a scalar.
Start by considering a simple extension of the previous model, where

n agents require a costly action to produce some output. Each agent i ∈
{1, 2, ..., n} chooses her effort ai. I use the notation a = (a1, ..., an) =
(ai, a−i) .The cost of effort for agent i is given by ci (ai). Agent i0s out-
put, xi ∈ [0, x̄i] , is distributed according to the c.d.f. F i (·|ai, a−i), with
differentiable density f i (·|ai, a−i), which is assumed positive on [0, x̄i].
Each agent’s effort is productive, and outputs are independently dis-

tributed given effort a. That is, all the information that xj can have about
xi is contained in the effort vector a. Formally, let X =

P
i xi and h (·|a) be

the density of X given a, with corresponding c.d.f. H (·|a).
Condition 8 (Productivity)
a) For every i, ai > a

0
i implies that f

i (·|ai, a−i) ºLR f i (·|a0i, a−i)
b) For every i, ai > a

0
i implies that h (·|ai, a−i) ºLR h (·|a0i, a−i)

Condition 9 (Independence) Given effort a, {x1, ..., xn} are independent
random variables. That is the joint density of {x1, ..., xn} given effort a is:

µ (x|a) =
Y
i

f i (xi|a)
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The productivity condition says that individual and total output have
better distributions (in the likelihood ratio order sense) when any one agent
increases her effort, while the rest of the team works at a fix level of efforts.
Note that part b) implies that, regardless of the externalities that i imposes
on others’ signals, the input of agent i is overall productive. The indepen-
dence condition implies that there is no common shock that affects agents’
productivity. Externalities are represented through the effect that an agent’s
effort has over other agents’ output. More precisely, I will use the following
definitions.

Definition 10 Agent i has positive (negative) externalities over k if ai > a
0
i

implies that fk (·|ai, a−i) º (¹)LR fk (·|a0i, a−i) . A team of agents has positive
(negative) externalities if every agent has positive (negative) externalities
over every other agent in the team.

The principal is interested in the sum of outputs: X =
P

i xi. As before,
I shall look into the question of how can the principal induce a target level
of effort a∗ = (a∗1, ..., a

∗
n) at minimum expected cost. When the form of

the incentive schedule is not constrained, the solution has the same extreme
attributes as in the single agent case: each agent would be rewarded only
when the best possible signal is observed.
Given that output from all agents are informative about xi, in general, the

reward of agent i will depend on all signals. Let si (x) be the payment to agent
i when x is observed. Each agent chooses effort to maximize expected reward,
while assuming other agents exert effort a∗−i. Agent i solves the problem:

max
ai
E
£
si (x) |ai, a∗−i

¤− ci (ai) .
The first order condition can be written as:Z

si (x)µai
¡
x|ai, a∗−i

¢
dx1...dxn = c0i (ai) , or (4)Z

si (x)µ
¡
x|ai, a∗−i

¢ "X
j

f jai
¡
xj|ai, a∗−i

¢
f j
¡
xj|ai, a∗−i

¢ # dx1...dxn = c0i (ai)

The bracketed expression is a measure of how informative is the observed
signal about agent i’s effort choice. It will reappear often enough; for conve-
nience I will label it λi (x, a) ; that is:

λi (x, a) :=
X
k

fkai (xk|a)
fk (xk|a) .
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As in proposition 3, the optimal incentive scheme is going to rely on
paying the agent extremely well for realizations x that yield high values of
λi. Assuming condition 4 is sufficient for each agent’s problem; the principal’s
program can be written as follows.

min
{si}i

X
i

E [si (x) |a∗] (5)

s.t. ∀i (4)
∀i si (x) ≥ Li (6)

The participation constraints have been omitted. I restrict attention to the
case in which participation is implied by the limited liability constraints
(6). As in the one agent case, binding participation constraints just give
the principal more flexibility in designing the optimal incentive scheme. The
following result generalizes proposition 3 to a multi-agent setting; the proof
is very similar.

Proposition 11 Under the productivity and independence assumptions, the
solution to problem 5 is to offer each agent i a ”super-bonus” when x ∈
argmaxx λi (x, a

∗) .
a) If agent i’s choice of effort does not affect signal xj, then i’s optimal
compensation can be made independent of j’s signal.
b) Under team positive externalities, a solution is to pay all agents the super-
bonus only when (x̄1, ..., x̄n) is observed.
c) Under team negative externalities, a solution is to pay agent i the super-
bonus only when (x̄i, 0) is observed.

Proof. see appendix.
It is worth noting that if the principal is bound to use only i’s signal

to compensate agent i, proposition 3 still holds: the principal would give
a large bonus for the very best realizations of the individual signal. Such
schemes are often called individual performance evaluation (IPE), whereas
the schemes that use all agents’ information are called joint performance
evaluation (JPE). Clearly the cost of attaining a given level of efforts is
smaller under JPE, than under IPE. In particular, from proposition 3 , the
minimum cost of inducing effort a∗ through an IPE schemes is:X

i

c0i (a
∗
i )

f iai(x̄i|a∗)
f i(x̄i|a∗)

(7)
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Whereas with a JPE scheme, the minimum cost follows from proposition 11
and is X

i

c0i (a
∗
i )P

j

fjai(x̃ij |a∗)
fj(x̃ij |a∗)

(8)

with x̃i ∈ argmaxx λi (x, a∗) for each i.
Given that

fjai(x̃ij |a∗)
fj(x̃ij |a∗)

is non-negative at the highest point, it is clear that

the JPE schedule will dominate individual schedules. In the presence of any
kind of externalities —i.e. when at least one such ratio is not always zero for
j 6= i— the motivation cost will be strictly lower under JPE.
As it could be expected, for teams with positive externalities, the result

suggests a large joint bonus when observing excellent performances. Under
positive externalities (complements), this translates into joint bonuses; under
negative externalities (substitutes), it translates into an extreme form of
tournament. A tournament that requires the winner to have a big advantage
over the runner-up to claim the prize.
Although joint bonuses are not uncommon in modern organizations, they

are definitely not the norm either (see Lazear (1995), Baron and Kreps
(1999)). The suggested solution for the case of negative externalities would
be hard to implement: Companies do not deny a bonus to a worker just
because her peers did not perform poorly! Workers interacting under such
conditions would have to spend a great deal of time watching their backs,
making sure other employees are not sabotaging their work. Instead, individ-
ual bonuses and promotion tournaments seem to be widely used in practice.
It is worth then to explore under what conditions the cost of an IPE scheme
(individual bonuses) will outperform regular tournament schemes. The fol-
lowing definitions introduce the type of tournaments that will be considered,
and a notion of symmetry among agents.

Definition 12 i) A tournament among n agents is an incentive scheme that
ranks agents’ outputs from highest to lowest and pays a prize to each that
depends solely on the agent’s ranking.
ii) A tournament with a standard m, is a tournament that only pays prizes
to agents that produce above m.

A tournament then consists of a set of prizes {B1, ...Bn}, and payment
functions defined by:
si (x) = Bk if and only if xi is the k-th order statistic from {x1,..., xn} for all
i and k.
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Definition 13 Given a ∈ An, and i 6= j; let aij be the vector of efforts that
results from interchanging the i-th and j-th components2 of a. A team of
agents is said to be symmetric if
i) for all i, ci (·) = c (·) , and x̄i = x̄,
ii) for all k and every i, j 6= k; fk (xk|a) = fk (xk|aij) , and
iii) for all z ∈ [0, x̄] , and all i, j ∈ {1, ..., n} ; f i (z|a) = f j (z|aij)

A symmetric team requires that all agents have the same production func-
tions, and that they cause identical externalities to all other agents.
The following results will be considered only in a simplified version of the
model with two symmetric agents, and tournaments with a single prize3.
Nalebuff and Stiglitz (1983) and Moldovanu and Sela (2001) provide argu-
ments to have a small number of prizes in a tournament. Generally one prize
is sufficient, and I will only consider this case.

Proposition 14 With two symmetric agents with positive externalities, the
cost of inducing efforts a∗ = (a∗1, a

∗
2) , a

∗
1 = a

∗
2, via a single-prize tournament

with a standard is higher than in the case of using individual bonuses. With
negative externalities, the tournament can outperform individual bonuses.

Proof. See appendix.
The proof is straight forward for the case of positive externalities. Given

the standard m, one computes the cost of implementing a∗ by means of a
tournament and compare it to (7). The case of negative externalities requires
an example which is provided in the appendix. The intuition is simple: with
sufficiently large negative externalities, a tournament approximates better
the full (JPE) optimum.
Most of the literature on tournaments emphasizes the benefits of contests,

and of relative-performance-evaluation (RPE) schemes in general, because of
two reasons. The first is that tournaments filter out noise that affects all
players (Green and Stokey (1983), and Nalebuff and Stiglitz (1983)). If,
for example, weather conditions have a significant effect on the productivity
of a team of workers; making payments depend only on individual outputs
may not be as effective an incentive as relying on comparative measures.
Workers may realize they will not be fairly compensated when facing adverse
conditions; and therefore decide to work only when the weather is favorable.
This effect will not be considered in depth here.

2That is, aijj = ai, a
ij
i = aj , and ak = a

ij
k for k /∈ {i, j}.

3For regular tournaments with n agents it always suffice to consider just n− 1 prizes.
However, in tournaments with a standard having as many prizes as agents makes a differ-
ence.
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The second argument for RPE is based on substitution effects. If a job
requires to accomplish several tasks that all agents can handle, it makes sense
to have an incentive system based on comparing their relative achievements.
The best example is probably the case of sports competitions that are or-
ganized in the form of a tournament, and give prizes according to the final
ranking of competitors. The negative externalities considered in the model
capture such effects.
In addition to these two arguments; supporters of RPE schemes like to

argue that informational requirements are smaller than in other incentive
schemes. The central point being that it requires less monitoring to obtain
a comparative measure of performance than to obtain an absolute one. Sup-
porting this type of heuristic arguments would require a more sophisticated
model; one that would allow for a trade-off between the cost of monitoring
and the quality of the observed signal.
The following result adds yet another reason in favor of contest schemes;

one that justifies their popularity and explains their advantage even in the
cases of independence and complementarities across agents. The result ex-
tends corollary (5) to the case of multi-agent incentive provision. It shows
that if the principal has a limited budget to spend on incentives, a tourna-
ment is the most effective way of motivating the team. A little more structure
is required before proceeding; in particular, the model so far allows for one
agent’s effort to influence more another agent’s signal than her own. The
following condition is therefore pretty intuitive.

Condition 15 (low externalities) For all x ∈ [0, x̄]n, all a ∈ An, and all
i; ∂

∂xi
λi (x, a) >

P
j 6=i
¯̄̄

∂
∂xj

λi (x, a)
¯̄̄

The condition implies that externalities are never too big; observing a
better signal from i is a better indicator of i’s effort choice than observing
all other signals moving in the direction of i’s externalities.
The problem that the principal faces can be expressed as follows:

min
{si}i

X
i

E [si (x) |a∗] (9)

s.t. ∀i (4)
∀i si (x) ≥ L (LLi)X
i

si (x) ≤ B (LLP ) .

Where LLi denotes agent i’s limited liability constraint, and LLP the prin-
cipal’s liability constraint.
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Proposition 16 Suppose the principal cannot make payments in excess of
B in any state of the world. Then, the optimal incentive scheme for a team
of symmetric risk-neutral agents with low positive externalities takes the form
of a tournament with a standard, and a single prize (winner takes all).

Proof. See appendix

Proposition 11 showed that the least costly way of motivating a team
of agents with positive externalities is through a joint super-bonus. Here, I
show that the correct approximation to such a scheme relies on giving the
full bonus to a single agent: a tournament. Levin (2002) finds a similar result
when considering dynamic relational contracts. In his model, the principal
has not a limited budget, but a similar constraint arises from the fact that
parties may run away, and no one, the principal in particular, is willing to
pay more than the value of future interaction.

4 Interim monitoring

The previous section investigated the form of minimum cost incentive schemes
in a static relationship. This section addresses the question of how robust
such incentive schemes are to environments where agents can adapt to partial
revelation of information.
Suppose agents’ actions are not taken once and for all, but need to be

taken on a daily basis. If agents have a rough idea about their interim pro-
duction, they will adapt their actions according to the updated information.
The IPE, JPE, and tournament incentive schemes that resulted from the
analysis in the previous section need no longer be optimal. Solving for the
optimal incentive scheme under these circumstances is left for future research.
In this section I will address the positive question of how agents react to such
incentive schemes when allowed to update their actions.
Consider a car seller who gets a bonus for attaining a monthly sales

quota. Given that the seller learns throughout the month how close he is
to the quota, he will work harder when he is close to the quota, and less
hard when either the quota is nearly impossible to reach, or when he has
already reached it. Similarly, in a golf tournament, the leader may put more
effort when competition is tight than when he has a comfortable gap over
the second player (Ehrenberg and Bognanno (1990) shows some evidence of
such behavior).
Most of the results in this section will be based on the following simplified

extension of the model. There are only two ex-ante symmetric agents. Before
investing in effort, agents observe an interim measure of performance y =

18



(y1, y2) . The measure can be interpreted as output from an initial period,
but I will not model first period’s effort choices. Instead, the signal y is
assumed to be distributed according to an exogenous (symmetric) probability
distribution G (·) , with density g (·) , and support in [0, ȳ]2 . Final output
will be assumed to behave according to xi = yi + zi, where zi is distributed
according to F i (·|a) ,with support on [0, z̄] , density f i (·|a), and a = (a1, a2)
is the vector of efforts. The productivity and independence conditions will be
assumed to hold throughout. The function ai (y) will denote the equilibrium
action of agent i when observing y, and a (y) = (a1 (y) , a2 (y)).
The rest of the section is divided into five parts. In parts 1-3, I start by

considering agents’ response under three type of incentive schemes: i) indi-
vidual performance evaluations (IPE), where agents earn individual bonuses
for reaching a threshold level of production, ii) joint performance evaluation
(JPE), where a common bonus is given when aggregate production (x1 + x2)
reaches some target, and iii) tournaments, where only the agent with the
highest output may be rewarded. Part 4 summarizes the results of the pre-
vious parts to draw some conclusions regarding compensation schemes and
correlation of production. Finally, part 5 extends the analysis of tournaments
to examine strategic considerations.

4.1 Individual Performance Evaluation

The car seller and the golfer mentioned above work harder when their chances
of obtaining the prize are fair, rather than very high or low. It is when their
effort has the highest impact on their expected payoffs that they will go the
extra mile. This subsection shows that such behavior is optimal when agents
face an individual bonus scheme. The following two subsections take care of
the joint bonus and tournament cases.
Suppose agent i ’s payoff has the following form

si (x) =

½
1 xi ≥M
0 xi < M

.

I will say that agent i is on schedule (given y) if E [zi|a (y)] =M − yi. That
is, if the expected output in equilibrium is exactly the bonus threshold level.
When the equality is changed for > (<) , it will be said that the agent is above
(below) schedule. If the above intuition is correct, an agent would exert the
highest effort when on schedule. The following reasonable condition obtains
this result.

Condition 17 (Effort Intensity)
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For every a,
³
− ∂

∂ai
F i (·|a)

´
is increasing on [0, zi (a)] and decreasing on

[zi (a) , z̄] , where zi (a) := E [zi|a] .

The condition says that effort is most effective at the mean of production.
That is, the marginal (probabilistic) increase in production due to effort
is more sensitive around the mean that anywhere else. The condition is
satisfied, for example if zi = ai+ εi, where εi is a noisy term with zero mean
and a distribution with a single peak at zero. The following proposition
characterizes the equilibrium response of the agents to interim information
under a bonus scheme. It shows that agents’ dedication depends on how
close to the schedule they are performing.

Proposition 18 Suppose the Productivity and Effort Intensity conditions
hold. If for all a, F iaiai (·|a) ≤ c00 (ai) , then in any Nash equilibrium (a1 (y) , a2 (y)),
ai is non-decreasing (non-increasing) in yi, whenever agent i is below (above)
schedule.

Proof. Consider a Nash equilibrium a (y) , and a point y = (y1, y2)
where agent 1 is below schedule. That is, where z1 (a (y)) = E [z1|a (y)] <
M − y1. From the intensity of effort condition it follows that

³
− ∂

∂a1
F 1 (·|a)

´
is decreasing aroundM−y1. Fix a level of effort a2 for agent 2, and consider
1’s objective function:¡

1− F 1 (M − y1|a, a2)
¢− c (a) .

Let a (y1, a2) denote the maximizer.
4 Letting a2 = a2 (y) , it follows that the

objective function has increasing differences5 in (a, y1) around y. Hence, by
Topkis (1998, theorem 2.8.1 p. 76), it must be that the maximizer a is non
decreasing in y1.
The proof for the case where the agent is above schedule is identical.

The key assumption for the proposition to hold is the Effort Intensity
condition. It implies that the marginal increase in the probability of attaining
a given level of output is the highest when such output is precisely at the
mean. In this way, it gives more structure to the model in terms of how is
effort affecting output.

4Given that F iaiai (·|a) ≤ c00 (ai) , the maximizer is unique
5With differentiable functions of real variables, f (x, y) has increasing differences in

(x, y) if fxy ≥ 0. A general discussion can be found in Topkis 1998.
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4.2 Contests

Now consider the case of a tournament. To make things simple, suppose
there is no standard; hence agents compete only against each other. After
observing a signal y = (y1, y2) , assuming agent 2 exerts effort a2, agent 1 will
choose a as to maximize

Pr {z1 − z2 > y2 − y1|a, a2}− c (a) .
As in the IPE case, the prize is normalized to 1. Let H (·|a) denote the
c.d.f. of (z1 − z2) given effort a = (a1, a2) . A similar condition to effort
intensity makes it possible to characterize the nature of competition given
the observed state. I shall use a slightly more restrictive condition that will
yield a stronger result.

Condition 19 (Effort Gap) Let d = a1 − a2, and ∆ (d) = E [z1 − z2|d] ,
then
i) H (·|a1, a2) = H̄ (·|a1 − a2) ,
ii) d ≥ d0 implies H̄ (·|d) ºLR H̄ (·|d0) ,
iii) For every d; −H̄d (∆|d) is increasing for ∆ ≤ ∆ (d) , and decreasing
thereafter, and
iv) |Hdd| ≤ infai∈A c00 (ai) .
The condition is satisfied, for example, if each agent controls the mean

of a Normal distribution with the same fixed variance. The first and third
parts are the essence of the condition; they restricts the way that efforts may
affect outputs. Part i) implies that the probability distribution of the gap
in second period’s outputs, z1 − z2, depends only on the difference of efforts
between agents 1 and 2. Part iii) accomplishes in tournaments the same
goal that condition Effort Intensity did in IPE’s; it implies that effort affects
more the probability distribution around the expected production gap. Part
ii) says that the effort difference orders the distribution over the gap in the
likelihood ratio order sense. Finally, part iv) guarantees that each agent’s
problem is concave.
As in the IPE case, the effort gap condition yields a result that confirms

the intuition about parties competing more fiercely when none has a signifi-
cant advantage. In this setting it turns out that, in equilibrium, both parties
will exert the same amount of effort always. That is, in equilibrium, the
leader’s effort to maintain her advantage is the same as the laggard’s effort
to catch-up.

Proposition 20 Suppose the Effort Gap condition holds. Then, for any y =
(y1, y2) there is a unique Nash Equilibrium in Pure Strategies (a1 (y) , a2 (y)) ,
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and a1 (y) = a2 (y) for all y. Moreover, equilibrium effort is a decreasing
function of |y1 − y2| .

Proof. Given ∆ = y2−y1, the objective functions for agents 1 and 2 are,
respectively: £

1− H̄ (∆|a1 − a2)
¤− c (a1) ,

H̄ (∆|a1 − a2)− c (a2) .
Each agent takes the other agent’s action as given. In equilibrium then,
(a1, a2) must simultaneously solve the first order conditions:

−H̄d (∆|a1 − a2) = c0 (a1)

−H̄d (∆|a1 − a2) = c0 (a2)

It follows that c0 (a1) = c0 (a2) , and since c00 > 0, a1 = a2. Note that the
level of effort is always interior. Now, the value of a (y) = a1 (y) = a2 (y) is
determined by

c0 (a (y)) = −Hd (y2 − y1|0) .
Therefore, given y, there is only one possible equilibrium level of effort.
By symmetry ∆ (0) = 0. Part iii) of the effort gap condition implies then
that effort is highest when y1 = y2, and decreases in |y1 − y2| .
The proposition offers an easy benchmark to analyze different extensions.

For example, one may ask how tournament participants react when they
face learning-by-doing (LBD), or decreasing returns to effort (DRE) effects.
Suppose the cost of effort for agent i depends on her accumulated production
yi. If cy ≤ 0 (LBD), it should be the case that the leader will exert more effort
than the laggard. On the contrary, if cy ≥ 0 (DRE) it is the laggard who
works harder to try to catch-up.

4.3 Joint performance compensation

Consider now the case where both agents receive a bonus when their joint
production reaches a given threshold M. When observing signals (y1, y2) ,
agent 1 will try to maximize

Pr {z1 + z2 > M − (y1 + y2) |a, a2}− c (a) ,
where a2 is the equilibrium action of agent 2. The result, as you could have
anticipated, is similar to the previous cases: Agents exert more effort when
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close to the schedule; and both agents will work equally hard —unless one
would incorporate LBD or DRE effects.
Let now H (·|a) denote the c.d.f. of s = z1 + z2; the relevant condition

for this case can be stated as follows.

Condition 21 (Effort Sum) H (·|a1, a2) = H̄ (·|a1 + a2) . Denoting e =
a1 + a2; s (e) = E [s|e] , then:
i) e > ê implies H̄ (·|e) ºLR H̄ (·|ê) ,
ii) For every s, −H̄e (s|e) is increasing for s ≤ s (e) , and decreasing there-
after
iii)

¯̄
H̄ee (s|e)

¯̄ ≤ infa∈A c00 (a) for all (s, e)
The interpretation of the condition is the same as the conditions used for

the previous cases. The key feature is that the probabilistic contribution of
effort to output is highest at the expected output level. As in the IPE case,
agents are said to be below (above) schedule if

E [s|a (y)] < (>)M − y1 − y2.

Proposition 22 Suppose condition Effort Sum holds. Then, under a JPE
scheme, there are symmetric equilibria for which i) both agents exert the
same effort and ii) effort is increasing (decreasing) in aggregate production
(y1 + y2) when output is below (above) schedule.

Proof. Let Y = y1 + y2. Assuming player j chooses effort aj, player i
solves

max
a
1− H̄ (M − Y |a+ aj)− c (a) . (10)

Thus, a Nash equilibrium (a1, a2) must solve simultaneously the first order
conditions

H̄e (M − Y |a1 + a2) = c (a1) and

H̄e (M − Y |a1 + a2) = c (a2) .

This implies a1 = a2. Now, fixing the level of aj, the objective function (10)
has increasing differences in (a, Y ) when below schedule. The result follows
from Topkis (1998, theorem 2.8.1).

The proof of the proposition is similar to that of propositions (18) and
(20) is omitted.
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4.4 Choice of Compensation Scheme and Correlation

This subsection argues that, to a certain extent, the choice of compensa-
tion scheme is driven by the correlation of agents’ initial output (y1, y2).
This observation is derived directly from the previous results of the section
(propositions 18, 20, and 22), and the discussion is informal.
Suppose the principal is interested in the sum of second period efforts.

It is natural to ask when a1 (y) + a2 (y) ≥ a∗, for a given a∗. The results so
far suggest a different answer for each incentive scheme. First, under an IPE
scheme, the region (in the y-space) has the shape of a diamond around the
point (ys, ys) , where ys is the on schedule production level. Second, under a
JPE scheme, the region is a neighborhood of the line y1 + y2 = 2y

s. Third,
under a tournament scheme, the region is a neighborhood of the line y1 = y2.
See Figure 1.
The interesting feature of such regions is that they suggest a rule of

thumb for designing incentives. If agents’ interim outputs (y) are likely to
be positively correlated, then a tournament will generate higher levels of
effort more often. Whereas if interim outputs are likely to be negatively
correlated, rewarding joint performance is more productive. In other words,
tournaments will perform better when the tasks of members of the team are
complements, and joint bonus scheme should be preferred when members are
partial substitutes.

Lazear and Rosen (1981), Holmstrom (1982), Green and Stokey (1983),
and Nalebuff and Stiglitz (1983a) all make the point that there is a benefit
in using tournaments when agents’ output is positively correlated. The same
conclusion arises here, but for a very different reason. Whereas they point
out that tournaments filter shocks that affect all agents similarly, the role
of correlation here is to keep competition among agents close. And close
competition generates higher effort levels when agents can verify the state of
the tournament–Proposition 20.
A question that arises from this observation and is left for future research

is the following. If the compensation scheme affects agents interactions, one
would expect to see cooperative behavior under JPE’s, and little cooperation
under tournaments. Suppose the space of actions is richer so that agents can
choose how much to cooperate. Even though a tournament seems to be a
better scheme under complementarities, the fact of putting in place the tour-
nament should reduce, if not eliminate, such complementarities. Similarly,
under a JPE scheme, substitute agents may start to cooperate and help each
other up to the point that they become complements.
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Figure 1: Correlation and Incentives

4.5 Strategic Considerations in Tournaments

The model set so far also allows to draw some conclusions regarding the
players strategic dynamic interaction. Following the terminology of Bulow,
Genakoplos and Klemperer (1985), when should one expect players to see
their efforts as strategic substitutes or complements? That is, if agents could
monitor each other perfectly, would more aggressive play from one agent–
i.e., choosing effort above the equilibrium level–induce the other to increase
or decrease her choice of effort? Clearly, propositions 18, 20 and 22 imply
that optimal actions are not monotonic with respect to revealed information,
but how are best responses affected by a deviation from the oponent?
I analyze this question by restricting attention to the case where the agent

controls the mean of production and noise is independent of the action. That
is, zi = ai + εi, where the εi’s are i.i.d.

6 zero mean random variables, with
support on (−∞,∞) .7
Agent i is said to regard agent j as a strategic partner (competitor) if

i’s best response to an increase in j’s effort choice is increasing (decreasing)

6i.i.d. stands for independent and identically distributed.
7Assuming full support is not necessary, but avoids consideration of the cases where

the first period determines completely the ranking.
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around equilibrium efforts.8 Consider the problem of agent 1. After observing
∆ = y2 − y1, she will choose a1 as to maximize

Pr {ε1 − ε2 ≥ ∆+ a2 − a1}− c (a1) .

If Ĥ (·) denotes the c.d.f. of ε1 − ε2, condition effort gap and i.i.d. errors,
imply that Ĥ is symmetrically distributed around zero, and its density, ĥ,
has a single peak at zero. The first order condition for agent 1 can be written
as

ĥ (∆+ a2 − a1) = c0 (a1) . (11)

From proposition 20 it follows that equilibrium efforts are a∗1 = a
∗
2 = ψ

³
ĥ (∆)

´
,

where ψ (·) is the inverse of the marginal cost function, that is
ψ (c) = a⇔ c0 (a) = c.

Inspection of the first order condition shows that if ∆ < 0–agent 1 is the
leader–an upwards deviation in 2’s effort will drive the left hand side of
(11) up, and agent 1’s best response would be to increase her level of effort.
Similarly, if ∆ > 0–agent 1 is the laggard–, an upward deviation from 2
will cause 1’s best response to decrease. The result is illustrated in figure 2,
and summarized in the following proposition.

Proposition 23 Suppose the Effort Gap condition holds, and that zi =
ai+ εi, with ε1 and ε2 independent zero mean random variables with support
on (−∞,∞). Then the leader in a tournament will regard her adversary as a
strategic partner, whereas the laggard will regard hers as a strategic competi-
tor. That is, the leader’s (laggard’s) best-response correspondence is upward
(downward) sloping around equilibrium.

The importance of the proposition comes from its implications to settings
where agents observe each other more closely. The result suggests that i)
by deviating upwards, the leader induces the laggard to reduce her effort,
therefore increasing the expected gap between them. ii) If it is the laggard
who attempts to catch-up faster with the leader by deviating upwards, the
leader will respond by increasing her effort, protecting her lead.
Dixit (1987) shows that, if possible, the advantaged player would commit

to exert more effort than she would exert in equilibrium. Consider a Stack-
elberg version of the game. Suppose player 1 is the leader and chooses effort

8Note that, as stated, the condition only looks at strategic complementarities (substi-
tutes) locally.

26



BR1(a2)

BR2(a1)

a1

a2

Leader’s effort

L
ag

ga
rd

’s
 e

ff
or

t

a*

a*

At the equilibrium, the leader’s effort is increasing in laggard’s deviations, whereas 
the laggard’s response is decreasing with respect to leader’s deviations. 

Figure 2: Best Response Correspondences

before player 2. Suppose also that player 2 observes her opponent’s choice.
In this game, player 1 selects a point on 2’s best response correspondence.
Incorporating the fact that player 1 affects 2’s choice, the first order condition
analogous to (11) can be written as

ĥ (∆+ a2 (a1)− a1)− a02 (a1) ĥ (∆+ a2 (a1)− a1) = c0 (a1) .

The second term on the left represents the strategic effect of player 1 ’s
choice of effort. If player 1 has an advantage (∆ < 0) then a02 ≤ 0. Hence
c0 (a1) ≥ ĥ (∆+ a2 (a1)− a1). A similar point can be made when player 1 is
the laggard. In summary, if the leader (laggard) moves first, she will exert
more (less) effort than if both players move simultaneously.
Starting from a symmetric position, agents may then have an incentive

to jump-start, gaining a small advantage initially in the competition. This
point is analyzed below by comparing equilibrium levels of effort with and
without revelation of information.
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4.6 Anticipation and the Role of Information in Tour-
naments

Consider an extended model that includes effort in the first period–i.e.,
the distribution of y also depends on a costly action. Several comparative
static results emerge. For example: when does one expect agents to start
aggressively and slow down later? When will they work harder under no
information?
Suppose now that y responds to agents’ effort in a similar manner as z

does. Specifically, let e = (e1, e2) denote first period’s effort, and

yi = ei + ηi. (12)

Where the ηi’s are i.i.d. random variables that have the same distribution
as the εi’s. Suppose also that effort is equally costly in each period. In other
words, there are two identical periods, and output is additive across periods.
First consider the case of no revealed information after the first period–

that is, agents take decisions about a without knowing y. The effort decision
of each agent can be viewed as a single decision. Letting νi = ηi+ εi, agent’s
i objective can be written as:

Pr {νi − νj ≥ ej − ei + aj − ai}− c (ei)− c (ai) .
Since c00 > 0, it follows that each agent i will find in their benefit to set
ei = ai. Note that (ν1 − ν2) has the same distribution as 2 (ε1 − ε2). Fixing
s2 = a2 + e2, the problem for agent 1 is to choose s, as to maximize

1− Ĥ
µ
s2 − s
2

¶
− 2c (s/2) .

Where, again, Ĥ is the c.d.f. of (ε1 − ε2) .It is readily seen that there is

a symmetric Nash equilibrium where agents chose ei = ai = ψ
³
ĥ(0)
2

´
, for

i = 1, 2. Assume the equilibrium is unique.9

Consider now the case with interim revelation of information. It follows
from (11) that in the second-period’s symmetric Nash equilibrium, effort is

given by a1 (∆) = a2 (∆) = ψ
³
ĥ (∆)

´
, where ∆ = y2 − y1.

In the first period, agent 1’s objective is to maximize the expected value
of the probability of obtaining the prize minus her cost of effort. Given that,
regardless what happens in the first period, a1 = a2 in the second period;

9A sufficient condition would be that
¯̄̄
ĥ0
¯̄̄
< infa 2c

00 (a) .
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the probability of winning the prize for agent 1 is 1− Ĥ (∆). The objective
for agents 1 and 2 can thus be expressed, respectively, as

E
h
1− Ĥ (∆)− c (a1 (∆))

i
− c (e1) ,

E
h
Ĥ (∆)− c (a2 (∆))

i
− c (e2) .

Where expectations are taken with respect to ∆. Noting that ∆ = η2− η1+
e2 − e1; the first order conditions that each agent solves are

c0 (e1) = E
h
ĥ (∆)

i
+E

h
a01 (∆) ĥ (∆)

i
,

c0 (e2) = E
h
ĥ (∆)

i
−E

h
a02 (∆) ĥ (∆)

i
.

It follows from the symmetry assumptions of the problem that the last term
on the right of each equation is zero. To see this, note that ĥ is symmetric
around zero and so is ai (·) . Now, since ai (·) is symmetric, then it must be
that a0i (∆) = −a0i (−∆) , and the whole expected value–which is taken w.r.t.
a symmetric distribution–cancels out.
Summarizing, first period efforts when information is available are given

by

ei = ψ
³
E
h
ĥ (∆)

i´
. (13)

Expected second period efforts satisfy:

E [ai] = E
h
ψ
³
ĥ (∆)

´i
. (14)

Whereas with no information, first and second period efforts are equal and
are given by:

ēi = āi = ψ

Ã
ĥ (0)

2

!
. (15)

Jensen’s inequality provides a direct comparison between first and second
period efforts when information is available. The condition relies on the
convexity of marginal costs, that is on the sign of c000. For example, if c0 is
convex, then first period efforts are higher than expected effort in the second
period. Similar to the notion of prudence in Kimball (1990), the sign of c000

here determines how sensitive is the effort decision to risk.
Comparisons between equilibrium efforts with and without information

depend on the nature of uncertainty. Higher efforts in the no information
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case require that the relative likelihood of observing very small gaps be high.
That is, if the effect of noise is small, there is good chance that competition
will be tight after the first period, and hiding information from agents may
procure better incentives. The results are summarized below.

Proposition 24 Assume the conditions of Proposition 23, and that first pe-
riod output follows (12) . Then, for i = 1, 2
a) If c0 is convex (concave) then ei ≥ (≤)E [ai] .
b) If E

h
ĥ (∆)

i
≥ ĥ(0)

2
(i.e. noise is spread out) then ei ≥ ēi.

c) If E
h
ĥ (∆)

i
≤ ĥ(0)

2
(i.e. uncertainty is concentrated) then ei ≤ ēi.

d) If c0 is convex and uncertainty concentrated, total effort under no infor-
mation is higher than expected total effort under information.
e) If c0 is concave and uncertainty spread out, total effort under no informa-
tion is lower than expected total effort under information.
Where ei and ēi denote first period effort of agent i in the information, and
no information cases respectively. And ai is second period effort of agent i
in the information case.

Proof. a) follows from Jensen’s inequality applied to (13) or (14). A
direct comparison of 13 and 15 imply both b) and c). Finally, d) and e) are
consequences of a), b), and c).
It is hard to convey an economic intuition for the relevance of the sign

of c000 in these comparisons. One explanation is that if the marginal cost of
effort increases very rapidly (c0 convex), then it pays to anticipate and exert
high efforts in the first period. It would be too costly to try to recover in the
second period. Similarly, if the marginal cost of effort does not increase so
rapidly, agents can afford to wait until the second period, and need not be
so preemptive initially.

5 Concluding Remarks

This paper addresses three points that enhance our understanding of a firm’s
choice of compensation scheme. First, it derives the form of contracts that
minimize the cost of providing incentives in static relationships. Second,
common institutional constraints are associated with different forms of op-
timal incentive contracts. Third, the paper investigates how agents adapt
their response to optimal (static) contracts when they have access to interim
information.
I show that different work environments call for different forms of com-

pensation schemes. With no restrictions on the contract space, large bonuses
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that reward only the best possible performance minimize the cost of providing
incentives. Although these contracts would not be possible in practice (they
require infinite payments), approximate versions are found in industries like
sports, music and movies: Top performers receive multi-million dollar sums,
whereas average performances may not be rewarded at all. Less extreme
approximations are found in less popular industries. For example, Zenger
(1992) studying compensation plans in Silicon Valley companies finds that
economic incentives for engineers depend on extreme performances: award-
ing bonuses for top performers, and laying-off under-performers. Corollaries
5 and 6 show that for a principal that faces a limited liability condition, op-
timal contracts with a single agent are similar to those observed by Zenger.
Different conditions result in other commonly used incentive schemes. A
monotonicity condition (on the shares that go to both principal and agent)
gives rise to stock-option plans (Corollary 7). Group rewards are shown
to be effective under team production complementarities (Proposition 11).
However, the most surprising result is the optimality of tournaments under
weak conditions: Proposition 16 shows that with double sided limited liabil-
ity, regardless of production externalities across agents–positive, negative
or none–single prize tournaments are the most efficient way to motivate a
team.
There is a myriad of reasons for why a particular incentive scheme that

is optimal under a simple representation of reality does not perform well in
practice. The multi-task problem introduced by Holmstrom and Milgrom
(1991) alerts us to the fact that as long as contracts fail to include all pos-
sible contingencies, dysfunctional behavior is likely to arise in equilibrium.
Contracts are incomplete. Many contingencies are impossible to foresee or
to contract for; different parties to a contract will seek to use them to their
advantage as events unfold. Therefore, the simple conclusions about choice
of compensation schemes derived from the static model can not tell a com-
plete story. They are useful, no doubt, as long as they be seen as servants
and not masters of contract design.
The paper addresses one dimension of contract incomplteness by study-

ing agents’ response to interim information. Rather than solving for optimal
contracts in this setting (a topic for future research), this study characterizes
agents’ behavior under bonus and tournament schemes, and shows condi-
tions that favor one incentive scheme over another. Propositions 18, 20 and
22 describe the type of dysfunctional behavior that optimal (static) schemes
may induce when agents learn about their performance. Agents exert low
levels of effort when the chance of obtaining the bonus (or prize in a tourna-
ment) becomes either very small, or very high. However, positive results also
emerge from this last part of the analysis. A positive correlation in agents’
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production favors tournament-type schemes over bonuses. The reason for
this is not the standardly assumed one, that tournaments filter out common
shocks. Rather, because outputs are possitively correlated, there is a bet-
ter chance that competition will be close when information is available, and
close competition induces more effort in tournaments. Similarly, a negative
correlation in outputs favors group rewards because aggregate production is
likely to be average, and a joint bonus scheme would induce low levels of
effort when observing very high or very low production signals.
The final results illustrate the type of interaction that one may expect

under a promotion tournament. With only two agents and no production ex-
ternalities, Proposition 23 characterizes the relationship between the leader
and the laggard. The former sees her competitor as a strategic partner;
meaning that the harder the laggard works, the harder she will work also.
On the other hand the laggard has the opposite viewpoint. She regards the
leader as a strategic substitute; that is, if she observes the leader working
harder than equilibrium would predict, she would respond by slowing down.
Similar effects are present in R&D races; a careful analysis of the dynam-
ics of interaction in tournaments is likely to yield promising results, and is
left for future research. Proposition 24 shows that tournaments unravel in
different ways, the reasons for which are quite subtle. First, whether par-
ticipants prefer to start slowly, waiting for information before they adjust
their pace, or whether they would rather act preemptively, trying to win an
early lead, depends on the convexity of marginal costs of effort. Second, the
same proposition sheds some light about the role of information in providing
incentives. By comparing agents’ behavior when they have access to interim
information with the case when they do not, it is shown that the degree of
uncertainty determines the level of incentives. Access to information is better
(induces more effort) when output signals are noisier; that is, if chance plays
an important role in determining outcomes, agents have stronger incentives
when they will be able to know the state of the tournament halfway through.

6 Appendix

Proof. (of proposition 1)It is easy to see that any contract that satisfies
inequalities (ii)’ and (iii), and satisfies (i) with equality is a solution to P. It
suffices then to choose appropriate values for x̃, M and k. I will choose such
values as to make sure that (i) binds and (ii)’ is satisfied, and then show that
if condition 2 holds then (iii) must also hold.
Since fa

f
is continuous and increasing, there is some x̃ such that fa (x̃|a) >
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0 and such that, for all x > x̃,

ū+ c (a) > L+ c0 (a)
f (x|a)
fa (x|a) . (16)

Now define k as

k :=
c0 (a)R x̄

x̃
fa (x|a) dx

.

Finally, define M as

M = ū+ c (a)− k (1− F (x̃|a)) .
By construction, s (x) = M + k1x≥x̃ satisfies (i) with equality, and (ii)’; it
remains to show that it also satisfies (iii) —i.e. that M ≥ L.From 16 and the
definition ofM, (iii) will be satisfied whenever k (1− F (x̃|a)) < c0 (a) f(x̃|a)

fa(x̃|a) .
The proof is completed by noting that:

k (1− F (x̃|a)) =
c0 (a) (1− F (x̃|a))R x̄

x̃
fa (x|a) dx

=
c0 (a) (1− F (x̃|a))R x̄
x̃
fa(x|a)
f(x|a) f (x|a) dx

=
c0 (a)

E
h
fa(x|a)
f(x|a) |a, x ≥ x̃

i
≥ c0 (a)

f (x̄|a)
fa (x̄|a) ,

where the inequality follows from MLRP.
Note that as x̃ ↑ x̄, (1− F (x̃|a)) ↓ 0. However, by construction k depends

on x̃ and k (1− F (x̃|a)) ↓ c0 (a) fa(x̄|a)
f(x̄|a) (monotonicity is due to the MLRP as-

sumption.) This suggests that the condition is also necessary, as proposition
3 shows.

The proof of proposition 3 is presented in two steps. First I show that
any solution must pay the minimum possible transfer for low levels of out-
put. Next, using the first step, the program is transformed as to derive a
characterization of the solution in the high levels of output region.

Claim 25 For almost every x in A = {x : fa (x|a) < 0} , any solution to
problem RP satisfies s (x) = L.
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Proof. By way of contradiction. Suppose that s (·) is a solution with
P {x ∈ A : s (x) > L} > 0.
From the likelihood ratio ordering, there must be some x̂ such that fa (x|a) >
0 iff x > x̂. Then d :=− R x̂

0
[s (x)− L] fa (x|a) dx > 0. Noting that

R x̄
0
fa (x|a) dx =

0, it follows from (ii)’ thatZ x̄

x̂

[s (x)− L] fa (x|a) dx = c0 (a) + d.

Define

ŝ (x) =

(
L+ (s (x)− L) c0(a)

c0(a)+d x /∈ A
L x ∈ A

It follows that s ≥ ŝ with E [s (x) |a] > E [ŝ (x) |a], and ŝ satisfies constraints
(ii)’ and (iii). This contradicts the assumption that s is a solution.
It remains to characterize the solution for x > x̂.
Proof. (of proposition 3) Given the previous claim, the program can be

rewritten as:

min
s(x)

Z x̄

x̂

(s (x)− L) f (x|a) dx

s.t.

Z x̄

x̂

(s (x)− L) fa (x|a) dx = c0 (a)
s (x)− L ≥ 0

And since fa (x|a) > 0 for x > x̂, the change of variable g (x) := (s (x)− L) fa (x|a)
yields the equivalent program

min
s(x)

Z x̄

x̂

g (x)
f (x|a)
fa (x|a)dx (17)

s.t.

Z x̄

x̂

g (x) dx = c0 (a)

g (x) ≥ 0

From the likelihood ratio ordering it follows that f(x|a)
fa(x|a) is decreasing in x.

The program then has a ”trivial” solution: one wants to put all the weight
of g at the extreme point where f(x|a)

fa(x|a) is minimum. Hence, with no further
constraints the solution is to use an impulse function with a mass point of
size c0 (a) at x̄. That is, g (x) = c0 (a) δ (x− x̄) is the solution. That is,
s (x) = L+ c0 (a) δ (x− x̄) /fa (x|a) .
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Proof. (of proposition 11) The principal is minimizing the expected
value of the sum of payments E [

P
Si (x) |a∗] . She can achieve this objective

by minimizing each agent’s expected payment individually. Define g (x) =
(Si (x)− Li)µ (x|a∗) , problem (5) is reduced to solving:

min
g(·)

Z
g (x) dx

subject toZ
g (x)

"X f jai
¡
xj|a∗i , a∗−i

¢
f j
¡
xj|a∗i , a∗−i

¢ # dx1...dxn = c0i (a∗i )
g (x) ≥ 0

As in proposition 3, given no further constraints on the function g (·) , the op-
timum is obtained by concentrating all the weight of g (·) where λi (x, a

∗) =P fjai(xj |a∗)
fj(xj |a∗) is maximum, that is when x ∈ argmaxx λi (x, a∗).

With positive externalities, x̄ = (x̄1, ..., x̄n) ∈ argmaxx λi (x, a∗), whereas
with negative externalities (x̄i, 0) ∈ argmaxx λi (x, a∗) . There are solutions
for these two cases that take the form (respectively) of the following incentive
schemes:

s+i (x) =
c0i (a

∗
i )

µ (x̄|a∗)λi (x̄, a∗)
Y
j

δ (x̄j − xj)

s−i (x) =
c0i (a

∗
i )

µ (x̄i, 0, a∗)λi (x̄i, 0, a∗)
δ (x̄i − xi)

Y
j 6=i

δ (xj)

where δ (·) denotes the Dirac delta function.
The following lemma gives a sufficient condition for the first order ap-

proach to be valid. The condition will simply guarantee concavity of the
problem of each agent given the contract that she faces.

Lemma 26 If agent i is offered a contract of the form

si (x) =
c0i (a

∗
i )

µ (x̂, a∗)λi (x̂, a∗)

Y
j

δ (x̂j − xj) ,

then, if for every ai,

µaiai
¡
x̂|ai, a∗−i

¢
λi (x̂, a

∗) ≤ c00i (ai)
µ (x̂, a∗)
c0i (a

∗
i )

(18)

agent i will choose effort a∗i .
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Proof. Given si, agent i chooses effort as to maximize

E
£
si (x) |ai, a∗−i

¤− ci (ai) = c0i (a
∗
i )

µ (x̂, a∗)λi (x̂, a∗)
µ
¡
x̂|ai, a∗−i

¢− ci (ai)
The first order condition is

c0i (a
∗
i )

µ (x̂, a∗)λi (x̂, a∗)
µai
¡
x̂|ai, a∗−i

¢
= c0i (ai)

Noting that

µai (x̂|a) = µ (x̂|a)λi (x̂, a)

it follows straightforwardly that the first order condition is satisfied at ai =
a∗i . Differentiating the F.O.C. wrt ai, it follows that the agent’s objective is
concave iff 18 holds.

Proof. (of proposition 14)Consider the problem of inducing effort a∗1 for
agent 1. The principal sets a prize B that will be awarded to the agent with
the highest signal between x1 and x2, if the signal is above m. Assume agent
2 exerts effort a∗2. When exerting effort a, agent 1 will win the contest with
probability

R x̄
m
F 2 (x|a, a∗2) f1 (x|a, a∗2) dx. Therefore she will try to maximize

B

Z x̄

m

F 2 (x|a, a∗2) f1 (x|a, a∗2) dx− c (a)

The first order condition for this problem is10:

c0 (a) =

Z x̄

m

BF 2a1 (x|a, a∗2) f1 (x|a, a∗2) dx

+

Z x̄

m

BF 2 (x|a, a∗2) f1a1 (x|a, a∗2) dx

= B

Z x̄

m

·Z x

0

f2a1 (y|a, a∗2) dy
¸
f1 (x|a, a∗2) dx

+

Z x̄

m

BF 2 (x|a, a∗2) f1a1 (x|a, a∗2) dx

10The notation a ∨ b is used to denote max (a, b) . Similarly a ∧ b may be used for
min (a, b) .
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Changing the order of integrals, and manipulating a little, we get

c0 (a) = B

Z x̄

0

·Z x̄

m∨y
f1 (x|a, a∗2) dx

¸
f2a1 (y|a, a∗2) dy

+

Z x̄

m

BF 2 (x|a, a∗2) f1a1 (x|a, a∗2) dx

=

Z x̄

0

B
£
1− F 1 (m ∨ x|a, a∗2)

¤
f2a1 (x|a, a∗2) dx

+

Z x̄

m

BF 2 (x|a, a∗2) f1a1 (x|a, a∗2) dx

=

Z x̄

m

BF 2 (x|a, a∗2)
f1a1 (x|a, a∗2)
f1 (x|a, a∗2)

f1 (x|a, a∗2) dx

−
Z x̄

0

BF 1 (m ∨ x|a, a∗2)
f2a1 (x|a, a∗2)
f2 (x|a, a∗2)

f2 (x|a, a∗2) dx

Then, for the first order condition to hold at a∗, it follows that

B = c0 (a∗1)
·Z x̄

m

F 2 (x|a∗) f
1
a1
(x|a∗)

f1 (x|a∗) f
1 (x|a∗) dx (19)

−
Z x̄

0

F 1 (m ∨ x|a∗) f2a1 (x|a∗) dx
¸
.−1

And note that the cost of the tournament is given by

B
£
1− F 1 (m|a∗)F 2 (m|a∗)¤ .

Consider the case of positive externalities. Noting that
f1a1
f1
is increasing, andR x̄

m
F 2 (x|a∗) f1 (x|a∗) dx

1− F 1 (m|a∗)F 2 (m|a∗) = Pr {x1 ≥ x2|max (x1, x2) ≥ m} =
1

2
,
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it follows that

B
£
1− F 1 (m|a∗)F 2 (m|a∗)¤

= c0 (a∗)

R x̄m F 2 (x|a∗) f1a1 (x|a∗)f1(x|a∗) f
1 (x|a∗) dx

1− F 1 (m|a∗)F 2 (m|a∗)

−
R x̄
0
F 1 (m ∨ x|a∗) f2a1 (x|a∗) dx
1− F 1 (m|a∗)F 2 (m|a∗)

#−1

≥ c0 (a∗)

"
f1a1 (x̄|a∗)
f1 (x̄|a∗)

ÃR x̄
m
F 2 (x|a∗) f1 (x|a∗) dx

1− F 1 (m|a∗)F 2 (m|a∗)

!#−1

= 2c0 (a∗)
·
f1a1 (x̄|a∗)
f1 (x̄|a∗)

¸−1
The inequality follows because the second integral above is positive (due to
positive externalities). Noting that the last expression is equivalent to (7)
for two symmetric agents, the first result follows.
For the case of negative externalities, it suffices to show that tournaments
can sometimes implement effort a∗ at a smaller cost than individual bonuses.
The next example takes care of this case.

Example 27 An easy way to construct a family of ordered distributions is to
take convex combinations of a good distribution f (·) and a ’bad’ distribution
g (·) . For i ∈ {1, 2} , j = 3− i, suppose that

f i (x|a) = 1

2
(aif + (1− ai) g) + 1

2
(ajg + (1− aj) f) .

That is, one agent’s effort has a positive effect over her own signal and a
negative effect over the other agent’s signal (negative externalities). Let c
be positive, increasing and convex with c0 (1) sufficiently large. Note that for
ai = aj,

f i (x|a, a) = f j (x|a, a) = 1

2
(f + g) , and

f iai (x|a) =
1

2
(f − g) = −f iaj (x|a)

Now, from 7, it follows that the cost of implementing effort a∗ = (a, a) through
individual bonuses is:

CIPE (a) =
c0 (a)
2

f (x̄) + g (x̄)

f (x̄)− g (x̄)
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Letting f (x) = 1
2
+x and g (x) = 3

2
−x for x ∈ [0, 1] ; it follows that f ºLR g,

and (f + g) /2 is the uniform distribution. Therefore CIPE (a) = c0 (a) .
Consider now the cost of implementing a∗ via a tournament (m = 0). The
cost is given by 19 and can be expressed in this case as

CT (a) = c0 (a)
Z 1

0

x [f (x)− g (x)] dx

=
c0 (a)
6

Which shows that under negative externalities, tournaments can outperform
IPE schemes in providing cheap incentives.

The following two lemmas will be used in the proof of proposition 16.
First, it will be convenient to introduce some notation.
Given x ∈ Rn, and π a permutation of {1, ..., n} , define xπ = ¡xπ(1), ..., xπ(n)¢ .

Definition 28 A compensation scheme s : Rn → Rn is said to be symmetric
if for all i, sπ(i) (x

π) = si (x) .

Lemma 29 The set of solutions to problem 9 is convex

Proof. Given a∗, suppose that s and ŝ solve 9. For α ∈ (0, 1) , it is clear
that s̃ = αs+(1− α) ŝ attains the same value of the objective function. It is
also straight forward to show that it satisfies all the liability constraints. To
show that it satisfies the first-order incentive constraints it suffices to note
that 4 can be written as:

E [si (x)λi (x, a
∗) |a∗] = c0i (a∗i ) .

Hence, if s and ŝ satisfy such constraints, αs + (1− α) ŝ will also satisfy
them.

Lemma 30 For a team of symmetric agents, if there exists a solution to
9, then there exists a symmetric solution. Moreover, any solution can be
associated with a particular symmetric solution.

Proof. Suppose s is a solution to 9. From the symmetry assumption it
is clear that for any permutation π, the payment rule sπ defined by:

sπi (x) := sπ(i) (x
π)
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is also a solution —that is, changing the order of agents has no effect given
team symmetry.
Consider all possible permutations of {1, ..., n} and denote them as {πk}k=1,...,n! .
From lemma 29 it follows that s∗ = 1

n!

P
k s

πk must solve 9. Moreover s∗ is
symmetric since, given a permutation ρ,

s∗ρ(i) (x
ρ) =

1

n!

X
k

sπkρ(i) (x
ρ)

=
1

n!

X
k

sπk(ρ(i))
¡
xπk(ρ)

¢
=

1

n!

X
k

sπk(i) (x
πk) = s∗i (x)

where the next to last equality follows from the fact that the πk’s visit all
possible permutations, hence it makes no difference to start from ρ than from
the original positions.
Proof. of proposition 16 I will show that in any solution problem (9),

with probability 1, at most one agent receives a payment above the minimum.
There is no loss of generality in assuming Li = 0 for all i.
Suppose {s∗i (·)}i=1,...,n is a solution. Define Ai = {x : s∗i > Li} . By way

of contradiction, suppose that for some i 6= j, Aij = Ai ∩ Aj has positive
measure: Pr (Aij) > 0. From lemma (30) it suffices to restrict attention to
symmetric solutions; assume s∗ to be symmetric.
Define mi,mj as the marginal incentive power for i and j in Aij, that is:

mi :=

Z
Aij

s∗i (x)µ (x|a∗)λi (x, a∗) dx1...dxn.

By the symmetry assumption and symmetry of the solution, it follows that
mi = mj. Define payment schedules ŝ

α as follows: for k /∈ {i, j} , ŝαk = s∗k,
and

¡
ŝαi (x) , ŝ

α
j (x)

¢
=


¡
s∗i (x) , s

∗
j (x)

¢
if x /∈ Aij

α
¡
s∗i (x) + s

∗
j (x) , 0

¢
if x ∈ Aij,λi (x, a∗) ≥ λj (x, a

∗)
α
¡
0, s∗i (x) + s

∗
j (x)

¢
other

Note that ŝ is also symmetric. Let B denote the set of realizations x that
are more informative about i’s effort level than about j’s. That is

B := {x : λi (x, a∗) ≥ λj (x, a
∗)} .
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Note that, for α = 1, the marginal incentive power for i and j on Aij is
greater under ŝ1 than under s∗. Dropping arguments and writing dx for
dx1...dxn, this can be seen as follows:Z

Aij

¡
ŝ1iλi + ŝ

1
jλj
¢
µdx

=

Z
Aij∩B

¡
s∗i + s

∗
j

¢
λiµdx+

Z
Aij∩Bc

¡
s∗i + s

∗
j

¢
λjµdx

≥
Z
Aij

s∗iλiµdx+
Z
Aij

s∗jλjµdx = mi +mj. (20)

The inequality follows from the definition of B. By symmetry, it must be
that each agent’s incentive power is greater under ŝ than under s∗. Therefore,
there is some α ∈ [0, 1] such thatZ

Aij

¡
ŝαi λi + ŝ

α
j λj
¢
µdx = mi +mj.

Noting that ŝα satisfies all the constraints and improves the objective function
of (9) , it follows that if α < 1, s∗ could not be a solution which would
conclude the proof.
Fixing x−i, note that, from the low positive externalities assumptions, there is
at most one value of xi that satisfies λi (x−i, xi, a∗) = λj (x−i, xi, a∗) . Hence
the set {x : λi (x, a∗) = λj (x, a

∗)} has measure zero, and the inequality in
(20) is strict —which implies α < 1.
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