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Abstract 
 
We show the equivalence of using correspondence analysis of concatenated tables and a 
particular algorithm of conjoint analysis named categorical conjoint measurement. The 
connection is made using canonical correlation. However, although we have proved that 
equivalence, the standard practice of conjoint analyses to focus in one dimension (the 
optimal solution) has some shortcomings once we introduce interaction effects. In that case, 
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essences and strength of essences are shown. 
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A comparison between correspon-
dence analysis and categorical con-
joint measurement.

INTRODUCTION

Carroll and Green (1995) recognize the active role of the psycho-
metric methods in the advancement of marketing research techniques.
However they alert about a lack of critical comparison among competing
techniques. Some works try to solve these limitations. For example, Tor-
res and Greenacre (2002) make the extension of correspondence analysis,
to treat preference data (rank order, paired comparisons and rating data)
and establish the equivalence with the results of dual scaling. Also, the
former authors state that researchers should work to give clear positions
about the best technique in each particular problem situation. Also they
should give a critical view of the �added value� of each approach from
a practical point of view. For example, in the aforementioned work of
Torres and Greenacre (2002), correspondence analysis is shown to be a
superior technique due to the map it offers.
The present work follows this line of research and tries to clarify the

relationship between correspondence analysis (Benzécri, J.P. et al 1973)
and a special algorithm of conjoint analysis named categorical conjoint
measurement (Carroll 1969, Rao; V.R. 1977; Green, P.E. & Rao, V.
1971). This analysis corresponds to a full proÞle data collection and a
rating scale measurement of respondent judgments. Furthermore, follow-
ing Green & Wind (1972) we also make the extension of the techniques
to include interaction effects. They are relevant, specially in marketing
research studies that involve sensory phenomena (Carmone & Green,
1981).
We present correspondence analysis as better alternative for man-

agers to see in an easy and faster way the preference structure in com-
parison with the preference scheme obtained through conjoint analysis,
which is based on comparing optimal values. This idea relies in the
superiority of perceptual mapping techniques (see for example, Hauser
& Koppelman, 1979). The improvement is specially important when
interaction effects are included. We will discuss it in following sections.
Our paper introduces a brief description of canonical correlation anal-

ysis (CC). This is useful as an intermediate stage, since the equivalence
between CCM and CC is already shown (Carroll 1969). The equivalence
between CC and CA has been shown for the particular case where there
is one attribute being related to preference (see, for example, Greenacre
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1984, chap.4). We inspect what happens when two or more attributes
are being related to preference and Þnally we compare the results ob-
tained from the analysis of the data using CCM, CC and CA. Then, we
introduce the objective function of CCM followed by the CA as well as
the way to code the data so that CA can treat interactions effects. We
repeat the operation with CC as well as with CCM to demonstrate the
equivalence empirically.
The results of our study are illustrated with an application. Green

& Wind (1972) point out that a relevant interaction effect between type
of fragrance and the intensity of fragrance, for soaps, could exist. We
borrow this idea and we repeat the analysis for perfumes. Marketing
researchers2, shop assistants3 and other sources4 suggest that the size of
the bottle should be the third factor to consider in this analysis, where
price and brand are excluded since they are more related with image
than to the evaluation of an essence. Considering this information as
well as relevant conjoint literature (Wittink, 1999) we decide to include
the three following attributes with their particular levels. Type of fra-
grance (4 levels), intensity of fragrance (2 levels) and size of the bottle (3
levels). The Dictionary of Essences, that contains the description of the
composition of each perfume, allows us to construct a sample of brands
according to the pure essences (ßoral, citric, leather and oriental) and
to differentiate between high and low intensity fragrances.
For collecting the data, we used face-to-face interviewing, differen-

tiating by age, randomly presenting to each woman one brand for each
combination of attributes (type and intensity on fragrance and size of
bottle). They evaluated the item on a scale that goes from A: very high
worth, to D: very low worth. To ensure independency in each choice,
between each presentation some coffee was smelt. We start with the
analysis of one subject who is 30 years old to demonstrate the equiv-
alence between the different techniques with and without interaction
effects. Since age determines preferences over perfumes, we also report
the results for a group of three women, the 30 years old as well as a 17
and 55 years old.

DATA MATRIX

To describe the data matrix to be analyzed, we take the same nota-
tion than Carroll (1969) and Greenacre (1984). The data matrix is made
up of a matrix Z1 of dummy variables representing the full proÞle (i.e.,

2Millward Brown and Hamilton Consulting.
3Xaloc in Blanes, Gala Perfumeries in Mataró Parc and Body Bell, Getafe.
4�Diccionario de las fragancias, 2002�, www.perfumedia.com and

www.todofragancias.com
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the matrix has M rows, where M ≡ QQ
q=1mq: number of all the possi-

ble combinations of the attribute levels, and
P

qmq columns, where mq:
stands for the number of levels for the attribute q where q = 1, ..., Q) and
another matrix Z2 of dummy variables indicating one subject�s prefer-
ences for each combination (i.e., the matrix hasM rows and K columns,
where K : number of response categories where k = 1, ....., K).
The description of our application is the following. We have three

attributes (Q = 3), which are:
1.Type of fragrance, where m1 = 4, with levels: C: citric (orange,

lemon, mandarin), F: ßoral (petals, blade), O: oriental (balsam, oriental
essence, vanilla) and L: leather (leather, smoked, wood, virgina tabacco).

2. Intensity of fragrance, where m2 = 2, with levels: Hi: high inten-
sity and Li: low intensity.

3. Size of the bottle, where m3 = 3, with levels: S1: small (30cl), S2:
medium (50cl) and S3: large (100cl).
The number of attribute combinations is M = 4 × 2× 3 = 24. The

response has K = 4 categories: A: very high worth; B: just high worth;
C: just low worth; D: very low worth. The matrices Z1 and Z2 are 24×9
and 24× 4 respectively.

METHODS

Canonical Correlation (CC)

The geometry of canonical correlation is given by Greenacre (1984,
section 4.4) and also its relationship to the geometry of the correspon-
dence analysis of an indicator matrix, for the classical case where two
categorical variables are treated. As we noted before, since categori-
cal conjoint analysis can be applied to more than two attributes, the
equivalence between this technique and the correspondence analysis of
an indicator matrix, via canonical correlation, is not obvious. We will
describe the basic geometry of CC and we will introduce the new deÞ-
nitions and operations that will let us establish the connection.
The objective of CC is to Þnd the strongest linear relationships be-

tween two sets of variables. If Z1 and Z2 are the data matrices corre-
sponding to the two sets of variables, this objective can be expressed
formally as Þnding linear combinations Z1a and Z2b, which have maxi-
mum correlation ρ :

ρ = (aTS12b)/((aTS11a)(bTS22b))1/2 (1)

where S12 is the covariance matrix between Z1 and Z2, and S11 and S22

are the covariance matrices of Z1 and Z2 respectively.
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The vectors ak and bk of canonical weights can be obtained from the
left and right singular vectors of the matrix S

−1/2
11 S12S

−1/2
22 (see, for exam-

ple, Greenacre 1984). The singular value decomposition (SVD) (Eckart
& Young, 1936) of the matrix is:

S
−1/2
11 S12S

−1/2
22 = UDρV

T with UTU = VTV = I. (2)

where Dρ is a diagonal matrix with the canonical correlations in the
diagonal, U and V are the matrices of left and right singular vectors.
The matrices of canonical weights are:

A = S
−1/2
11 U and B = S

−1/2
22 V (3)

The standardization of the singular vectors of U and V to be orthonor-
mal as in (2) implies that A and B are standardized as follows:

ATS11A = BTS22B = I (4)

Centering is not a necessary condition in canonical correlation but we
apply it to be able to compare the results with the correspondence analy-
sis ones (see Greenacre, 1984 for the case of 2 variables). We will develop
it deeper in following sections.
The centering condition, for each one of the attributes, and for each

dimension, takes the form:

rTa = 0 (5)

The centering condition for the response category variable, in each
dimension is:

cTb = 0 (6)

where r and c are the masses (weights) for the attributes and the re-
sponse categories respectively. They are deÞned as the total frequencies
for the particular level, with respect to the grand total of the data matrix
(Greenacre, 1984).
When an indicator matrix is analyzed, S11 and S22 are singular ma-

trices, which implies that they cannot be inverted. To be able to do our
computations, one level for each attribute and one response category
have to be omitted, usually the last level in each case. This operation
lets us estimate the canonical weights, as we describe in the next section.
The notation for the estimated vector of canonical weights without the
last level will be: a∗,b∗.
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Categorical conjoint measurement (CCM)

Carroll (1969) shows that the problem of CCM could be Þtted via
a special case of canonical correlation analysis in which one set of vari-
ables corresponds to a factorial design matrix representing the conjoint
structure (these variables are encoded as binary variables that indicate
the attribute levels possessed by each stimulus) and the second set of
variables provides an analogous dummy variable encoding of the depen-
dent variable (a variable deÞning preferences for the particular stimulus)
(Lattin, Carroll, and Green (2003)). Then the CCM objective is to Þnd
an additive combination of scale values for the attribute levels Z1a max-
imally correlated with the response category values Z2b assigned to each
combination, where b is the vector that collects the optimal scale val-
ues for the categories of the response variable, and a is the vector with
the optimal scale values for all

P
qmq levels of the attributes. Further,

Carroll (1969) shows the equivalence between applying canonical corre-
lation analysis in this special case and the following formulation which
is the one we will use to show the equivalence between CCM and CA.
He deÞnes:

sq,jq,k ≡
r

mq

nkM
(nq,jq,k −

nk
mq

) (7)

where nq,jq,k ≡ number of times kth response category occurs with jthq
level of attribute q and nk ≡ total number of times kth response category
value occurs (k = 1, ..., K).
Let Sq be the mq ×K matrix whose general entry is sq,jq ,k. DeÞne

the K ×K matrix R as:

R =

QX
q=1

STq Sq (8)

The eigenvalue decomposition of this squared data matrix takes the form:

R = VDλV
T with VTV = I (9)

whereDλ is a diagonal matrix with the eigenvalues in the main diagonal.
Then the optimal scale values for the category responses b, are obtained
from the Þrst eigenvector as follows:

b =
v1√
nk

(10)

Carroll (1969) does not specify the standardization condition, to deÞne
the solution, for the optimal response scale values, but we can deduce it
from the previous expressions (9) and (10). It is,

bTDnk
b =1 (11)
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whereDnk
is a diagonal matrix with the category level totals in the main

diagonal.
Notice that each attribute is initially treated separately, then com-

bined in the matrix R, which is decomposed in order to Þnd scale values
for the response categories. He does not expose explicitly how to recover
the optimal solution for the levels of the different attributes, which is
not obvious from the particular formulation he is using.
The centering condition is not speciÞed in Carroll (1969) but it is

applied in the Rao�s (1977) application. It is:
Category response:

McTb = 0 (12)

Correspondence analysis (CA)

Correspondence analysis is a descriptive statistical technique that
explains the association between the levels of different categorical vari-
ables. The overall association is quantiÞed by the chi-squared statistic
divided by n++ (the total number of cases), i.e. χ2/n++, called the total
inertia:

χ2

n++

=
1

n++

JX
j=1

KX
k=1

(njk − nj+n+k/n++)2

(nj+n+k/n++)
(13)

where njk is the number of cases in a particular cell, nj+ the row total,
n+k the column total and n++ is the grand total.
The row and column coordinates, with respect to their respective

principal axes, may be obtained from the singular value decomposition
(SVD) of the matrix N = (njk), transformed by double-centering and
standardizing:

D−1/2
r [(1/n++)N− rcT ]D−1/2

c = UDαVT , with UTU = VTV = I.
(14)

whereDr andDc are diagonal matrices with the row and columnmasses,
respectively, in their main diagonal (see, for example, Greenacre (1984)).
The squares of the singular values are the principal inertias or eigenval-
ues: D2

α= Dλ.
Greenacre (1984) shows that, for the particular case where Q = 1,

the CC analysis of the data matrix [Z1|Z2] gives the same results than
the CA of a contingency table, recovered from the transformation: ZT1 Z2.
In our particular case, where Q > 1, the previous transformation gives
a concatenated table (Greenacre & Blasius, 1994). It is composed by Q
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stacked tables, one for each attribute, where the number of rows are the
levels of the particular attribute, mq, and the number of columns, K,
corresponds to the levels of the category response variable.
Given the duality that characterizes correspondence analysis (Greenacre,

1984), the coordinates for rows and columns, are related in the following
way:
1. Row problem. The rows will be the points projected in a map

interpreted in terms of the columns as reference points. Row proÞles
(Greenacre, 1984), will be represented by principal coordinates, which
take the form:

F = D−1/2
r UDα (15)

and will be expressed with respect to the column vertices (Greenacre,
1984) or standard coordinates, which take the form:

B = D−1/2
c V (16)

2. Column problem. The columns will be the points projected in a
map interpreted in terms of the rows as reference points. Column proÞles
will be represented by the principal coordinates, which take the form:

G = D−1/2
c VDα (17)

and will be expressed with respect to the row vertices or standard coor-
dinates, which take the form:

A = D−1/2
r U (18)

In our illustration, since rows (levels of the attributes) are projected
in the map and expressed with respect to the columns (levels of the
category response variable), the relevant expressions to consider are the
(15) and the (16).
Centering is a necessary condition given the geometry of correspon-

dence analysis (Greenacre, 1984). It takes the following form:

rTA = cTB = 0 (19)

The standardization conditions, which determine the solutions, are
the following:
Standard coordinates:

ATDrA = BTDcB = I. (20)

Principal coordinates:

FTDrF = GTDcG = Dλ. (21)
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Once we have described the main idea behind the three techniques,
the relationship between them is determined by the data matrices ana-
lyzed in each case as well as their centering and standardization condi-
tions to deÞne the solutions.

RELATIONSHIPS BETWEEN THE TECHNIQUES

CA of a concatenated table and its connection with CC

In the simpler case when Q = 1, one level is omitted from the Þrst set
of dummy variables and one from the second set in order to estimate the
canonical weights. Greenacre (1984) then shows how the CA standard
coordinates can be obtained from the canonical weights by imposing the
centering conditions of CA, using row and column masses. In the present
case where Q > 1, the matrix ZT1 Z2 is not a single crosstabulation but a
concatenated set of crosstabulations. We again impose the CA conditions
on the canonical weights to recover the standard coordinates for the
categories and we impose the CA condition to each one of the attributes,
to recover the principal coordinates for their levels. We shall check that
the coordinates thus obtained are identical to the ones obtained in the
correspondence analysis of the concatenated table ZT1 Z2.
If we have omitted the last attribute level dummy and last response

category dummy, then canonical correlation analysis gives solutions, for
each dimension, of the following form. For the attributes, we have,
a∗q = [a∗q,1....a

∗
q,mq−1 0]T for q = 1, ....., Q and for the category response

variable, we have, b∗ = [b∗1...b
∗
K−1 0]T .

The CA results, for each dimension, are obtained from these, as
follows (see Greenacre 1984, chap. 4, p. 122). For the attributes q =
1, ....., Q, we recover the coordinate of the omitted level and add it to
the others as follows:

amq = −Pmq−1
j=1 rq,jqa

∗
q,jq

aq,jq = a∗q,jq + aq,mq for j = 1, ....,mq
(22)

where rq,jq is the proportion of cases for level jq of attribute q. In
this particular case, because data on the full proÞle are collected, rq,jq =

1

mq ×Q, which is constant for all jq. For the response category variable,
we have:

bK = −
K−1X
k=1

ckb
∗
k bk = b∗k + bK (23)

10



for k = 1, .......,K, where ck is the proportion of cases for response cat-
egory k, in this case, ck =

nk
M
.

To illustrate this equivalence between CC and CA, we analyze the
perfumes data by CC obtaining the following optimal canonical weights
for the response category (we use the STATA software):
b∗A = 2.8248, b∗B = 1.9173 and b∗C = 1.5765.
From (23), the recovered values are the following:
bA = 1.5468, bB = 0.6392, bC = 0.2985 and bD = −1.2780
To Þnd the relationship between them, we ran the SimCA program

(Greenacre 1986) to get the CA standard coordinates. The values for
the Þrst principal axis are: bA : 1.580, bB : 0.652, bC : 0.306, bD : −1.306.
The values agree with those recovered from CC once the correction fac-

tor

r
M − 1

M
=

r
23

24
is applied, due to the computation of unbiased

variances in CC.
The canonical weights for the attributes are the following:

Type of essences: a∗C = 1.0362, a∗F = 2.26044, a∗O = 1.6831, strength:
a∗Hi = −0.4149, and size of the bottle: a∗S1 = 1.1076, a∗S2 = 0.3807.
From (22), we recover the values to be compared with CA: Type

of essences: aL = −1.2449, aC = −0.2087, aF = 1.0155, aO = 0.4382,
strength: aLi = 0.2075, aHi = −0.2075 and size of the bottle: aS3 =
−0.4961, aS2 = −0.1154, aS1 = 0.6115.
The standard coordinates in CA for the attributes are the follow-

ing: Type of essences: aC = −0.3695, aF = 1.7967, aO = 0.7752, aL =
−2.2024, strength: aHi = −0.3674, aLi = 0.3674 and size of the bottle:
aS1 = 1.0810, aS2 = −0.2039, aS3 = −0.8771.
The values agree with those recovered from CC once the correction

factor

r
M − 1

M ×Q =

r
23

24× 3
is applied.

Then, CC (CCMwhen it is treated as CC) and CA are equivalent, of-
fering the same preference structure, even when more than one attribute
is included in the analysis.

Equivalence between CCM and CA

So far, we have established the relationship between CA of concate-
nated tables and canonical correlation analysis where one set of variables
is composed of several categorical variables. Since Carroll (1969) pro-
poses an alternative formulation for CCM, with respect to CC analysis,
we now look at the relationship between Carroll�s CCM and CA, show-
ing that there are simple scaling factor differences in the eigenvalues
(principal inertias in CA) and the response category scores (standard
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coordinates in CA). We show these relationships by detailing the CCM
and CA theory in parallel.

1. Relationship between the eigenvalues.
In categorical conjoint measurement, Carroll (1969) deÞnes the gen-

eral element of the data matrix S as,

sq,jq,k ≡
r

mq

nkM
(nq,jq,k −

nk
mq

)

In correspondence analysis, from (14) the centered and standardized
matrix T has as general element,

tq,jq ,k =

(
nq,jq ,k
QM

− 1

Qmq
× nk
M

)r
1

Qmq
×

r
nk
M

=
1

QM
×
√
Q
√
mq

√
M√

nk
× (nq,jq ,k −

nk
mq

)

=

√
mq√

Q
√
M
√
nk
× (nq,jq,k −

nk
mq

)

=
1√
Q
×

r
mq

Mnk
× (nq,jq ,k −

nk
mq

)

Thus, there is only a scaling factor equal to
1√
Q
, linking the two

approaches, where Q is the number of attributes.
In both cases we calculate a square symmetric matrix (notice that in

order to calculate the SVD of the rectangular form of the CA matrix, T,
a square matrixTTT is computed and decomposed using eigenvalues and
eigenvectors). For the case of CCM, the data matrix is R =

PQ
q=1 STq Sq,

while in the case of CA, it is TTT =
1

Q
R, which give the following

relationship:

1

Q
λCCM = λCA (24)

where λCCM and λCA are the vectors of eigenvalues obtained applying
CCM and CA respectively. Thus the principal inertias in CA are equal
to the eigenvalues from CCM divided by Q.
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Since the inertia of a concatenated table is the average of the inertias
of the individual tables (Greenacre 1994), the total variance in CCM is
just the sum of the inertias of the Q tables.
2. Relationship between the coordinates.
Since the column mass is ck =

nk
M
, it follows from (16) that the l-th

column of B in CA is bl =

√
M√
nk

vl. If we rearrange the terms, it can

be expressed as
√
nk

bl√
M

= vl. Hence from (10),
bl√
M
are the response

category scores in CCM.
Thus the response category scores obtained by CCM are the same as

the standard coordinates obtained when we apply CA to the concate-

nated table but rescaled by the factor
1√
M
.

We corroborate the described equivalences with an illustration. Since
conjoint algorithms are focus in the optimal dimension, we compare the
values for this Þrst dimension.
Response categories.
CA standard coordinates: bA : 1.580, bB : 0.6520, bC : 0.3058, bD :

−1.3061
CCM optimal scores: bA : 0.3225, bB : 0.1331, bC : 0.0624, bD :

−0.2666, where the scaling factor is equal to
1√
M

=
1

24
.

As we indicate previously, Carroll (1969) does not offer explicitly the
formulation to Þnd the optimal solution for the levels of the attributes.
To solve this limitation, we make reference to Rao�s (1977) application,
where we realize that the CCM coordinates for the levels of the attributes
are the same than the CA principal coordinates, once the previously

derived rescaling factor,
1√
M
, is applied. We should expect to Þnd a

relationship equal to
1√

M ×Q , due to differences in the grand totals of
the analyzed data matrices, but the relationship between the eigenvalues
provokes this small change. We also have to say that this Þnding is
quite surprising since, CCM does not deÞne or differentiate between
standard and principal coordinates. At the same time, the introduction
of this concept suppose an improvement since, it makes the values of the
attributes and the category responses, directly comparable.
For the eigenvalues, the values obtained are the following (we take

the Þrst dimension, which is the one CCM considers): CA: 0.22169 and
CCM: 0.6650. It let us to corroborate that the two sets of eigenvalues
differ by a factor of 3, which is the number of attributes, Q.
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INTERACTION EFFECTS

At this point, the analysis offer, for a particular subject, the evalu-
ation for each attribute separately. But when a subject has to evaluate
attributes like type of fragrance and intensity of fragrance referring to
a perfume, it may be possible that a combination of two variables gen-
erates a value, which differs from the expected if interaction effects do
not exist, changing its position with respect to the category response
variable. An example could be a subject who normally prefers perfumes
with low intensity but, for a particular fragrance, she can prefer per-
fumes with a high intensity. The described effect can be collected with
the inclusion of interaction effects.
As noted previously, Green & Wind (1972), in a similar applied con-

text than the one we are treating, point out as future research the pos-
sibility to introduce interaction terms explicitly in categorical conjoint
measurement. In one hand, relevant literature recognizes that CCM can
be understood as a special case of CC, and CC is able to treat interac-
tion effects. Then, one alternative to estimate interaction effects can be
applying CC, and keeping the Þrst dimension as the optimal solution.
In that cases, the researchers check the relevance of interaction effects
comparing the estimated utility levels for one attribute with respect the
preferences of the levels for the other attribute, such that changes in pat-
terns indicate the relevance of interaction effects (Green & Wind, 1972).
On the other hand, since we have already prooved that CCM is equiva-
lent to CA, we can also codify the data in CA such that the technique
is able to treat interaction effects. This alternative is presented as a
better option, for the treatment of the interacction effects, since CA is a
visual technique, which let us to visualize the �total effects� (main plus
differentials) as levels, in the same space than the �main� effects. It lets
to the researcher to compare the values and to conclude if interactions
are improving the description of the data, or not. The other attributes
included in the analysis are also displayed in the same space, making the
interpretation, with respect to the preference variable, more complete.
CA offers other beneÞts and it is the level of information we can ask

to it. For this purpose, we offer two different formats of concatenated
tables. Firstly, the description of preferences for a single subject and
secondly, the description of preferences of a small set of subjects, where
all the preferences related to each level for each one of the attributes are
plotted (e.g., three subjects, represented by three stacked concatenated
tables plus one more collecting the mean).

Study design
From the cited interviews, we realize that the variable age determines
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preferences over perfumes. Then, we elaborate two analysis, which differ
from the number of women analyzed as well as their ages. The Þrst
study describes preferences of a woman who is 30 years old. The data
corresponds to the one previously used to check the equivalence between
the techniques. The second one includes the previous woman and two
women more who are 17 and 55 years old.
The new variable, which collects the joint effect of type and inten-

sity of fragrance, has the following levels: Ch: citric fragrance with a
high intensity, Cl: citric fragrance with a low intensity, Fh: ßoral fra-
grance with a high intensity, Fl: ßoral fragrance with a low intensity,
Oh: oriental fragrance with a high intensity, Ol: oriental fragrance with
a low intensity, Lh: leather fragrance with high intensity and Ll: leather
fragrance with low intensity.
The �Diccionario de las fragancias, 2002�, which speciÞes the com-

position for all perfumes, let us to choose a sample of brands for our
experiment. The particular brands are the following: Citric-low essence:
Emporio-armani white, citric-high essence: O de Lancôme, leather-low
essence: Nu of YvesSainLaurent, leather-high essence: Truth of Calvin
Klein, ßoral-high essence: Trésor of Lancôme, ßoral-low essence: Gucci
Envy, oriental-high essence: Opium of YvesSainLaurent, and oriental-low
essence: EmporioElla of Armani.

Correspondence analysis results

Analysis including interaction effects: one subject.
The results of this analysis appear in the appendix. The new variable,

�type of fragrance × intensity of fragrance� has 8 levels, labelled in
the previous section. Once more we codify the data as a concatenated
table, that includes two active variables with their levels: the interaction
variable (type of fragrance × intensity of fragrance) and the size of the
bottle. Original variables (type of fragrance and intensity of fragrance)
are added as supplementary points. Geometrically, these supplementary
points are centroids of the interactions and have zero mass so as not to
repeat information.
We are going to compare the total inertia with and without interac-

tions, to be able to justify the inclusion of the interaction terms: Inertia
without interactions = 0.2750 and the inertia with interactions = 0.7694.
Then, with the introduction of the interaction effects, we get an inertia
more than doubled. We can interpret the results from Þgure 1.
When we analyze data characterized to have a response variable

which is ordinal, is usual to Þnd the �arch� or �horseshoe� effect (Greenacre
1984). Some authors, like Hill, M.O. & Grauch, H.G. Jr. (1980) and
Peet, R.K.; Knox, R.G.; Case, J.S. & Allen, R.B. (1988) consider that
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this effect is a mathematical artifact, which should be eliminated ap-
plying an alternative method named detrended correspondence analysis.
Other authors, like Wartengerg, et al. (1987), which are cited in Oksa-
nen, J. (1988), are very sceptical about the value of detrending. They
suggest that it can hide the real data structure and as it cannot improve
the order of the points in the Þrst axis, it can confound the real pat-
tern, and even introduce new distortions. Greenacre (1984), criticized
detrending because the control of the geometry is lost and he exposes
that it is better to add a second dimension which helps to discriminate
between answers in the intermediate levels. Following the lasts authors,
we will use both dimensions to describe preferences.
The interpretation of the map is the following. The Þrst princi-

pal axis differentiates between the most and the least preferred levels.
The inertia increases and it is distributed between both, the Þrst and
second principal axes. For the women who is 30 years old, the most
preferred essences are, the ßoral-low intensity fragrance followed by the
oriental-high intensity one. The ßoral-high intensity essence and the
citric-low intensity essences appear one next to the other and related
with the �just low worth� level of utility. Then, in the preference map
of this subject, both essence become indifferent. The citric-high inten-
sity, and the leather-low intensity essences appear next to D and Þnally,
the leather-high intensity is the essence which dislikes more. The small
bottle is the most preferred followed by the medium one which appears
in the centroid. The biggest one is situated between the C and D levels
of utility.
An ordinal-scaled response variable reduces the type of interactions

to described, to be crossover. Then, with the introduction of interaction
effects, we will be able to capture situations where the preference order-
ing for the levels of an attribute are dependent of the levels of another at-
tribute (Vriens, 1995). We would not appreciate interaction effects if the
revealed order of preferences for the levels of the attributes (essences or
strength) remained unchanged, with respect to the analysis without in-
teractions. We can corroborate it in the map. The supplementary points,
which corresponds to the levels of the attributes related to the �main�
effects, reveal preferences over essences and strength. They are the fol-
lowing: ßoral Â oriental Â citric Â leather, and high intensity Â low
intensity. Then, if interaction effects were not signiÞcant and a strong
preferences over essences was given, we could expect to Þnd the following
order: FlÂFhÂOlÂOhÂClÂChÂLlÂLh. On the other hand, a strong
preferences over the strength, when interaction effects were not signif-
icant, would imply this other order: FlÂOlÂClÂLlÂFhÂOhÂChÂLh.
In our analysis, Oh becomes the second most preferred level, changing
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the expected order. Then, interaction effects are relevant.

Figure 1
Asymmetric map once interaction effects are included.
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D
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Floral
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OrientalLi
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S2
S3

Ol

Fh Cl

ChLl

Lh

� : attributes, ◦ : category responses, ∇ : supplementary points and H :
average.

The horizontal axis is dimension 1, with inertia = 0.4726 (61.4%). The
vertical axis is dimension 2 with, inertia = 0.2196 (28.5%). 90.0% of total
inertia is represented in the above map.

We calculate the standard coordinates for the response categories.
Later on, we will compare them with the ones obtained in CC to check
the equivalence. The values are the following: First dimension: bA :
1802, bB : 954, bC : −188 and bD : −1085. Second dimension: bA :
−1272, bB : 203, bC : 1248 and bD : −898. The values for the attributes
appear in the appendix.

Analysis including interaction effects: three subjects.
In this analysis we add two new subjects to the one previously ana-

lyzed, who are 17 and 55 years old. We present the data as three stacked
tables, with one subject bellow to the other. Each subject will have her
own points for each attribute level. The centroids of these �clouds of
points� will be the supplementary points which, aggregates all the indi-
vidual level matrices. Since for the previous case we already made the
comparison between the analysis with and without interaction variables,
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in this case, we are going directly to the analysis with the interaction ef-
fects showing the utility from an applied point of view, of this particular
way of coding data.
The resulting map is the following:

Figure 2

Asymmetric map for the three women, once interaction effects are in-
cluded.

C

B

A, Fh2, Lh2, Fh3
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Ol2, Ch2, Fl2
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S33
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Fl3, Cl3, Oh3 Lh
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S13

Ll
S1

Fl1, Ll2

S12
S22

Oh1
Oh2

S32, S11

Cl2, Ol1

S31
S21Ol3

Ol
Ch

S3
Oh

Cl average
FlS2

� : attributes, ◦ : category responses, ∇ : supplementary points and H :
average. The third character identiÞes the women, such that woman 1 is
29 years old; woman 2 is 17 years old; and woman 3 is 55 years old. The
horizontal axis is dimension 1, with inertia = 0.5423 (50.2%) and the vertical
axis is dimension 2, with inertia = 0.3982 (36.8%). 87.0% of total inertia
(1.081357) is represented in the above map

In terms of utility, the Þrst principal axis is mainly contributed by
the lowest level utility D, followed by the B one. The second principal
axis is mainly contributed by the highest level of utility A, followed by
the C one.
We are not going to describe the preferences for the woman who is

30 years old, since it was already made. Instead, we follow describing
the 17 and the 55 years old woman�s preferences. From the map, we
observe differences in preferences between high and low intensity fra-
grances, depending on the type of essences. For example, the 17 years
old women prefers high intensity perfumes for leather and ßoral essences,
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but leather-low essence receives also an important level of utility. The
woman who is 55 years, neither presents a clear preference for low or high
intensity perfumes, instead it also depends on the particular essences.
Her most preferred essence is the ßoral one with high intensity, but fol-
lowed by the leather one with low intensity. Then, for all three women,
interaction effects are adding relevant information and improving in the
description of the data.
Concluding, the map let us to describe preferences which remain hi-

den in the analysis of main effects. For example, for the third woman an-
alyzed, ßoral and citric low intensity receive the same position, in terms
of utility, than the oriental-high essences. Further more, the analysis of
different subjects at time, let us to capture similarities and differences,
based in some variables, in this case, the age. While the utility path
followed by the three women is quite different, some agrees are reßected.
For example, women 2 and 3 have as Þrst preference the ßoral essence
with high intensity.

Coding interactions in canonical correlation analysis
When we include interaction effects, the relation between CA and

CC is less obvious than in the previous case. To show the connection
we will Þrst describe the way to code the interaction in CC as a single
dummy variable, in order to obtain identical results to those of CA.
Secondly, we will show the equivalence between the results obtained
with this approach and the results obtained with the more customary
way of handling interactions of categorical variables in linear models.
When we introduce an interaction variable, the type of data matrix

to analyze in CA is still a concatenated table, in this case composed of
2 variables, one with 8 levels (type of fragrance×intensity of fragrance)
and the others with 3 levels (size of the bottle). It suggests immediately
that CC has to be computed as before and that we have to omit one of
the levels of the interaction variable. In other words, the interaction is
treated just like a categorical variable with 8 levels, so 7 dummy variables
are introduced into the CC analysis to estimate the interactions. The
results of CA are recovered just as before by imposing the usual centering
condition inherent in CA. Notice that in this case, the interaction effects
include the main effects for type of fragrance and intensity of fragrance.
We point out that the usual way of handling categorical variables plus

their interactions in linear models would be to omit one category of each
variable and all category combinations of the interactions involving these
omitted categories. In this case the model would still have 7 parameters;
3 for type of fragrance, 1 for intensity of fragrance and 3 × 1 = 3 for
the interactions. Here the interaction effects do not include main effects
and can be called �differentials� from main effects. The problem is how
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to recover all the coefficients, especially those of the interaction terms.
The key point to realize is that in the calculations all the interactions
belong to the same variable and so all the omitted coefficients take the
same value. We illustrate the equivalence using the data on the 30-years
old subject. A more general demonstration is given in Torres (2001).

Canonical Correlation. New way of coding.
Linear combinations for Þrst canonical correlation. Number of ob-

servations = 24.
(a) Attribute levels.
The canonical weights for the interaction variable are the following

(7 coefficients):
d∗Cl: 0.985, d∗Ch: 0, d∗F l: 2.322, d∗Fh: 0.985, d∗Ol: 0.301, d∗Oh: 2.037,

d∗Lh: −0.301
where d∗ represents the canonical weighs for the �new way� of coding.
The canonical weights for the variable �size of the bottle�, are the

following (2 coefficients):
a∗S1: 0.840, a∗S2: 0.220.
(b) Response category values.
The canonical weights for the response variable are the following:
b∗A: 2.826, b∗B: 1.997, b∗C: 0.877.
The canonical correlations are: 0.9722, 0.6627, and 0.3932.
We recover the missing coefficients by centering condition:
Size of the bottle:

rS1(a
∗
S1 + aS3) + rS2(a∗S2 + aS3) + rS3aS3= 0

since rS1 = rS2 = rS3 =
1

Q×mq
, we simplify the expression, taking out

this term. Then,

(a∗S1 + aS3) + (a∗S2 + aS3) + aS3= 0

where aS1 = 0.486, aS2 = −0.133 and aS3 = −0.353.
Interaction variable �type of fragrance × Intensity of fragrance�:
rCl(d

∗
Cl + dLl) + rCh(d

∗
Ch +dLl) + rFl(d

∗
Fl + dLl) + rFh(d

∗
Fh + dLl)+

+rOl(d
∗
Ol + dLl) + rOh(d

∗
Oh + dLl) + rLh(d

∗
Lh + dLl) + rLldLl = 0

since rCl = rCh = rF l = rFh = rOl = rOh = rLl = rLh =
1

mq ×mq
0 ×Q ,

then the expression is simpliÞed as follows:
(d∗Cl + dLl) + (d∗Ch + dLl) + (d∗F l + dLl) + (d∗Fh + dLl) + (d∗Ol + dLl)+
+(d∗Oh + dLl) + (d∗Oh + dLl) + (d∗Lh + dLl) + dLl = 0
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where dLl = −0.791. Then, we recover the true values: dCl = 0.194,
dCh = −0.791, dFl = 1.531, dFh = 0.194, dOl = −0.490, dOh = 1.246,
dLl = −0.791 and dLh = −1.092.

Canonical Correlation. Traditional way of coding.
Linear combinations for Þrst canonical correlation. Number of ob-

servations = 24.
(a) Attribute levels.
The canonical weights for the essences are the following (3 coeffi-

cients):
a∗C: 0.985, a∗F : 2.322, a∗O: 0.301,
the canonical weight for the strength of the fragrance is (1 coefficient)
a∗Hi: −0.301,
the canonical weights for the levels of the variable �size of the bottle�

are (2 coefficients)
a∗S1: 0.840, a∗S2: 0.219,
the canonical weights for the levels of the interaction effects are (3

coefficients)
e∗Ch: −0.685, e∗Fh: −1.036, e∗Oh: 2.037
where e∗ is used to denominate the canonical weights of the interac-

tion variable in the �traditional way� of coding.
(b) Response categories.
The canonical weights are the following:
b∗A: 2.826, b∗B: 1.997, b∗C: 0.877.
The canonical correlations are: 0.9722, 0.6627, 0.3932.
From the results we corroborate that the canonical correlation coef-

Þcients are the same if we code the data in the new way and if we do it
in the traditional form. Further, the coefficients for the main effects are
also the same.
The remaining work is to Þnd the values for the interactions in the

new form.
The restriction to be applied in this case is the following:

rCh(e
∗
Ch+c) + rFh(e

∗
Fh+c) + rOh(e

∗
Oh+c) + rLhc+ rClc + rFlc+ rOlc+ rLlc = 0

where rjj0 =
1

mq ×mq0 ×Q , where j represents the essence and j
0
the

strength of the essence. Then, the previous expression can be simpliÞed
as

(e∗Ch+c) + (e∗Fh+c) + (e∗Oh+c) + 5c = 0
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where c = −0.0396.
The true coefficients are recovered in the following way:

fCh = aC + aHi
+ (e∗Ch+c)

fCh = 0.08335 + (−0.1504) + (−0.6884) = −0.7555

where f represents the coefficients which collects main and differential
effect due to the interactions, in the traditional way of centering.
The operation is repeated for all the other coefficients obtaining the

following solutions: fCh = −0.7555, fCl = 0.1941, fFh = 0.1941, fFl =
1.5305, fOh = 1.2461, fOl = −0.4904, fLh = −1.0920, fLl = −0.7912.

Equivalence between CC/CA once interaction effects are included.
To show the equivalence between the different techniques once the

interaction effects are included, we corroborate the relationships previ-
ously found with the data analysis corresponding to one subject.

(a) Eigenvalues relationship:
λ1CC = λ1CCM

λ1CA

=
0.9452

0.4726
≈ 2, where

Q = 2.
(b) The standard coordinates for the response categories recovered

from CC are the following: First dimension: dA = fA: 1764.58, dB = fB:
934.86, dC = fC : −184.3, dD = fD: −1061.6 and second dimension:
dA = fA: 1245, dB = fB: −197.6, dC = fC: −1222.97, dD = fD: 879.59,

which have a relation equal to

r
M

M − 1
=

r
24

23
, with respect to the CA

ones.
Then, the relationships are kept.

CONCLUSIONS AND DISCUSSION

The present research tries to go one step further, in the aim of giving
some lights about the relationship, as well as the proÞts, of using some
psychometric techniques versus another ones, in marketing research. We
have prooved, analitically and also with an application, that correspon-
dence analysis offers the same results than categorical conjoint mea-
surement, for the optimal solution. We have also shown that, the main
difference between both techniques is the map that correspondence anal-
ysis offers and then, the inclusion of a second dimension in the recovering
of the preference structure.
Once the equivalence is shown we can introduce interaction effects in

this type of analysis via correspondence analysis. The improvement of
the new treatment becomes evident from the exposed application for per-
fumes. Further, correspondence analysis let to the researchers to make
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the analysis at different levels of aggregation (one, three or one thousand
subjects). We propose as future research to include more subjects in the
description of preference and get potential clusters, in terms of different
variables.
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APPENDIX

I) Analysis of the perfume data for one subject by CA.

Correspondence analysis (CA)

(a) CA output without interaction effects

Row contributions

Table 1

Name QLT MAS INR k=1 COR CTR k=2 COR CTR
C 1000 83 66 -174 140 11 -268 332 213
F 1000 83 229 846 947 269 127 21 48
O 1000 83 52 365 774 50 159 147 75
L 1000 83 354 -1037 922 404 -18 0 1
Hi 1000 167 39 -173 468 22 182 518 196
Li 1000 167 39 173 468 22 -182 518 196
S1 1000 111 109 509 966 130 -27 3 3
S2 1000 111 18 -96 211 5 -171 665 115
S3 1000 111 96 -413 719 86 198 165 154

where QLT: quality of the display, MAS: mass, INR: inertia of the
point, k=1 and k=2 are principal coordinates for the Þrst and second
principal axes, COR: correlation of the point with the axis and CTR:
contribution of the point to the axis (Greenacre, 1986).
The principal inertias are the following: 1. 0.221690, 2. 0.028171, 3.

0.025140.

II) Analysis with the inclusion of interaction effects

(a) CC output when we include interaction effects: One subject.
- New way of coding

Table 2

Name k=1 k=2
Ch 0.3008 1.0576
Cl 1.2861 2.6571
Fh 1.2861 2.6571
Fl 2.6225 0.1742
Oh 2.3381 0.8999
Ol 0.6016 2.1153
Ll 0.3008 1.0576
S1 0.8395 0.2587
S2 0.2195 0.1245
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- Traditional way of coding

Table 3

Name k=1 k=2
C 0.9853 1.5995
F 2.3217 -0.8834
O 0.3008 1.0575
Hi -0.3008 -1.0576
Ch -0.6845 -0.5418
Fh -1.0356 .5406
Oh 2.0373 -0.1577
S1 0.8395 0.2587
S2 0.2195 0.1245

The canonical correlations are: 0.9722, 0.6627, 0.3932.

(b) CA output with interaction effects: One subject.
The previous attributes, type of fragrance and intensity of fragrance,

as well as their levels, appear in the analysis as supplementary points.

Table 4
Row Contributions

Name QLT MAS INT k=1 COR CTR k=2 COR CTR
Ch 1000 63 54 -786 926 82 -183 50 9
Cl 1000 63 70 193 43 5 900 935 231
Fh 1000 63 70 193 43 5 900 935 231
Fl 1000 63 251 1520 748 306 -781 197 173
Oh 1000 63 164 1237 757 203 -289 41 24
Ol 1000 63 54 -487 356 31 533 427 81
Lh 1000 63 162 -1085 588 156 -899 404 230
Ll 1000 63 54 -786 926 82 -183 50 9
S1 1000 167 58 483 869 82 89 29 6
S2 1000 167 9 -133 402 6 -2 0 0
S3 1000 167 51 -351 518 43 -86 31 6
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Supplementary rows:

Name QLT MAS INR k=1 COR CTR k=2 COR CTR
C 1000 125 35 -296 406 23 359 594 73
F 1000 125 123 856 971 194 60 5 2
O 1000 125 28 375 818 37 122 86 8
L 1000 125 190 -935 750 231 -541 250 166
Hi 1000 250 21 -110 189 6 -118 216 16
Li 1000 250 21 110 189 6 118 216 16

Table 5
Column Contributions

Name QLT MAS INR k=1 COR CTR k=2 COR CTR
A 1000 125 334 1239 747 406 -596 173 202
B 1000 208 179 656 653 190 95 14 8
C 1000 333 169 -129 43 12 585 877 520
D 1000 333 318 -746 757 392 -421 241 269

The principal inertias are the following: 0.472602, 0.219554, 0.077288.
The standard coordinates for the category response variable are the

following:
First principal axis: yA: 1802, yB: 954, yC: −188, yD: −1085.
Second principal axis: yA: −1272, yB: 203, yC: 1248, yD: −898.

(c) CA output with interaction effects: Three subject.

Subject 1:

Table 6
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Row Contributions

Name QLT MAS INR k=1 COR CTR k=2 COR CTR
Ch1 1000 21 17 -750 650 22 -483 270 12
Cl1 1000 21 34 723 299 20 -1004 576 53
Fh1 1000 21 34 723 299 20 -1004 576 53
Fl1 1000 21 23 731 440 21 766 483 31
Oh1 1000 21 36 978 514 37 31 1 0
Ol1 1000 21 28 -140 13 1 -818 457 35
Lh1 1000 21 39 -1361 926 71 -149 11 1
Ll1 1000 21 17 -750 650 22 -483 270 12
S11 1000 56 15 434 642 19 -252 217 9
S21 1000 56 12 -120 60 1 -389 630 21
S31 1000 56 20 -256 166 7 -539 733 40

Subject 2:

Table 7
Row Contributions

Name QLT MAS INR k=1 COR CTR k=2 COR CTR
Ch2 1000 21 38 974 476 36 -854 366 38
Cl2 1000 21 28 -140 13 1 -818 457 35
Fh2 1000 21 50 484 90 9 1501 867 118
Fl2 1000 21 38 974 476 36 -854 366 38
Oh2 1000 21 11 727 962 20 -119 26 1
Ol2 1000 21 38 974 476 36 -854 366 38
Lh2 1000 21 50 484 90 9 1501 867 118
Ll2 1000 21 23 731 440 21 766 483 31
S12 1000 56 28 666 812 45 286 150 11
S22 1000 56 50 853 753 75 67 5 1
S32 1000 56 15 434 642 19 -252 217 9

Subject 3:

Table 8
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Row Contributions
Name QLT MAS INR k=1 COR CTR k=2 COR CTR
Ch3 1000 21 39 -1361 926 71 -149 11 1
Cl3 1000 21 14 -746 759 21 401 220 8
Fh3 1000 21 50 484 90 9 1501 867 118
Fl3 1000 21 14 -746 759 21 401 220 8
Oh3 1000 21 14 -746 759 21 401 220 8
Ol3 1000 21 17 -750 650 22 -483 270 12
Lh3 1000 21 39 -1361 926 71 -149 11 1
Ll3 1000 21 18 -131 18 1 951 969 47
S13 1000 56 34 21 1 0 757 857 80
S23 1000 56 47 -900 888 83 264 76 10
S33 1000 56 70 -1131 945 131 58 2 0

The supplementary rows:

Name QLT MAS INR k=1 COR CTR k=2 COR CTR
Ch 1000 63 38 -583 510 39 -384 221 23
Cl 1000 63 4 -257 869 8 -67 59 1
Fh 1000 63 54 -131 18 2 951 969 142
Fl 1000 63 4 32 16 0 166 418 4
Oh 1000 63 13 -460 916 24 45 9 0
Ol 1000 63 25 -379 329 17 -495 562 39
Lh 1000 63 22 -254 173 7 523 735 43
Ll 1000 63 31 239 107 7 644 779 65
S1 1000 167 55 83 19 2 573 919 137
S2 1000 167 35 -69 21 1 60 16 2
S3 1000 167 78 -686 936 145 -114 26 5

Table 9
Column Contributions

Name QLT MAS INR k=1 COR CTR k=2 COR CTR
A 1000 278 267 356 122 65 974 863 626
B 1000 181 229 902 595 271 -444 144 90
C 1000 208 186 347 124 46 -728 548 277
D 1000 333 318 -1002 974 618 -94 9 7

The principal inertias are the following: 0.542312, 0.398208, 0.140837.
The total inertia is equal to 1.081357.

28



References

[1] Benzécri, J-P & collaborators (1973), �L�Analyse des Données.
Tome 2: l�Analyse des Correspondances�. Paris: Dunod.

[2] Carmone, F.J. & P. E. Green (1981), �Model MisspeciÞcation in
Multiattribute Parameter Estimation�, Journal of Marketing Re-
search, Vol. XVIII (February), 87-93.

[3] Carroll, J.D. (1969), �Categorical Conjoint Measurement�, paper
presented at the Mathematical psychology Meeting, Ann Arbor,
Michigan.

[4] Carroll, J.D. & P.E. Green (1995), �Psychometric Methods in Mar-
keting Research: Part I, Conjoint Analysis�, Journal of Marketing
Research, 32 (Nov), 385-391.

[5] Eckart, C. & G. Young (1936), �The Approximation of one matrix
by another of lower rank�, Psychometrika, 1, 211-218.

[6] Green, P.E. (1973), �On the Analysis of Interactions in Marketing
Research Data�, Journal of Marketing Research, 10, 410-420.

[7] - - - - & Rao, V. (1971), �Conjoint measurement for quantifying
judgement data�, Journal of Marketing Research, 8, 355-363.

[8] - - - - & Wind, Y. (1972), �Recent approaches to the modeling of in-
dividuals� subjective evaluations�, paper presented at the Attitude
Research Conference.

[9] - - - - & - - - - (1973), �Multiattribute Decisions in Marketing: a
Measurement Approach�, eds. Illinois: The Dryden Press.

[10] Greenacre, M.J. (1984), �Theory and Applications of Correspon-
dance Analsyis�. London: Academic Press.

[11] - - - - (1986), �SimCA: a program to perform simple correspondence
analysis�, Psychometrika, 51, 172-173.

[12] - - - - (1993), �Correspondence Analysis in Practice�. London: Aca-
demic Press.

[13] - - - - (2002), �Scaling: Correspondence Analysis�. International
Encyclopedia of the Social & Behavioral Sciences.

[14] - - - - and Blasius, J. (1994), �Correspondence Analysis in the
Social Sciences�. London: Academic Press.

[15] - - - - and Hastie, T. (1987), �The geometric interpretation of cor-
respondence analysis�, Journal of the American Statistical Associ-
ation, 82, 437-444.

[16] Hauser, J.R. & F. S. Koppelman (1979), �Alternative Perceptual
Mapping Techniques: Relative Accuracy and Usefulness�, Journal
of Marketing Research, Vol. XVI (November), 495-506.

[17] Hill, M.O. & Grauch, H.G. Jr. (1980), �Detrended correspondence
analysis: an improved ordination technique�, Vegetatio, 42, 47-58.

[18] Lattin, J., Carroll, J.D. and Green, P.E. (2003), �Analyzing Multi-

29



variate Data�. London: Thomson Learning.
[19] Oksanen, J. (1988), �A note on the occasional instability of de-

trending in correspondence analysis�, Vegetatio, 74, 29-32.
[20] Peet, R.K, Knox, R.G., Case, J.S. , Allen, R.B. (1988), �Putting

Things in Order: The Advantages of Detrended Correspondence
Analysis�, The American Naturalist, 131(6), 924-934.

[21] Rao, V.R. (1977), �Conjoint Measurement in Marketing Analysis,
in Multivariate Methods for Market and Survey Research�, Jagdish
Sheth, eds. University of Illinois: American Marketing Association.

[22] �Stata reference manual�l (1993), Release 3.1, vol. 2. 6th ed., 100-
104. Texas: College Station.

[23] Torres, A., �Correspondence analysis and categorical conjoint mea-
surement�, Working Paper, 569, at Universitat Pompeu Fabra.

[24] Torres, A. and Greenacre, M.J. (2002), �Dual scaling and corre-
spondence analysis of preferences, paired comparisons and ratings�,
International Journal of Research in Marketing, 19, 401-405.

[25] Vriens, M. (1995), �Conjoint Analysis in Marketing�, Theses on Sys-
tems, Organizations and Management. The Netherlands: Labyring
Publication.

[26] Wartengerg, D., Ferson, S., Rohlf, F.J. (1987), �Putting things in
order: A Critique of Detrended Correspondence Analysis�, The
American Naturalist, 129(3), 434-448.

[27] Wittink, D.R. (1999). �An Introduction to Conjoint Analysis�
Course notes of Applied Statistics Week, Institut d�Educació Con-
tinua.

[28] - - - - , Huber J., Zandan, P. and Johnson, R. M. (1992), �The
number of levels effect in conjoint: where does it come from, and can
it be eliminated?�, in Sawtooth Software Conference Proceedings,
Ketchum, Idaho, 355-364.

30


