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On Double Periodic Non–Homogeneous Poisson

Processes∗

José Garrido1,2 and Yi Lu1

1Department of Mathematics and Statistics
Concordia University, Canada

2Department of Business Administration
University Carlos III of Madrid, Spain

Abstract

Non–homogenous Poisson processes with periodic claim intensity rate
are proposed as the claim counting process of risk theory. We introduce a
doubly periodic Poisson model with short and long term trends, illustrated
by a double–beta intensity function.

Here periodicity does not repeat the exact same short term pattern
every year, but lets its peak intensity vary over a longer period. This model
reflects periodic environments like those forming hurricanes, in alternating
El Niño/La Niña years. The properties of the model are discussed in detail.

1 Introduction

Homogeneous Poisson processes are commonly used in risk theory to model claim
frequency. These sometimes give a crude representation since their claim intensity
rate λ is constant. A more general time–dependent model is obtained with non–
homogeneous Poisson (NHP) processes, as their intensity rate λ(t) is a function
of time.

∗This research was funded by the Natural Sciences and Engineering Council of Canada
(NSERC) operating grant OGP0036860.
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Many natural phenomena evolve in a periodic environment or under seasonal
conditions. In turn, these events generate insurance claims. For example, weather
factors are known to affect automobile or fire insurance claims, while seasonal
snow storms in the north and hurricanes or floods in the south affect property
insurance. A periodic time–dependent intensity rate is a reasonable model for the
claim frequency in such situations. We show that it can also be tractable, even
for the corresponding aggregate claim process.

The similarities between intensity and failure rate functions, used in reliability
models, help exploring different applications of NHP process. Some characteriza-
tion properties of the NHP process with (single) periodic failure rate are derived
in Chukova et al. (1993) and Dimitrov et al. (1997). These properties are ex-
ploited in a risk model by Garrido et al. (1996). Berg and Haberman (1994) use
a non–homogeneous Markov birth process, of which the NHP is a special case,
to predict trends in life insurance claim occurences. Some ruin problems in a
periodic environment are also considered by Asmussen and Rolski (1994) and by
Rolski et al. (1999).

A more practical case is when the periodic environment does not repeat itself
exactly from year to year, but the short term peak changes over a relatively long
period, with different levels in each year. This defines a double periodic environ-
ment, especially appropriate to model natural catastrophes, such as hurricanes,
which have a peak season in the middle of the year, but with an intensity level
also depending on long term climatological effects like La Niña or El Niño. A cor-
responding Poisson process model with double periodicity is introduced in here.

Section 2 discusses the periodicity of the NHP and related characteristics. Section
3 presents some practical forms for the claim intensity periodicity. The corre-
sponding compound NHP sums are also studied.

2 The NHP Process and Preliminary Results

Let λ be a non–negative (measurable and locally integrable) deterministic func-
tion. Consider the number of claims in the time interval [s, t), denoted N[s, t) for
0 ≤ s < t (and Nt when s = 0). An NHP process is defined as follows.

Definition 1 A counting process {Nt; t ≥ 0} is said to be non–homogeneous
Poisson (NHP) with intensity function λ, where λ(t) ≥ 0, for t ≥ 0, if it satisfies:
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(a) Nt = 0 at t = 0;

(b) {Nt; t ≥ 0} has independent increments;

(c) P{Nt+h − Nt = 1} = λ(t)h + o(h), for all t, h ≥ 0;

(d) P{Nt+h − Nt ≥ 2} = o(h), for all t, h ≥ 0,

The function Λ defined by

Λ(t) =

∫ t

0

λ(v)dv , for t ≥ 0 , (1)

is called the hazard function or the cumulative intensity function of the process.

Consider the number, N[τ, τ+t), in an interval of the form [τ, τ + t), where τ, t ≥ 0.
The time parameter τ , called the initial age of the process, marks the beginning
of the time observation period when claims start to be counted. It is well known
that for a NHP process the probability of n claims occurring in a time interval of
duration t starting at time τ is given by

P{N[τ, τ+t) = n} =
e−[Λ(τ+t)−Λ(τ)][Λ(τ + t) − Λ(τ)]n

n!
, n ∈ N . (2)

That is, for a NHP process with intensity function λ, N[τ, τ+t) has a Poisson

distribution with mean Λ(τ + t) − Λ(τ) =
∫ τ+t

τ
λ(v)dv.

It is clear that a NHP process becomes a homogeneous Poisson process when its
intensity function λ does not depend on time, i.e. λ(t) = λ, for all t ≥ 0, and
therefore Λ(t) = λt is linear.

Now, we consider the case where the risk process evolves in a periodic environment,
as when the claim arrival rate may depend on the seasons. Then the intensity
function of a NHP claim counting process {Nt; t ≥ 0}, is a periodic function, say
with a period of c > 0 years. Consequently t − b t

c
cc ∈ [0, c) is the time of the

season, where btc is the integer part of t ∈ R. A model with double periodicity is
introduced in the next section where it is illustrated by a double–beta function.

Referring to Dimitrov et al. (1997) for proofs, we list the following properties for
the NHP process {Nt; ≥ 0} with periodic intensity function.

Theorem 1 Suppose that the intensity function λ is periodic with period c, then
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(a) The hazard function Λ has the almost linear property

Λ(t) = b
t

c
cΛ(c) + Λ(t − b

t

c
cc) , t ≥ 0 .

(b) For any integer n ≥ 0 and t ≥ 0

P{N[nc, nc+t) = k} = P{Nt = k} , k = 0, 1, . . . .

Moreover, the random variables Nnc and N[nc,nc+t) are mutually independent.

(c) The NHP process has a periodic intensity function λ with period c > 0 if and
only if the random variables N[0, c) and N[c, c+t) are mutually independent
and distributed as Nc and Nt, respectively.

(d) For any t ≥ 0 the random variable Nt can be decomposed in the form

Nt =

{

N[0, t) , if t ≤ c

M1 + M2 + · · · + Mb t
c
c + N[0, t−b t

c
cc) , if t > c

,

where {Mi}i≥1 are i.i.d. Poisson random variables distributed as N[0, c) and
independent of N[0, t−b t

c
cc), the latter being a Poisson r.v. distributed as

Nt−b t
c
cc, for t − b t

c
cc ∈ [0, c).

3 A Double–Beta Periodic Intensity Model

We define here some simple and practical forms of double–periodic claim intensity
models.

First, assume that the intensity function in each short term, say each year and
denoted by λ1(t), has a beta–shape. Further assume that the peak value in each
year follows another beta function λc(t), the long term intensity function. That is

λ1(t) =

(

s−bsc−m1

d

)p1−1 (

1 − s−bsc−m1

d

)q1−1

α∗
1

, t ≥ 0 , (3)

for s = t − b t
c
cc, m1 ≤ s − bsc < m2, p1, q1 ≥ 0 and where

α∗
1 =

(

t∗1 − m1

d

)p1−1 (

1 −
t∗1 − m1

d

)q1−1

, (4)
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is the adjusted factor, while d = m2 − m1 and 0 ≤ m1 < m2 ≤ 1 represent
the starting and ending point of the annual interval, respectively, for which the
intensity function does not equal to zero. Finally

t∗1 = m1 + d
p1 − 1

p1 + q1 − 2
, (5)

denotes the mode of λ1(t), while

λc(t) = h(btc + t∗1) , t ≥ 0 , (6)

where

h(t) = a +
b − a

α∗
c

(

t − mc

c
− b

t − mc

c
c

)pc−1

[

1 −

(

t − mc

c
− b

t − mc

c
c

)]qc−1

, (7)

α∗
c =

(

t∗c − mc

c

)pc−1 (

1 −
t∗c − mc

c

)qc−1

, (8)

is an adjusted beta–type factor. Here a, b denote the minimum and maximum
amplitude of the peak values, respectively, mc is the starting point of the complete
cycle of the second beta function, and

t∗c = mc + c

(

pc − 1

pc + qc − 2

)

denotes the mode of λc(t).

Then the double beta intensity function is given by

λ(t) = λc(t)λ1(t) , for t ≥ 0 , (9)

where λ1 and λc are given in (3) and (6), respectively.

Figure 1 illustrates a possible shape of λ(t) when p1 = 3, q1 = 2, m1 = 5
12

, d = 6
12

,

c = 5, pc = 2, qc = 1.5, mc = 3.75, a = 3 and b = 7. The dotted line represents the
base beta function (long term) that explains the fluctuations in the peak values
of the short term beta periodicity.

By Theorem 1, we can obtain an explicit expression for the hazard function Λ,

defined by (1) in the double–beta periodic case. The corresponding claim counting
process {Nt, t ≥ 0} is also decomposed in i.i.d. components.
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Figure 1: Double–beta intensity function λ(t)

Theorem 2 Assume that the intensity function λ is given by (9), then

(a) The hazard function Λ has the almost linear property, given by

Λ(t) = b
t

c
cd B(p1, q1)

c−1
∑

j=0

h(j + t∗1)

α∗
1

+ d B(p1, q1)

bt−b t
c
ccc−1

∑

j=0

h(j + t∗1)

α∗
1

+d B

(

p1, q1,
t − btc − m1

d

)

h(bt − b t
c
ccc + t∗1)

α∗
1

, (10)

for t ≥ m1, where h(t) has the form in (7) and

B(p, q) =

∫ 1

0

vp−1(1 − v)q−1dv =
Γ(p)Γ(q)

Γ(p + q)

is the beta function at p, q > 0, while

B(p, q; t) =

∫ t

0

vp−1(1 − v)q−1dv , t ∈ (0, 1) ,

is the usual incomplete beta function (with B(p, q; t) = 0 if t ≤ 0).

(b) For any t ≥ 0, the random variable Nt is decomposed as

Nt = M1 + · · ·+ Mb t
c
c + N∗

t−btc−m1
d

, (11)
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where

N∗
t−btc−m1

d

=

bt−b t
c
ccc−1

∑

j=0

N (j)
c + N

(bt−b t
c
ccc)

t−btc−m1
d

, (12)

and the {Mi}i≥1 are i.i.d. Poisson with mean d B(p1, q1)
∑c−1

j=0
h(j+t∗1)

α∗
1

, in-

dependent of N
(j)
c , for j = 0, 1, . . . , bt − b t

c
ccc − 1, and N

(bt−b t
c
ccc)

t−btc−m1
d

, which

are all Poisson random variables with mean d B(p1, q1)
h(j+t∗1)

α∗
1

, where j =

0, 1, 2, . . . , bt − b t
c
ccc − 1, and d B

(

p1, q1,
t−btc−m1

d

)

h(bt−b t
c
ccc)

α∗
1

, respectively.

Proof:

(a) By (1) and the periodicity of the intensity function λ,

Λ(t) =

∫ t

0

h(bvc + t∗1)

α∗
1

(

v − b v
c
cc − bv − b v

c
ccc − m1

d

)p1−1

(

1 −
v − b v

c
cc − bv − b v

c
ccc − m1

d

)q1−1

dv

= b
t

c
c

∫ c

0

h(bvc + t∗1)

α∗
1

(

v − bvc − m1

d

)p1−1 (

1 −
v − bvc − m1

d

)q1−1

dv

+

∫ t−b t
c
cc

0

h(bvc + t∗1)

α∗
1

(

v − bvc − m1

d

)p1−1 (

1 −
v − bvc − m1

d

)q1−1

dv

= b
t

c
c

c−1
∑

j=0

h(j + t∗1)

α∗
1

∫ j+m1+d

j+m1

(

v − j − m1

d

)p1−1 (

1 −
v − j − m1

d

)q1−1

dv

+

bt−b t
c
ccc−1

∑

j=0

h(j + t∗1)

α∗
1

∫ j+m1+d

j+m1

(

v − j − m1

d

)p1−1 (

1 −
v − j − m1

d

)q1−1

dv

+
h(bt − b t

c
ccc + t∗1)

α∗
1

∫ t−b t
c
cc

bt−b t
c
ccc+m1

(

v − bt − b t
c
ccc − m1

d

)p1−1

(

1 −
v − bt − b t

c
ccc − m1

d

)q1−1

dv . (13)

Letting s = v−j−m1

d
in the first two integrals and

v−bt−b t
c
ccc−m1

d
in the last integral
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in (13) gives

Λ(t) = b
t

c
c

c−1
∑

j=0

d
h(j + t∗1)

α∗
1

∫ 1

0

sp1−1(1 − s)q1−1ds

+

bt−b t
c
ccc−1

∑

j=0

d
h(j + t∗1)

α∗
1

∫ 1

0

sp1−1(1 − s)q1−1ds

+ d
h(bt − b t

c
ccc + t∗1)

α∗
1

∫

t−b t
c cc−bt−b t

c ccc−m1
d

0

sp1−1(1 − s)q1−1ds .

Then (10) follows by definition of the beta and incomplete beta functions.

(b) By Theorem 1–(d), Nt can be decomposed as follows

Nt =

b t
c
c

∑

i=1

c−1
∑

j=0

N
(j)
[(i−1)c, ic) +

bt−b t
c
ccc−1

∑

j=0

N
(j)

[b t
c
cc, (b t

c
c+1)c)

+ N
(bt−b t

c
ccc)

[b t
c
cc, (b t

c
c+1)c)

, (14)

where

Mi =

c−1
∑

j=0

N
(j)
[(i−1)c, ic) , i = 1, 2, . . . , b

t

c
c (15)

is the i-th complete period subsum, while the second summation in (14) is the
decomposition of the complete years included in the last (incomplete) period.
Finally the last term represents the claim count for the last (incomplete) year of
the last (incomplete) period.

By periodicity of the function λ and Theorem 1–(b), it is clear that N
(j)
[(i−1)c, ic),

i = 1, 2, . . . , b t
c
c + 1, are mutually independent and Poisson distributed random

variables with mean d B(p1, q1)
h(j+t∗1)

α∗
1

, just as N
(j)
c , for j = 0, 1, . . . , c − 1.

As the additive property of the NHP processes, we consequently get that Mi,

given in (15), i = 1, 2, . . . , b t
c
c are i.i.d. Poisson random variables distributed as

Nc, with mean d B(p1, q1)
∑c−1

j=0
h(j+t∗1)

α∗
1

. Similarly, N
(bt−b t

c
ccc)

[b t
c
cc, (b t

c
c+1)c)

is Poisson with

mean d B
(

p1, q1,
t−btc−m1

d

)

h(bt−b t
c
ccc+t∗1)

α∗
1

, like N
(bt−b t

c
ccc)

t−b t
c cc−bt−b t

c ccc−m1
d

or N
(bt−b t

c
ccc)

t−btc−m1
d

.
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Now, setting

N∗
t−btc−m1

d

=

bt−b t
c
ccc−1

∑

j=0

N
(j)

[b t
c
cc, (b t

c
c+1)c)

+ N
(bt−b t

c
ccc)

[b t
c
cc, (b t

c
c+1)c)

=

bt−b t
c
ccc−1

∑

j=0

N (j)
c + N

(bt−b t
c
ccc)

t−btc−m1
d

, (16)

gives (12). Combining with (15), (14) leads to (11) and hence (b) holds. 2

Now consider N[τ, τ+t), the number of claims in the time interval [τ, τ + t). It
is assumed to follow a NHP process with parameter λ(t) given by (9). From
Theorem 2, the probability of n ∈ N claims in the time interval [τ, τ + t) is:

P{N[τ, τ+t) = n} =
[Λ(τ + t) − Λ(τ)]n

n!
e−[Λ(τ+t)−Λ(τ)] ,

where Λ(τ + t) − Λ(τ) =
∫ τ+t

τ
λ(v)dv can be derived from (10).

The moment generating function (m.g.f.) of N[τ, τ+t) is given by

E(erN[τ, τ+t)) = e[Λ(τ+t)−Λ(τ)](er−1) ,

and the expected number of claims over this time interval equals its variance and
is given by

E(N[τ, τ+t)) = V (N[τ, τ+t)) = Λ(τ + t) − Λ(τ) .

In particular, the m.g.f. of the number of claims over one period of length c, with
an initial age of τ (that we will denote α) equals

α = E(eN[τ, τ+c)) = e−Λ(c) = e
−d B(p1,q1)

Pc−1
j=0

h(j+t∗1)

α∗
1 , (17)

where h(j + t∗1) can be derived from (7) for j = 1, 2, · · · , c − 1.

Moreover, the probability to survive the time interval [τ, τ + t) without a claim
is

P{N[τ, τ+t) = 0} = e−[Λ(τ+t)−Λ(τ)] ,

while the waiting time T1 for the first claim in [0, t) has an almost–lack–of–
memory distribution [see Dimitrov et al. (1997)] and is given by

P{T1 ≤ t} = 1 − P{Nt = 0} = 1 − e−Λ(t)

= 1 − αb t
c
ce

−d B(p1,q1)
Pbt−b t

c ccc−1

j=0

h(j+t∗1)

α∗
1 e

−d B
�
p1,q1,

t−btc−m1
d

�
h(bt−b t

c ccc+t∗1)

α∗
1 ,
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where α is given by (17). The corresponding p.d.f. is

fT1(t) = αb t
c
ce

−d B(p1,q1)
Pbt−b t

c ccc−1

j=0

h(j+t∗1)

α∗
1 e

−d B
�
p1,q1,

t−btc−m1
d

�
h(bt−b t

c ccc+t∗1)

α∗
1

h

(

bt − b
t

c
ccc + t∗1

)

λ1

(

t − b
t

c
cc

)

,

while the expectation of T1 is given by

E(T1) = m1 +

cα +
∑c−1

j=1 je
−dB(p1 ,q1)

h(j−1+t∗1)

α∗
1

(

1 − e
dB(p1,q1)

h(j+t∗1)

α∗
1

)

1 − α

+
d2

∫ 1

0

∑c−1
j=1 je

−dB(p1,q1)
h(j+t∗1)

α∗
1

h(j+t∗1)

α∗
1

vp1(1 − v)q1−1dv

1 − α
.

Finally, at time t, the excess–life until the next claim, TNt+1 − t is distributed as

P{TNt+1 − t ≤ s} = 1 − e−[Λ(t+s)−Λ(t)] , s ≥ 0 .

The flexibility of the beta family of intensity functions, which depends on the
value of the shape parameters p and q, provides many possible forms of short and
long term seasonal claim intensities. Other shapes, like periodic trigonometric
functions can also be considered to model the long term periodicity. For example

h(t) = a + b sin 2π

(

t − mc

c
− b

t − mc

c
c

)

,

where a ≥ b and a + b, a− b represent, respectively, the maximum and minimum
amplitude of the peak values for the long term periodicity, while mc is the starting
point of the periodic sine function.

Figure 2 illustrates the shape of λ(t) for p1 = q1 = 2, m1 = 0, d = 1, c = 4,
mc = 3

2
a = 5

4
and b = 1. Here the short–term beta peak values vary according

to the sine function (dotted line). The properties for the corresponding hazard
function Λ and claim counting process {Nt, t ≥ 0} can be derived analogously.

3.1 The Aggregate Claims Process

The decompositions of Theorem 2 for the NHP process can be extended to com-
pound NHP sums.
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Figure 2: Sine-beta intensity function λ(t)

Again consider a NHP claim counting process {Nt; t ≥ 0}. Then the correspond-
ing aggregate claims process

St =

{
∑Nt

j=1 Xj if Nt > 0

0 if Nt = 0
,

is called a compound NHP process and is denoted as St ∼ C.P.[Λ; FX ], for x ≥ 0.
The Xj are i.i.d. claim severities, with common c.d.f. FX and finite mean µ,

independent of Nt.

Consider the claim counting process {N[τ, τ+t), t ≥ 0}, for a fixed initial age τ and
periodic intensity function λ. Its corresponding hazard function has the following
structure:

(i) If both τ and t are integers then

Λ(τ + t) − Λ(τ) = Λ(c)b
t

c
c +

τ+t−1
∑

j=τ+b t
c
cc

h(j + t∗1)

α∗
1

,

where Λ(c) = d B(p1, q1)
∑c−1

j=0
h(j+t∗1)

α∗
1

and α∗
1, t

∗
1, h are given in (4) to (7).
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(ii) If τ is an integer but t is not, then

Λ(τ + t) − Λ(τ) = Λ(c)b
t

c
c + d B(p1, q1)

bτ+tc−1
∑

j=τ+b t
c
cc

h(j + t∗1)

α∗
1

+d B

(

p1, q1,
t − btc − m1

d

)

h(bτ + tc + t∗1)

α∗
1

.

(iii) If τ is not an integer but t is, then

Λ(τ + t) − Λ(τ) = Λ(c)b
t

c
c + d B

(

p1, q1,
τ − bτc − m1

d
, 1

)

h(bτ + b t
c
ccc + t∗1)

α∗
1

+ d B(p1, q1)

bτc+t−1
∑

j=bτ+b t
c
ccc+1

h(j + t∗1)

α∗
1

+d B

(

p1, q1,
τ − bτc − m1

d

)

h(bτc + t + t∗1)

α∗
1

,

where B(p, q, t, 1) = B(p, q) − B(p, q, t), for any p, q > 0.

(iv) If neither τ nor t are integer, then

Λ(τ + t) − Λ(τ) = Λ(c)b
t

c
c + d B

(

p1, q1,
τ − bτc − m1

d
, 1

)

h(bτ + b t
c
ccc + t∗1)

α∗
1

+ d B(p1, q1)

bτ+tc−1
∑

j=bτ+b t
c
ccc+1

h(j + t∗1)

α∗
1

+d B

(

p1, q1,
τ + t − bτ + tc − m1

d

)

h(bτ + tc + t∗1)

α∗
1

.

The aggregate claims over [τ, τ + t) is then given by S[τ, τ+t) =
∑N[τ, τ+t)

n=1 Xn,

where N[τ, τ+t) is a NHP process with periodic intensity function λ as in (9) and
S[τ, τ+t) = 0 if N[τ, τ+t) = 0. Theorem 1 implies the following decomposition result.

Corollary 1 (a) If τ is an integer but t is not (note that case (i) above is a
special case of (ii)), then the claim counting process N[τ, τ+t) is equivalent
to the process which has the same time period but starts from τ mod (c).
Then S[τ, τ+t) can be decomposed as

S[τ, τ+t) = S1 + · · ·+ Sb t
c
c + S∗

τ+b t
c
cc + · · ·+ S∗

bτ+tc−1 + S∗
[bτ+tc,τ+t) , (18)
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where the Si’s are i.i.d. random variables distributed as S1 =
∑Nc

n=1 Xn, and
Nc is a Poisson r.v. with parameter Λ(c). Then S∗

τ+b t
c
cc
, . . . , S∗

bτ+tc−1 are also

compound Poisson representing claims for complete years in the last (incom-

plete) period. Their respective parameters are d B(p1, q1)
h(τ+b t

c
cc+t∗1)

α∗
1

, · · · ,

d B(p1, q1)
h(bτ+tc−1+t∗1)

α∗
1

. While the term S∗
[bτ+tc,τ+t) is the compound Poisson

sum representing the last (incomplete) year in the last period. It is inde-

pendent of other aggregate claims Si and has a mean of d B(p1, q1,
t−btc−m1

d
)

h(bτ+tc+t∗1)

α∗
1

.

(b) If neither τ nor t are integer (note that case (iii) above is a special case of
(iv)), then S[τ τ+t) contains incomplete terms and can be decomposed as

S[τ, τ+t) = S1 + S2 + · · ·+ Sb t
c
c + S∗

[τ+b t
c
cc,bτ+b t

c
ccc+1)

+S∗
bτ+b t

c
ccc+1 + · · ·+ S∗

bτ+tc−1 + S∗
[bτ+tc,τ+t) ,

where the complete sums Si are compound Poisson with parameter Λ(c),
mutually independent from the two terms S∗

[τ+b t
c
cc,bτ+b t

c
ccc+1)

and S∗
[bτ+tc,τ+t).

The latter are also independent compound Poisson sums for two different in-

complete years, with parameters d B(p1, q1,
τ−bτc−m1

d
, 1)

h(bτ+b t
c
ccc+t∗1)

α∗
1

, respec-

tively, and d B(p1, q1,
τ+t−bτ+tc−m1

d
)

h(bτ+tc+t∗1)

α∗
1

. Finally, the sums S∗
bτ+b t

c
ccc+1

+

. . . + S∗
bτ+tc−1 are also compound Poisson in an incomplete period, with pa-

rameters d B(p1, q1)
h(bτ+b t

c
ccc+1+t∗1)

α∗
1

, . . . , d B(p1, q1)
h(bτ+tc−1+t∗1)

α∗
1

, respectively.

Moreover, the moment generating function of S[τ, τ+t) is obtained as

E(erS[τ, τ+t)) = e[Λ(τ+t)−Λ(τ)][MX(r)−1] , (19)

where MX is the m.g.f. of the claims severity distribution. Moments of S[τ, τ+t)

are easily obtained from (19). For instance, the total initial premium is given by

E(S[τ, τ+t)) = [Λ(τ + t) − Λ(τ)]E(X1) .

Conclusion

Non–homogeneous Poisson processes with periodic claim intensity rate are useful
in modeling risk processes under periodic environments. A double–beta periodic

13



claim intensity model is proposed as a generalization of the classical risk model.
It also serves as a more realistic alternative to periodic models with only short
term (single) periodic intensity functions.

The flexible shapes of the beta function and the explicit results obtained for the
risk process should make these double–periodic models as practical as the classical
one. In addition, statistical methods to estimate the beta parameters of the model
from real data sets are readily available and shall be illustrated in subsequent work.
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