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1 Introduction

A minimum distance method based on a quadratic distance was introduced
by Luong and Thompson (1987). Following the same idea a minimum qua-
dratic distance estimator (QDE) was defined by Luong (1991) for the simple
linear regression model. An extension to multiple linear regression was stu-
died by Luong and Garrido (1992), where the asymptotic properties of this
QDE were derived. They show that the QDE is fully efficient, for special
choices of odd functions hi in the distance definition, and robust for other
appropriate choices of hi.

In Section 2, a QDE is defined for the logistic regression model. The
asymptotic properties of this QDE are derived, where consistency, asymptotic
normality and robustness properties are established.

In Section 3, a new robust QDE for the multinomial logistic regression
model (QDM) is proposed. The asymptotic normality property is established
using the approach developed in previous sections.

2 Robust Quadratic Distance Estimators for

Logistic Regression

Let xT
i = (xi1, . . . , xip) ∈ R

p be a vector of p (discrete or continuous) ex-
planatory variables and X = (XT

1 , . . . ,XT
N)T be a N × p design matrix of

rank p ≤ N, with xi 6= 0, for i = 1, . . . , N. Denote by n∗ = bN
2
c+ bp

2
c, where

bzc stands for the largest integer less than or equal to z ∈ R.

Consider a logistic regression model for binary responses and N (not
necessarily independent) random variables Yi, which have a binomial dis-
tribution with index ni and probability π(xi). These are denoted by Yi ∼

Binomial(ni, π(xi)), where ni is a known positive integer, π(xi) =
exp(xT

i �)

1+exp(xT
i �)

and β is a vector of p unknown parameters.
As in Christmann (1994) the relative frequencies Pi can defined as follows.

Definition 2.1. Let yi be observations from Yi ∼ Bi(ni, π(xi)), then the
relative frequencies Pi are defined, for i = 1, . . . , N, as

Pi =







1
2ni

if Yi = 0 ,
Yi

ni
if 1 ≤ Yi ≤ ni − 1 ,

1 − 1
2ni

if Yi = ni .

(1)
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Assumptions: Under the above definitions it is assumed that

(a) there exist π(xi) ∈ (0, 1), for 1 ≤ i ≤ N, such that if min
1≤i≤N

ni −→ ∞

(P1, . . . , PN) −→ (π(x1), . . . , π(xN)) , almost surely , (2)

(b) there exists exactly one vector β∗ ∈ R
p such that, for all β 6= β∗,

∣

∣

∣

∣

∣

{

i; π(xi) =
exT

i �
∗

1 + exT
i �

∗

}∣

∣

∣

∣

∣

≥ n∗ >

∣

∣

∣

∣

∣

{

i; π(xi) =
exT

i �

1 + exT
i �

}∣

∣

∣

∣

∣

. (3)

The strong law of large numbers guarantees the validity of (2) for the

logistic regression model. Then (3) holds by definition of π(xi) =
exp(xT

i �
∗)

1+exp(xT
i �

∗)

and rank (X) = p.

In what follows it is assumed that all values of ni are reasonably large,
in the sense that the results are asymptotic for n· =

∑N

i=1 ni → ∞ such that
ni

n·

→ ci ∈ (0, 1), but N and p remain fixed.

Theorem 2.1. If the logistic model holds true and ni is large, then the

empirical logit transform ln
(

Pi

1−Pi

)

is approximately normally distributed

with mean xT
i β and variance {niπ(xi)(1 − π(xi))}

−1, that is

ln

(

Pi

1 − Pi

)

≈ N(xT
i β, {niπ(xi)(1 − π(xi))}

−1) , for i = 1, . . . , N .

Proof. See Appendix A.

Definition 2.2. (a) Let X̃T = (X̃T
1 , . . . , X̃T

N) be the N×p matrix of trans-
formed (discrete or continuous) explanatory variables X1, . . . , Xp, with

X̃T
i = vix

T
i , where vi = {niPi(1 − Pi)}

1
2 , for i = 1, . . . , N.

(b) Let ỸT = (Ỹ1, . . . , ỸN) be the N × 1 vector of the empirical logit

transform, where Ỹi = vi ln
(

Pi

1−Pi

)

, for i = 1, . . . , N.

(c) By means of (a) and (b) for any β ∈ R
P , define the ‘residual’ as

r̃i = ỹi − x̃T
i β, for i = 1, . . . , N . (4)
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Under the definition of residuals in (4), the logistic regression model can
be considered as a particular case of the multiple linear model studied by
Luong and Garrido (1992) in the context of quadratic distance estimation.

In what follows assume that the random errors

r̃i = ỹi − x̃T
i β0 , for i = 1, . . . , N ,

where βT
0 = (β01, . . . , β0p) is the vector of unknown parameters, are indepen-

dent and identically distributed. Their common distribution function, F0, is
unknown (non-parametric model) but assumed to be absolutely continuous
with a density function f0, symmetric around zero. In fact, using Theorem
2.1 it is simple to check that the expected value and the index of skewness
of the random errors are both equal to zero.

Define, for any β ∈ R
p

F̂
�
j (y) =

N
∑

i=1

wijI(ỹi − x̃T
i β ≤ y) , for j = 1, . . . , p , (5)

where I denotes the indicator function and wij are known weights. Similarly,
define

F 0
j (y) =

N
∑

i=1

wijF0(y) , for j = 1, . . . , p . (6)

Note that F̂
�
j are empirical processes based on the residuals in (4) and the

known weights w1j, . . . , wNj, while F 0
j are the corresponding theoretical dis-

tributions.
Also define for j = 1, . . . , p

Z�j =

[
∫ ∞

−∞

h1(x)dF̂
�
j (x), . . . ,

∫ ∞

−∞

hk(x)dF̂
�
j (x)

]T

=

[

N
∑

i=1

wijh1(ỹi − x̃T
i β), . . . ,

N
∑

i=1

wijhk(ỹi − x̃T
i β)

]T

,

and Z0
j =

[
∫ ∞

−∞

h1(x)dF 0
j (x), . . . ,

∫ ∞

−∞

hk(x)dF 0
j (x)

]T

,

where h1, . . . , hk is a fixed choice of odd functions, i.e. hi(x) = −hi(−x),
for x 6= 0 and hi(0) = 0.
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The minimum quadratic distance estimator (QDE) is the vector β̂ which
minimizes the following sum of quadratic forms

d(β) = (Z�1 − Z0
1)

TQ(Z�1 − Z0
1) + · · · + (Z�p − Z0

p)
TQ(Z�p − Z0

p) , (7)

where Q denotes a k × k constant, symmetric, positive-definite matrix.
Furthermore, since Z0

j = 0 for j = 1, . . . , p, when h is odd, minimizing
(7) with respect to β, is reduced to minimizing

d(β) = [Z�1 ]T QZ�1 + · · ·+ [Z�p ]TQZ�p . (8)

Using Kronecker’s product notation [see, Graham (1981)] and calling Z� =
([Z�1 ]T , . . . , [Z�p ]T )T , then (8) can be expressed more concisely as

d(β) = [Z�]T (Ip ⊗ Q)Z� , (9)

where Ip denotes the identity matrix of order p. The QDE β̂ is the vector
which minimizes (9) with respect to β.

Example 1.

i xT
i yi ni

1 1 281.5 56 68
2 1 750.0 64 75
3 1 1375.0 54 67
4 1 2375.0 68 79
5 1 4000.0 46 56
6 1 6250.0 41 46
7 1 8750.0 33 42
8 1 12500.0 37 45
9 1 20000.0 46 53
10 1 37500.0 53 55
11 1 67500.0 66 70
12 1 90000.0 46 50
13 1 97500.0 83 93

Table 1: Fire data set

We illustrate the implementation of the QDE with a real data set given
in Table 1. These fire claims are from a Danish portfolio of dwellings. For
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each loss amount, the total floor space xi (in square meters) of the insured
dwelling is given; it is the only classification variable available here.

Different xi values define classes i = 1, . . . , 13. The corresponding number
of claims in class i is denoted ni. Then the portfolio is divided in two groups;
losses less than 22,065 Danish Kroner (9 Dkr.∼= 1 US$) belong to the first
group, the total number of which is denoted yi.

Using a simple logistic regression model we estimate the parameters by
two methods: maximum likelihood (MLE) and our QDE (see Table 2). No
outliers were detected using the pre-programmed function lmsreg (least me-
dian of squares robust regression) in S-Plus.

MLE QDE

β̂0 1.650744 1.650744

β̂1 9.106339E-6 8.795589E-6

Table 2: Estimation of parameters

The QDE was then obtained using the optimal weight matrix W =
X̃(X̃T X̃)−1. Since Q = Σ−1 depends on the beta parameter values, we use
the MLE as initial value to obtain Q iteratively. Finally, for the minimization
of d(β) in (9), we chose the following functions

h1(x) =







1 if x > 0
0 if x = 0

−1 if x < 0
h2(x) =

{

x if |x| ≤ M

sign(x)M if |x| > M
.

As expected, the estimators in Table 2 are essentially the same under the
two methods when outliers are not present. Section 2.2 illustrates the effect
that outliers have on both estimators.

2.1 Asymptotic Properties of the QD Estimator

This section establishes the consistency and asymptotic normality of the
QDE. The derivation is based on the results of Luong and Garrido (1992)
for multiple linear regression, adapted here to logistic regression.

Definition 2.3. Let WT = (wT
1 , . . . ,wT

N) be the N × p matrix of weights
used in (5), where wT

i = (wi1, . . . , wip), for i = 1, . . . , N.

6



Theorem 2.2. [Consistency] Consider the N × p matrix of weights W
defined above. Let X̃ be the N × p matrix given in Definition 2.2 (a), where
W and X̃ are assumed to have rank p. If the weights matrix W satisfies
assumption (a1) in Appendix A, then the QDE β̂, obtained minimizing the
function d(β), is consistent.

Proof. Chebyshev’s inequality and assumption (a1) give that Z�0
P

−→ 0,
provided that the density function of the random errors, f0, is symmetric.
This implies that both

d(β0)
P

−→ 0 and d(β̂)
P

−→ 0 , as N −→ ∞ .

Therefore, the consistency of β̂ is guaranteed as long as E(Z�) = 0 at, and
only at, β = β0 when the parametric space is compact. 2

Theorem 2.3. [Asymptotic Normality] Under assumptions (a2)-(a8) in
Appendix A, the central limit property of the QDE β̂ gives

(WTW)−
1
2 (β̂ − β0)

L
−→ N (0,Σ2) , (10)

where Σ2 = [(WT X̃)−1(X̃TW)−1](ST
0 QS0)

−2(ST
0 QΣQS0).

Proof. See Appendix A.

Corollary 2.1. The minimum asymptotic variance of the QDE β̂, Σ1, is
reached when the weights matrix W = X̃(X̃T X̃)−1 and the k × k matrix
Q = Σ−1. That is, Var(β̂) = (X̃T X̃)−1(ST

0 Σ−1S0)
−1.

Proof. The “optimal weights” can be chosen to minimize (28). Using a gene-
ralized Cauchy-Schwartz inequality it is easy to verify that W = X̃(X̃T X̃)−1.

Also, if Σ is invertible, the optimal choice of Q, in the sense of minimizing
the variance covariance matrix Σ1, is Q = Σ−1. 2

2.2 Influence Function of the QD Estimator

Let Ĝi be a degenerate distribution at ỹi and define Gi(ỹi) = F0(ỹi − x̃T
i β0).

Then the QDE, β̂, can be considered as the statistical functional β̂ =
β(Ĝ1, . . . , ĜN), where β(G1, . . . , GN) is defined implicitly as a solution of
the p−system of equations

∂

∂β
[Z�]T (Ip ⊗ Q)Z� = 0 ,
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with Z� = ([Z�1 ]T , . . . , [Z�p ]T )T , and

Z�j =

[

N
∑

i=1

∫ ∞

−∞

wijh1(ỹ − x̃T
i β)dGi(ỹ), . . . ,

N
∑

i=1

∫ ∞

−∞

wijhk(ỹ − x̃T
i β)dGi(ỹ)

]T

.

Proposition 2.1. Let Gl,λ = (1−λ)Gl+λδηl, where δηl denotes a degenerate
distribution at ηl and λ ∈ (0, 1). Let H(β, λ) = ∂

∂�
[Z�]T (Ip ⊗ Q)Z�, if Gl in

Z� is replaced by Gl,λ then the influence function of an observation ηl at x̃T
l

is given by

IF(ηl, x̃
T
l ) = −

[

∂H

∂β

]−1[
∂H

∂λ

]

,

evaluated at β = β0 and λ = 0.

Proof. Under the assumption that Gl,λ = (1 − λ)Gl + λδηl , the influence
function of an observation ηl at x̃T

l can be written as

IF(ηl, x̃
T
l ; β, Gl,λ) =

∂β(G1, . . . , Gl,λ, . . . , GN)

∂λ

∣

∣

∣

λ=0
.

Now, if Gl in Z� is replaced by Gl,λ, we have that

H[β(G1, . . . , Gl,λ, . . . , GN)] = 0 .

Thus

∂H

∂β

∣

∣

∣�̂=�(G1,... ,Gl,λ,...,GN )

λ=0

×
∂β(G1, . . . , Gl,λ, . . . , GN)

∂λ

∣

∣

∣

λ=0
+

∂H

∂λ

∣

∣

∣

λ=0
= 0

and the result follows. 2

Corollary 2.2. If the conditions of Proposition 2.1 hold, then the vector of
influence functions of β̂ can be expressed as

IF(ηl, x̃
T
l ) = (ST

0 QS0)
−1[(WT X̃)(X̃TW)]−1[WT X̃ ⊗ ST

0 Q][wT
l ⊗ h(ηl − xT

l β0)] .

Example 1 (Revisited). We contaminate the data set in Table 1 by adding
the observation xT

14 = (1, 99999), y14 = 5, with a count of n14 = 30. This ob-
servation is an outlier in both y and x, under the logistic regression assump-
tion. The recalculated parameter estimates for the contaminated logistic
regression are given for the two methods in Table 3.
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MLE QDE

β̂0 1.770983 1.618106

β̂1 -2.960833E-6 7.74599E-6

Table 3: Parameter estimates with outlier

From Tables 2 and 3 we see that the MLE’s are greatly affected by the
presence of a single outlier, while the QDE remains relatively stable. We use
here the %-change as a measure of comparison between parameter estimates.

Table 4 clearly shows that the QDE is more robust to outliers than the
MLE.

MLE QDE

β̂0 7.3% 1.9%

β̂1 132.5% 11.9%

Table 4: %-Change due to oulier

3 Robust QD Estimator for the Multinomial

Logistic Regression Model

In this section we propose an extension of the QDE to the multinomial logistic
regression model. We use ideas similar to those developed in Section 2 for
the case of binary responses.

Consider an individual characterized by a vector xT
i = (xi1, . . . , xip) ∈ R

p,

with p (discrete or continuous) explanatory variables. Let G1, . . . , Gg be
all the possible groups in which this individual can be classified. We are
interested in estimating the probability P(Yi = j|xi), for j = 1, . . . , g, that
an individual with explanatory variable xi belong to one of the g groups.

Assume a random sample from populations G1, . . . , Gg and denote by N

the number of different vectors xi. Then let ni be the number of observations
at xi for i = 1, . . . , N and yji the number of Gj−observations at xi, with
ni =

∑g

j=1 yji.

Fixing the last classification group Gg and comparing to it the inclusion
probabilities of every other group, we say that an observation xi satisfies the
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logistic assumptions if

ln

[

P(Yi = j|xi)

P(Yi = g|xi)

]

= xT
i βj , j = 1, . . . , g − 1 ,

or correspondingly,

πj(xi) = P(Yi = j|xi) =
exp (xT

i βj)

1 +

g−1
∑

l=1

exp (xT
i βl)

, j = 1, . . . , g ,

where βT
j = (β1j , . . . , βpj) is a vector of unknown parameters and βg = 0.

Let βT = (βT
1 , . . . , βT

g−1) be the p(g − 1) dimensional column vector of
unknown parameters.

Note that the random variables (Y1i, . . . , Ygi) have a multinomial dis-
tribution with ni trials and cell probabilities π1(xi), . . . , πg(xi). Their joint
probability mass function is

f(y1i, . . . , ygi) =
ni!

y1i! · · · ygi!
π1(xi)

y1i · · ·πg(xi)
ygi ,

with ni =
∑g

j=1 yji, for i = 1, . . . , N.

Then the marginal distribution of the Yji is binomial with index ni and
probability πj(xi), that is

Yji ∼ Binomial(ni, πj(xi)) , j = 1, . . . , g ; i = 1, . . . , N .

The following is an extension of Definition 2.1 to this multinomial case.

Definition 3.1. For i = 1, . . . , N fixed, let (y1i, . . . , ygi) be observations
from (Y1i, . . . , Ygi) ∼ Multinomial[ni, (π1(xi), . . . , πg(xi))]. Then, the relative
frequency Pji is defined, for each j = 1, . . . , g, as

Pji =







1
2ni

if Yji = 0
Yji

ni
if 1 ≤ Yji ≤ ni − 1

1 − 1
2ni

if Yji = ni

, i = 1, . . . , N . (11)

Assumptions: Under the above definitions it is assumed that
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(a) there exist πj(xi) ∈ (0, 1), for j = 1, . . . , g i = 1, . . . , N, such that if
min

1≤i≤N
(ni) −→ ∞, then

(P11, . . . , PgN) −→ (π1(x1), . . . , πg(xN)) , almost surely , (12)

(b) there exists exactly one vector β∗
j ∈ R

p, for each j = 1, . . . , g, such
that, for all βj 6= β∗

j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣























i; πj(xi) =
exT

i �
∗

j

g
∑

l=1

ex
T
i �

∗

l























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ n∗
j >

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣























i; πj(xi) =
exT

i �j

g
∑

l=1

ex
T
i �l























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (13)

where n∗
j = bN

2
c + bp

2
c, with bzc being the largest integer less than or

equal to z.

The argument generalizes that given in Theorem 2.1 for a multinomial
logistic regression model. Again assume that all values of ni are reasonably
large, such that the results are asymptotic for n· =

∑N
i=1 ni → ∞, where

ni

n·

→ ci ∈ (0, 1), with N and p remaining fixed.

Theorem 3.1. Consider the above multinomial logistic model and suppose

that ni is large. Then the multinomial logit transform [ln
(

P1i

Pgi

)

, . . . , ln
(P(g−1)i

Pgi

)

]T

is approximately normally distributed, with mean xT
i β and variance given

by n−1
i [π1(xi)

−1 + · · · + (g − 1)πg(xi)
−1].

Proof. See Appendix B.

Definition 3.2. (a) Let XT = (XT
1 , . . . ,XT

N) be the N(g − 1) × p(g − 1)
matrix of (discrete or continuous) transformed explanatory variables
X1, . . . , Xp, where

XT
i = (xT

1i,x
T
2i, . . . ,x

T
(g−1)i) =











v1ix
T
i 0T · · · 0T

0T v2ix
T
i · · · 0T

...
...

. . .
...

0T 0T · · · v(g−1)ix
T
i











,

with vji = {niPji(1−Pji)}
1
2 , for j = 1, . . . , g−1 and xT

i = (xi1, . . . , xip),
for i = 1, . . . , N.
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(b) Let YT = (YT
1 , . . . ,YT

N) be the N(g−1)×1 vector of multinomial logit

transforms, where YT
i = (Y 1i, . . . , Y (g−1)i), with Y ji = vji ln

(

Pji

Pgi

)

, for

j = 1, . . . , g − 1 and i = 1, . . . , N.

(c) By means of (a) and (b) we define the “residual” as

rji = y
ji
− xT

jiβ , for j = 1, . . . , g − 1 ; i = 1, . . . , N . (14)

In the multinomial logistic model the radom errors are defined by

rji = y
ji
− xT

jiβ
∗
0 , for j = 1, . . . , g − 1 ; i = 1, . . . , N ,

where β∗
0 = (βT

01, . . . , β
T
0(g−1)) is the p(g − 1) dimensional column vector

of unknown parameters. We assume that these errors are independent and
identically distributed. Their common distribution function, F ∗

0 , is unknown
but assumed to be absolutely continuous, with a density function f ∗

0 sym-
metric around zero. Applying Theorem 3.1 one easily checks that both, the
expected value and the index of skewness of these random errors are equal
to zero.

Define

F̂
�
t (y) =

N
∑

i=1

g−1
∑

j=1

wjtiI(y
ji
− xT

jiβ ≤ y) , for t = 1, . . . , p , (15)

where I denotes an indicator function and wjti are known weights. Similarly,
define

F 0
t (y) =

N
∑

i=1

g−1
∑

j=1

wjtiF
∗
0 (y) , for t = 1, . . . , p . (16)

Note that the functions F̂
�
t are empirical processes based on the residuals

and weights wjt1, . . . , wjtN , while F 0
t are the corresponding theoretical dis-

tributions.
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Now we define for t = 1, . . . , p

Z�t =

[
∫ ∞

−∞

h1(x)dF̂
�
t (x), . . . ,

∫ ∞

−∞

hk(x)dF̂
�
t (x)

]T

,

=

[

N
∑

i=1

g−1
∑

j=1

wjtih1(yji
− xT

jiβ), . . . ,

N
∑

i=1

g−1
∑

j=1

wjtihk(yji
− xT

jiβ)

]T

,

and Z0
t =

[
∫ ∞

−∞

h1(x)dF 0
t (x), . . . ,

∫ ∞

−∞

hk(x)dF 0
t (x)

]T

,

where h1, . . . , hk is a fixed choice of odd functions, that is hl(x) = −hl(−x),
for x 6= 0 and hl(0) = 0.

The QDE for the multinomial logistic model (QDM) is the vector β̂M

which minimizes the following sum of quadratic forms

dM(β) = (Z�1 − Z0
1)

TQ(Z�1 − Z0
1) + · · ·+ (Z�p − Z0

p)
TQ(Z�p − Z0

p) , (17)

where Q denotes a k × k constant, symmetric, positive-definite matrix.
Furthermore, since Z0

t = 0 for t = 1, . . . , p, when h is odd, minimizing
(17) with respect to β, is reduced to minimizing

dM(β) = [Z�1 ]TQZ�1 + · · · + [Z�p ]TQZ�p . (18)

Calling Z� = ([Z�1 ]T , . . . , [Z�p ]T )T and using Kronecker’s product notation,
we can express (18) more concisely as

dM(β) = [Z�]T (Ip ⊗ Q)Z� , (19)

where Ip denotes the identity matrix of order p.

The QDM estimator β̂M is the vector which minimizes (19) with respect
to β.

3.1 Asymtotic Properties of the QDM Estimator

In this section we derive the asymptotic properties of the QDM estimator,
such as consistency and asymptotic normality.
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Definition 3.3. Let WT = (WT
1 , . . . ,WT

N) be the N(g − 1) × p matrix of
weights used in (15), where

WT
i =











w11i · · · w1pi

w21i · · · w2pi

...
. . .

...
w(g−1)1i · · · w(g−1)pi











, for i = 1, . . . , N .

Theorem 3.2. [Consistency] Consider the matrix of weights W defined
above and the N(g−1)×p(g−1) matrix X given in Definition 3.2. These are
assumed to have rank p and p(g− 1), respectively. If W satisfies assumption
(b1) given in Appendix B, then the QDM estimator β̂M , obtained minimizing
the distance dM(β), is consistent.

Proof. Chebyshev’s inequality and assumption (b1) give that Z�
∗

0
P

−→ 0,
provided that the density function of the random errors, f ∗

0 , is symmetric.
This implies that both

dM(β∗
0)

P
−→ 0 and dM(β̂M)

P
−→ 0 , as N → ∞ .

Therefore, the consistency of β̂M is guaranteed as long as E(Z�) = 0 at, and
only at β = β∗

0, when the parametric space is compact. 2

Theorem 3.3. [Asymptotic Normality] Under assumptions (b2) to (b8)
given in Appendix B, the asymptotic distribution of the QDM estimator β̂M

is given by

(β̂M − β∗
0)

L
−→ N(0,Σ3) , (20)

where the variance-covariance matrix Σ3 = A3(W
TW)AT

3 (ST
0 QΣ�QS0) and

A3 = (ST
0 QS0)[(X

TW)(WTX)]−1(XTW).

Proof. See Appendix B.

Corollary 3.1. The minimum asymptotic variance Σ3 of the QDM estima-
tor β̂M is reached when the weights matrix W = X(XTX)−1 and the k × k

matrix Q = [Σ∗]−1. In that case Var(β̂M) = (XTX)−1(ST
0 [Σ∗]−1S0)

−1.

Proof. An argument similar to that given for Corollary 2.1, but applied to
the variance-covariance matrix Σ3 completes the proof. 2
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Appendices

A Proof of Theorems in Section 2

Proof of Theorem 2.1: Consider the logit transform

ln
( π(xi)

1 − π(xi)

)

= xT
i β . (21)

Under the condition that neither the number of successes nor the number of
failures is too small, expression (21) is reasonably estimated by

ln
( Yi

ni − Yi

)

= ln

(

Yi

ni

1 − Yi

ni

)

,

which we call the empirical logit transform.
More generally, if the parametric function of interest is L[π(xi)], then

consider L
(

Yi

ni

)

. Now, provided that the variation in Yi

ni
is relatively small we

can write

L
(Yi

ni

)

≈ L[π(xi)] +
(Yi

ni

− π(xi)
)

L′[π(xi)] ,

from which it follows that L
(

Yi

ni

)

is approximately normally distributed with

mean L[π(xi)] and variance

[L′(π(xi))]
2Var

(Yi

ni

)

= [L′(π(xi))]
2π(xi)(1 − π(xi))

ni

.

Now consider L(t) = ln
(

t
1−t

)

, then

ln

(

Yi

ni

1 − Yi

ni

)

≈ N(xT
i β, {niπ(xi)[1 − π(xi)]}

−1) , for i = 1, . . . , N .

2

Assumptions for Asymptotic Properties

(a1) limN→∞

∑N

i=1 w2
ij = 0, for each j = 1, . . . , p,

(a2) limN→∞ WT X̃ exists and is invertible,
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(a3) limN→∞

∑N
i=1 w2

ij(vixil)
2 = 0, for each j = 1, . . . , p ; l = 1, . . . , p,

(a4) limN→∞

∑N

i=1

∣

∣wijvixil

∣

∣ exists for each j = 1, . . . , p ; l = 1, . . . , p,

(a5) ḣi(x) = ∂
∂x

hi(x) is uniformily continuous and Var[ḣ(r̃)] < ∞,

(a6) the vixij values belong to a compact set,

(a7) max
1≤i≤N

{wT
i Σwi} is bounded for all N,

(a8) λ(WTW⊗Σ) → ∞ when N → ∞, where λ(M) represents the smallest
eigenvalue of matrix M and Σ is the variance-covariance matrix of
h(r̃) = [h1(r̃), . . . , hk(r̃)]

T .

Proof of Theorem 2.3: It follows from the form of the asymptotic
variance-covariance matrix of β̂ and the multivariate central limit theorem.

Let ST
0 = [E(ḣ1(r̃)), . . . , E(ḣk(r̃))], where ḣi(x) = ∂

∂x
hi(x) and assume

that the function d, given by (9), is differentiable. Then β̂ satisfies the
following p-system of equations

∂

∂β
[Z�̂]T (Ip ⊗ Q)Z�̂ = 0 . (22)

Under assumptions (a3) to (a6) and using the properties of Kronecker’s
product:

∂

∂β
Z�̂ =

∂

∂β
Z�0 + op(1) , (23)

∂

∂β
Z�0 = −WT X̃⊗ S0 + op(1) , (24)

∂

∂β
[Z�0]T (I⊗ Q)

∂

∂β
Z�0 = (X̃TW)(WT X̃) ⊗ (ST

0 QS0) + op(1)

= (X̃TW)(WT X̃)(ST
0 QS0) + op(1) , (25)

where op(1) stands for a random infinitesimal term converging in probability.
Substitute (24) and (25) in (22) and use a Taylor’s expansion to get

(ST
0 QS0)(X̃

TW)(WT X̃)(β̂ − β0) = −(X̃TW ⊗ ST
0 )(I ⊗ Q)Z�0 + op(1) .

(26)
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Since Z�0 is a vector of sums of independent variables, then under assump-
tions (a7), (a8) and the multivariate central limit theorem:

(WTW ⊗ Σ)−
1
2Z�0 L

−→ N(0, I) . (27)

Using (27) and (26), we have that

Var[−(X̃T W⊗ST
0 )(I⊗Q)Z�0 ] = (X̃TW⊗ST

0 )(WTW⊗QΣQ)(WT X̃⊗S0) .

Then (β̂−β0) is asymptotically normal with asymptotic variance-covariance
matrix

Σ1 = A(WTW ⊗ QΣQ)AT ,

where A = [(ST
0 QS0)(X̃

TW)(WT X̃)]−1[X̃TW ⊗ ST
0 ].

Finally Σ1 can be expressed as

Σ1 = (WT X̃)−1(WTW)(X̃TW)−1(ST
0 QS0)

−2(ST
0 QΣQS0) , (28)

or equivalently,

(WTW)−
1
2 (β̂ − β0)

L
−→ N(0,Σ2) ,

where Σ2 = (WT X̃)−1(X̃TW)−1(ST
0 QS0)

−2(ST
0 QΣQS0). 2

B Proof of Theorems in Section 3

Proof of Theorem 3.1: Consider the multinomial logistic model link
function

l[π(xi)] =
[

ln
(π1(xi)

πg(xi)

)

, . . . , ln
(πg−1(xi)

πg(xi)

)]T

= xT
i β , i = 1, . . . , N ,

(29)

where π(xi) = (π1(xi), . . . , πg(xi)).
Suppose that πj(xi) and πg(xi) are never “too small”. Then a reasonable

estimate of (29) is l(Y1i

ni
, . . . ,

Ygi

ni
) =

[

ln
(

Y1i

Ygi

)

, . . . , ln
(

Y1i

Ygi

)]T

, which we call

the empirical logit transform. In general if the function of interest is l[π(xi)],

then consider l(Y1i

ni
, . . . ,

Ygi

ni
) as an estimator.
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Now suppose that the variation in
Yji

ni
is relatively small and consider a

Taylor’s series expansion

l
(Y1i

ni

, . . . ,
Ygi

ni

)

≈ l[π(xi)] +

g
∑

i=1

l̇j[π(xi)]
(Yji

ni

− πj(xi)
)

, (30)

where l̇j[π(xi)] = ∂
∂zj

l(z1, . . . , zg)
∣

∣

∣

z1=π1(xi),... ,zg=πg(xi)
.

Using (30) it can be seen that l
(

Y1i

ni
, . . . ,

Ygi

ni

)

is approximately normally

distributed with mean l[π(xi)] = xT
i β and variance

Var

[

l
(Y1i

ni
, . . . ,

Ygi

ni

)

]

=

g
∑

j=1

{l̇j [π(xi)]}
2Var

(Yji

ni

)

+2
∑

j>j∗

l̇j [π(xi)]l̇j∗ [π(xi)]Cov
(Yji

ni
,
Yj∗i

ni

)

,

= n−1
i [π1(xi)

−1 + · · · + πg−1(xi)
−1 + (g − 1)πg(xi)

−1] .

2

Assumptions for Asymptotic Properties

(b1) limN→∞

∑N

i=1

∑g−1
j=1 w2

jti = 0, for each t = 1, . . . , p,

(b2) limN→∞(XTW)(WTX) exists and is invertible,

(b3) limN→∞

∑N
i=1

∑g−1
j=1 w2

jti[vjixti]
2 = 0, for each t = 1, . . . , p,

(b4) limN→∞

∑N
i=1

∑g−1
j=1

∣

∣wjtivjixti

∣

∣ exists for each t = 1, . . . , p,

(b5) ḣi(x) = ∂
∂x

hi(x) is uniformily continuous and Var[ḣ(r)] < ∞,

(b6) the vjixti values belong to a compact set,

(b7) max
1≤i≤N

{wT
i Σ�wi} is bounded for all N,

(b8) λ(WTW ⊗ Σ�) → ∞ if N → ∞, where λ(M) represents the smallest
eigenvalue of matrix M and Σ� is the variance-covariance matrix of
h(r) = [h1(r), . . . , hk(r)]

T .
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Proof of Theorem 3.3: It follows from the form of the asymptotic
variance-covariance matrix of β̂M and the multivariate central limit theorem.

Consider ST
0 = [E(ḣ1(r)), . . . , E(ḣk(r))], where ḣi(x) = ∂

∂x
hi(x) and as-

sume that the function dM , given by (19), is differentiable. Then β̂M satisfies
the following p(g − 1)-system of equations

∂

∂β
[Z�̂M ]T (Ip ⊗ Q)Z�̂M = 0 . (31)

From assumptions (b3) to (b6) and the properties of Kronecker’s product:

∂

∂β
Z�̂M =

∂

∂β
Z�

∗

0 + op(1) , (32)

∂

∂β
Z�

∗

0 = −WTX⊗ S0 + op(1) , (33)

∂

∂β
[Z�

∗

0 ]T (I ⊗ Q)
∂

∂β
Z�

∗

0 = (XTW ⊗ ST
0 )(I⊗ Q)(WTX ⊗ ST

0 ) + op(1)

= (XTW)(WTX)(ST
0 QS0) + op(1) , (34)

where op(1) stands for a random infinitesimal term term converging in pro-
bability.

Substite (33) and (34) in (31) and use a Taylor’s expansion to get

(ST
0 QS0)(X

TW)(WTX)(β̂M − β∗
0) = −(XTW ⊗ ST

0 )(I ⊗ Q)Z�
∗

0 + op(1) .

(35)

Since Z�
∗

0 is a vector of sums of independent variables, then under assump-
tions (b7), (b8) and the multivariate central limit theorem:

Z�
∗

0
L

−→ N(0,WTW ⊗ Σ�) . (36)

From (36) and (35), we obtain that

Var[(XTW⊗ST
0 )(I⊗Q)Z�

∗

0 ] = (XTW⊗ST
0 )(WTW⊗QΣ�Q)(WTX⊗ST

0 ) .

Thus
Var(β̂M) = A2(W

TW ⊗ QΣ�Q)AT
2 ,

where A2 = (ST
0 QS0)[(X

TW)(WTX)]−1(XTW ⊗ ST
0 ), or equivalently,

Σ3 = A3(W
TW)AT

3 (ST
0 QΣ�QS0) ,

where A3 = (ST
0 QS0)[(X

TW)(WTX)]−1(XTW).

Therefore (β̂M −β∗
0) is asymptotically normal with asymptotic variance-

covariance matrix Σ3. 2
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