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Projective system approach to the martingale
characterization of the absence of arbitrage ¤

Alejandro Balbás y Miguel Ángel Mirás z

María José Muñoz-Bouzo x

Abstract: The equivalence between the absence of arbitrage and the exis-
tence of an equivalent martingale measure fails when an in…nite number of trad-
ing dates is considered. By enlarging the set of states of nature and the prob-
ability measure through a projective system of topological spaces and Radon
measures, we characterize the absence of arbitrage when the time set is count-
able.
Keywords: Arbitrage, Martingale Measure, Asset Pricing, Radon Measure,

Projective System.

1 Introduction
For a frictionless securities market, several authors have proved di¤erent versions
of the, so called, Fundamental Theorem of Asset Pricing (see for instance [4], [5],
[8], [9], [10] or[12]). In the case of a …nite number of assets and a …nite discrete
time, this result simply states that the absence of arbitrage characterizes the
existence of an equivalent martingale measure.
But things go wrong if one passes to in…nite time (see [1]) or to in…nitely

many securities (see [9]). In both situations, the characterization of an equiva-
lent martingale measure for the price process of the assets needs notions such as
“no free lunch” or “no free lunch with bounded risk”, generalizing the concept
of “no arbitrage”.
The purpose of this paper is to formulate the problem for in…nite discrete

time in a di¤erent mathematical setting, in order to obtain a theorem of asset
pricing which may be phrased using only the classical notion of “no arbitrage”.
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In securities market models with a countable number of trading dates and a
…nite number of assets, the absence of arbitrage allows us to construct a projec-
tive system of topological spaces and a projective system of regular measures.
Under …nancially sound mild assumptions, the projective limit measure is a
martingale measure on the projective limit space. Since, in general, the projec-
tive limit space strictly contains the initial space of states of nature the initial
probability measure and the martingale measure are not equivalent. However,
we show that the projections of both measures on every instant of time are
equivalent. Therefore, there exist strictly positive Radon-Nikodym derivatives
between the corresponding projections.
The paper is outlined as follows. Section 2 summarizes some basic notions

and properties of projective systems of Radon measures and introduces the se-
curities market model. Section 3 develops the construction of the projective
model. Relying on the Prokhorov’s theorem on the existence of projective lim-
its of projective systems of measures, we prove in Section 4 our main result,
Theorem 2, that characterizes the absence of arbitrage by the existence of a
projectively equivalent martingale measure. Finally, Section 5 concludes the
paper.

2 Preliminaries
First, we recall the concepts of a projective system of topological spaces, a
Radon measure and a projective system of Radon measures (see [2] or [11] for
further details).
Let Y be an arbitrary Hausdor¤ topological space and ¯ its Borel ¾-algebra.

A Radon measure m on Y is a positive measure on ¯ satisfying that m is locally
…nite (every point has a neighborhood which has a …nite m-measure) and m is
inner regular on ¯ (for every B 2 ¯, m(B) = supfm(K) : K ½ B;K compactg).
If m is a Radon measure on Y , Z is a Hausdor¤ topological space and

f : Y ! Z is a continuous map, the image measure f(m) given by f(m)(B) =
m(f¡1(B)), for all Borel-measurable set B on Z, is a Radon measure on Z.
Let (I;·) be a directed set. Consider a family of Hausdor¤ topological

spaces (Xi)i2I and the continuous maps ¼ij : Xj ¡! Xi; i; j 2 I; i · j. We
say that (Xi)i2I is a projective system of Hausdor¤ topological spaces with
maps ¼ij, if ¼ik = ¼ij ± ¼jk for all i; j; k 2 I , i · j · k.
The projective limit of the projective system (Xi)i2I is the set

X = lim
i2I
Xi =

(
(xi)i2I 2

Y
i2I
Xi : xj = ¼jk(xk) if j; k 2 I, j · k

)

endowed with the relative product topology.
For each i 2 I, the natural projection ¼i : X ¡! Xi is continuous. Moreover,

¼i = ¼ij ± ¼j for all i; j 2 I, i · j.
A projective system of Radon measures is a family of Radon measures mi

on Xi, i 2 I, such that ¼ij(mj) = mi if i; j 2 I , i · j. A Radon measure m on
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the projective limit X is the projective limit of the measures (mi)i2I , denoted
by m = lim

i2I
mi, if ¼i(m) = mi for all i 2 I .

The following existence result is adapted from [11].

Theorem 1 (Prokhorov) A projective system (mi)i2I of …nite Radon mea-
sures has a projective limit if and only if given " > 0 there exists a compact set
K ½ X, such that mi(Xi n ¼i(K)) · ", for all i 2 I.

An important consequence is given in the following corollary whose proof
may be also found in [2].

Corollary 1 A countable projective system (mn)n2N of …nite Radon measures
has a projective limit.

Now, we describe our model of a frictionless …nancial market with a …nite
number of assets n 2 N and a countable set of trading dates T . For convenience,
let us take T = N. The information available to the agents at every time is
described by a probability space (­;§; ¹) and an increasing family of sub-¾-
algebras of §, f§tgt2T , whose union generates §.
The prices of the risky stocks are given by a stochastic process (P (t; ))t2T ,

with values in Rn, adapted to the …ltration f§tgt2T . Naturally, for every j =
1 : : : ; n, ! 2 ­ and t 2 T , Pj(t; !) is the price of Asset j if the true state of
nature revealed in t is !.

We will suppose that the …rst security is a riskless bond. Without loss of
generality, see [5], assume that the prices of the stocks have been discounted by
the price of the bond, that is, take P1(t; ) = 1 for all t 2 T .
The market is said to satisfy the absence of arbitrage if for every t 2 T ,

t ¸ 1, and every bounded §t¡1-measurable function x : ­ ¡! Rn,

hx(!); P (t; !)¡ P (t¡ 1; !)i = 0, ¹ almost surely
whenever

hx(!); P (t; !)¡ P (t¡ 1; !)i ¸ 0, ¹ almost surely;
where h:; :i denotes the inner product on Rn.
The absence of arbitrage prevents the existence of zero cost portfolios with

positive return. Any reasonable model of a …nancial market should satisfy this
condition, because, otherwise, some astute agent would take advantage of the
arbitrage opportunities making riskless pro…ts without investment.

3 The discrete time projective model
We start by imposing an additional condition on the …ltration f§tgt2T . Suppose
that for every t 2 T , there exists a countable partition (Ajt )1j=1 of ­, formed by
events of positive probability, that generates §t. Because the …ltration f§tgt2T
is increasing, the partition (Ajt)

1
j=1, t 2 T , t ¸ 1, can be chosen to satisfy the

following properties:
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P1) Given j 2 N and t 2 N, there is a unique ©t(j) 2 N such that Ajt ½ A©t(j)t¡1 .

P2) Aht¡1 =
S
j2©¡1t (h)A

j
t , for every h 2 N, and every t 2 N.

Next, we see that our in…nite discrete time model leads in a natural way to
a projective system of spaces and of measures.
Consider, for every t 2 T , the countable set ­t = fAjt : j 2 Ng endowed with

the discrete topology. Obviously, every ­t is a metrizable Hausdor¤ space whose
Borel ¾-algebra is just §t. For every t 2 T , t ¸ 1, we de…ne the continuous
map ¼t¡1;t : ­t ¡! ­t¡1 by ¼t¡1;t(A

j
t) = A

©t(j)
t¡1 . Hence, the family (­t)t2T is

a projective system of Hausdor¤ topological spaces with maps ¼t¡1;t. Let us
denote by ¹­ its projective limit and by ¼t : ¹­ ¡! ­t the natural projection of ¹­
in ­t, t 2 T . Trivially, ¹­ is a metrizable Hausdor¤ space and all the projections
¼t; t 2 T , are continuous. Denote by ¹§ the Borel ¾-algebra of ¹­.

Since, for every t 2 T , the family (Ajt )1j=1 is a partition of ­, given ! 2 ­
there exists a unique t(!) 2 N such that ! 2 At(!)t . Therefore, the map I : ­!
¹­, I(!) =

³
A
t(!)
t

´1
t=0

is well de…ned. The map I identi…es every state of nature

! 2 ­ with the "path" or "trajectory" in ¹­ formed by the events At(!)t to which
! belongs in each instant of time t 2 T .
Given ¹! = (A¹!t )

1
t=0 2 ¹­, one easily obtains that I¡1(¹!) =

T1
t=0A

¹!
t . There-

fore, I is one to one if and only if for every !;!0 2 ­, ! 6= !0, there exist t 2 T
and i; j 2 N; i 6= j, for which ! 2 Ait and !0 2 Ajt . The map I fails to be one to
one if there are two di¤erent states of nature with identical ”paths” over time.
From the …nancial point of view, if two states of nature are indistinguishable
over time, one can consider that they are the same. So, we will suppose, from
now on, that I is an injection.
For every t 2 N, 't = ¼t ± I is the natural projection of ­ on ­t. Clearly,

Ajt = '
¡1
t (Ajt ) for every A

j
t 2 ­t.

Now, we replicate the …ltration structure in the projective system. For every
t 2 T , let ¹§t be the ¾-algebra on ¹­ generated by the countable partition of ¹­,

f¼¡1t¡1(Aht¡1) : Aht¡1 2 ­t¡1g:

The family
©
¹§t
ª1
t=0

is a …ltration on ¹­ and ¼¡1t¡1(A
h
t¡1) =

S
j2©¡1t (h)¼

¡1
t (Ajt ),

if Aht¡1 2 ­t¡1.
Let us show that the injection I is consistent with the …ltration structures on

­ and ¹­. More explicitly, I is a §-¹§ measurable map. Indeed, for any s; j 2 N
s\
t=0

¼¡1t (A
j
t ) 2 §

because

I¡1
Ã

s\
t=0

¼¡1t (Ajt)

!
=

s\
t=0

'¡1t (Ajt ) =
s\
t=0

Ajt 2 §s:
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Furthermore, I is a §t-¹§t measurable map for every t 2 T . Indeed, it
su¢ces to prove that, for each j 2 N, the inverse image by I of the set ¼¡1t (Ajt)

is §t-measurable. But, I¡1
³
¼¡1t (A

j
t)
´
= '¡1t (Ajt ) = A

j
t , and this set, obviously,

belongs to §t. Moreover, since ¼t is continuous, 't = ¼t±I is §t-§t measurable.
The next step is to introduce measures in the projective system. First of

all, as I is §-¹§ measurable, ¹¹ = I(¹) is a probability measure on (¹­; ¹§). On
the other hand, …x t 2 T and consider the image measure ¹t = 't(¹) on
(­t;§t). Certainly, ¹t coincides with the restriction of ¹ to §t. Straightforward
computations show that (¹t)

1
t=0 is a projective system of Radon measures whose

projective limit is ¹¹. So, ¹¹ = lim
t2N

¹t is a Radon measure and can be view as the

extension of ¹ to ¹­.
Finally, we associate with every §t-measurable function h : ­ ¡! Rn a ¹§t-

measurable function ¹h : ¹­! Rn in the following way. Since h is §t-measurable
and §t is generated by the countable partition (A

j
t )
1
j=1, h must be constant on

every Ajt 2 ­t. Thus, we de…ne the function ¹h : ¹­ ! Rn by ¹h(¹!) = h(¼t(¹!)).
Obviously, ¹h extends the function h, in fact, ¹h(I(!)) = h(!), for all ! 2 ­.
In particular, the stocks price process (P (t; ))t2T gives rise to an stochastic
process

¡
¹P (t; )

¢1
t=0

on ¹­ adapted to the …ltration
©
¹§t
ª1
t=0
.

In summary, we have enlarged our original securities market model: the prob-
ability space (­;§; ¹), the …ltration f§tg1t=0 and the price process (P (t; ))1t=0,
to a new one, with the corresponding probability space (¹­; ¹§; ¹¹), …ltration©
¹§t
ª1
t=0

and process
¡
¹P (t; )

¢1
t=0
. This new description of the discrete-time

…nancial market will be called the projective model.

4 Characterization of the absence of arbitrage
in the projective model

We begin this section by translating the notion of absence of arbitrage to pro-
jective terms.

Proposition 1 The market satis…es the absence of arbitrage if for each t 2 T ,
t ¸ 1, and every bounded §t¡1-measurable function x : ­! Rn,

h¹x(¹!); ¹P (t; ¹!)¡ ¹P (t¡ 1; ¹!)i = 0, ¹¹ almost surely
whenever

h¹x(¹!); ¹P (t; ¹!)¡ ¹P (t¡ 1; ¹!)i ¸ 0, ¹¹ almost surely.
De…nition 1 We say that a measure ¹̧ on ¹­ is projectively equivalent to ¹¹ if
¸t = ¼t(¹̧) is equivalent to ¹t for all t 2 T , i.e. if ¸t and ¹t have the same null
events.

We would like to note that two measures ¹̧ and ¹¹ on ¹­ can be projectively
equivalent without being equivalent. An instance of this situation can be found
in Example 1.
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De…nition 2 A risk-neutral projective probability measure (or projectively equiv-
alent martingale measure) is a probability measure ¹̧ on ¹­, projectively equiva-
lent to ¹¹, such that the stochastic process

¡
¹P (t; )

¢1
t=0

is a martingale under ¹̧,
i.e. for every t 2 T , t ¸ 1, E¹̧ [ ¹P (t; )j¹§t¡1] = ¹P (t¡ 1; ). Here, E¹̧ denotes the
conditional expectation operator associated with ¹̧.

We can already state and prove the main result of this paper: the equivalence
between the absence of arbitrage and the existence of a projectively equivalent
martingale measure.

Theorem 2 The market satis…es the absence of arbitrage if and only if there
exists a risk-neutral projective probability measure.

Proof: First, we prove the necessity. Suppose that the market is arbitrage
free. The Fundamental Theorem of Asset Pricing, see for instance [3], [6], [7], [8]
or [9], asserts that for any time interval of …nite length, the absence of arbitrage
implies the existence of an equivalent martingale measure. In particular, for
every t ¡ 1 2 T , t ¸ 1, there exists a probability measure µt on §t, equivalent
to ¹t, such that (P (t¡ 1; ); P (t; )) is a martingale under µt and the …ltration
(§t¡1;§t), i.e. Eµt [P (t; )j§t¡1] = P (t ¡ 1; ). In addition, µt can be chosen
such that the density ft = dµt

d¹ > 0 is bounded, see [9]. Therefore, we can write

P (t¡ 1; )E[ftj§t¡1] = E[ftP (t; )j§t¡1]: (1)

The relation 1 = E
h

ft
E[ftj§t¡1] j §t¡1

i
holds because ft

E[ftj§t¡1] 2 L1(§t).
Consequently, for every §t¡1- measurable function g : ­! R, one hasZ

Aht¡1

gd¹ =

Z
Aht¡1

g
ft

E[ftj§t¡1]d¹; A
h
t¡1 2 ­t¡1: (2)

So, in particular,

P (t¡ 1; ) = E
·
P (t; )

ft
E[ftj§t¡1] j §t¡1

¸
: (3)

The idea of this part of the proof is to build a projective system of Radon
measures (¸t)

1
t=0 whose projective limit, ¹̧, is a measure on ¹§ with all the wanted

properties.
Given t 2 T , take the function qt 2 L1(§t) de…ned by

qt =

8>>><>>>:
1 if t = 0

tQ
j=1 fj

tQ
j=1 E[fj j§j¡1]

if t 2 T; t ¸ 1 :

Let ¸t be the measure on §t whose Radon-Nikodym derivative with respect
to ¹t is qt, i:e:, qt =

d¸t
d¹t
. Obviously, ¸t and ¹t are equivalent measures and,

therefore, since ¹t is a Radon measure, ¸t is also a Radon measure.
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Let us prove, step by step, that (¸t)
1
t=0 leads to a risk neutral projective

probability measure.
Step 1 The family (¸t)

1
t=0 is a projective system of Radon measures.

We have to check that for every t 2 T , t ¸ 1,
¼t¡1;t(¸t) = ¸t¡1: (4)

Given any Aht¡1 2 ­t¡1,
¼t¡1;t(¸t)(Aht¡1) = ¸t(¼

¡1
t¡1;t(A

h
t¡1)) =

X
j2©¡1t (h)

¸t(A
j
t)

=

Z
S
j2©¡1t (h)

Atj

qtd¹ =

Z
S
j2©¡1t (h)

Atj

qt¡1d¹:
(5)

Note that the last identity comes from (2), because
S
Ajt j2©¡1t (h) 2 §t¡1 and

qt =
ft

E[ftj§t¡1]qt¡1.
On the other hand,

¸t¡1(Aht¡1) = ¸t¡1

µ[
j2©¡1t (h)

Ajt

¶
=

Z
S
j2©¡1t (h)

Ajt

qt¡1d¹: (6)

Combining (5) and (6) we obtain (4).
Step 2 For every t 2 T , t ¸ 1, ¸t¡1 is the restriction of ¸t to §t¡1.
Fix t 2 T , t ¸ 1. We will prove that ¸t and ¸t¡1 coincide on §t¡1. Given

Aht¡1 2 ­t¡1,

¸t¡1(Aht¡1) =
Z
Aht¡1

qt¡1d¹ =
X

j2©¡1t (h)

Z
Ajt

qt¡1d¹

According to (2),X
j2©¡1t (h)

Z
Ajt

qt¡1d¹ =
X

j2©¡1t (h)

Z
Ajt

qt¡1
ft

E[ftj§t¡1]d¹

=

Z
S
j2©¡1t (h)

Atj

qtd¹ = ¸t(A
h
t¡1):

Then, truly, ¸t¡1(Aht¡1) = ¸t(A
h
t¡1).

Step 3 For every t 2 T , t ¸ 1, the …nite process (P (j; ))tj=0 is a martingale
under ¸t.

Multiplying (3) by qt¡1 we arrive to the relation

P (t¡ 1; )qt¡1 = E [P (t; )qtj§t¡1] :
Therefore, Z

Aht¡1

P (t¡ 1; )d¸t¡1 =
Z
Aht¡1

P (t; )d¸t; A
h
t¡1 2 ­t¡1: (7)
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However, from Step 3 we derive the relationZ
Aht¡1

P (t¡ 1; )d¸t¡1 =
Z
Aht¡1

P (t ¡ 1; )d¸t; Aht¡1 2 ­t¡1: (8)

Finally, the equalities (7) and (8) yield P (t¡ 1; ) = E¸t [P (t; )j§t¡1].
Step 4 The projective limit ¹̧ of (¸t)

1
t=0 is a Radon measure on ¹§ projectively

equivalent to ¹¹.
According to the corollary following the Prokhorov theorem, the projective

limit of any countable projective system of Radon measures exists and is a
Radon measure. Consequently, there exists ¹̧ = lim

t2T
¸t, the projective limit of

(¸t)
1
t=0, and ¹̧ is a Radon probability measure on ¹­. As ¸t and ¹t are equivalent

for all t 2 T , t ¸ 1, the measures ¹̧ and ¹¹ are projectively equivalent.
Step 5 The process

¡
¹P (t; )

¢1
t=0

is a martingale with respect to ¹̧ and the
…ltration

©
¹§t
ª1
t=0
.

We have to prove thatZ
¼¡1t¡1(A

h
t¡1)

¹P (t¡ 1; )d¹̧ =
Z
¼¡1t¡1(A

h
t¡1)

¹P (t; )d¹̧; Aht¡1 2 ­t¡1: (9)

Clearly, given Ajt 2 ­t, the restriction of ¹P (t; ) to ¼¡1t (A
j
t ) coincides with

the restriction of P (t; ) to Ajt . Analogously, the restriction of ¹P (t ¡ 1; ) to
¼¡1t¡1(A

h
t¡1) equals the restriction of P (t¡ 1; ) to Aht¡1, for every Aht¡1 2 ­t¡1.

Since ¼t(¹̧) = ¸t and ¼t¡1(¹̧) = ¸t¡1, relation (9) is equivalent to (8), that has
been already proven.
In summary, ¹̧ is a risk-neutral projective probability measure and the ne-

cessity part is completed.
We turn now to the su¢ciency. Let ¹̧ be a projectively equivalent martingale

measure. Then, for every ¹§t¡1-measurable bounded function ¹h : ¹­! Rn,

E¹̧[h¹h; ¹P (t; )¡ ¹P (t¡ 1; )i] = 0: (10)

If, in addition, h¹h(¹!); ¹P (t; ¹!)¡ ¹P (t¡ 1; ¹!)i ¸ 0, ¹¹ almost surely, then we have
that h¹h(¹!); ¹P (t; ¹!) ¡ ¹P (t ¡ 1; ¹!)i ¸ 0, ¹̧ almost surely, because ¹¹ and ¹̧ are
projectively equivalent. Then, from (10) and Proposition 1 we conclude that
the absence of arbitrage holds in the market.

Example 1 (Back and Pliska) Let us examine, under our method, the ex-
ample of Back and Pliska [1]. Imagine the random experiment of rolling a fair
die until the …rst number di¤erent from 6 comes out. Denote by ! 2 N the num-
ber of the roll when this occurs. Clearly, the probability of every event ! 2 N is
¹(!) = 5

6
(1
6
)!¡1. Suppose that only two securities can be sold and bought every

time t 2 N that we roll the die. The …rst one is the riskless bond. The price
process of the second security is

P t2(!) =

8><>:
1 if t = 0¡
1
2

¢t
if 0 < t < !

(!2 + 2! + 2)
¡
1
2

¢!
if t ¸ !

:
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This market has no arbitrage but no measure on N is an equivalent martingale
measure to ¹.

It is easy to check that for this example ¹­ = N[ f1g, the Alexandro¤ com-
pacti…cation of N. The projective model just adds one more event corresponding
to the point of in…nity: ”Number 6 comes out in all the rolls”. Obviously, the
point of in…nity is a null event, i.e. ¹¹(1) = 0. Since the market is arbitrage
free, there must be a projectively equivalent martingale measure. Following the
constructive procedure of Theorem 2, one …nds that the measure ¹̧(!) = 1

2!(!+1)
,

¹̧(1) = 1
2 , is a risk-neutral projective probability measure.

Observe that ¹̧ assigns positive probability to the ¹¹-null event 1 and, con-
sequently, ¹¹ and ¹̧ are not equivalent measures. However, as pointed out by
Theorem 2, ¹¹ and ¹̧ are projectively equivalent.

5 Conclusions
For an in…nite number of trading dates the characterization of the arbitrage
absence by the existence of equivalent martingale measures presents some di¢-
culties, and the price process of the assets needs notions such as “no free lunch”
or “no free lunch with bounded risk”, generalizing the concept of “no arbitrage”.
This paper has formulated the problem for in…nite discrete time in a di¤erent

mathematical setting, and it has obtained a theorem of asset pricing which may
be phrased using only the classical notion of “no arbitrage”.
The martingale measure is built as a projective limit of Radon measures

and extends the initial probability space. Both the martingale measure and the
initial probability measure generate equivalent projections.
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