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1 Introduction

Exponentially shrinking transistor size has resulted in a tremendous increase of the computational and
memory resources available, making it impossible for the system designer to work at register transfer level
(RTL) [1]. At present, the researchers focus on the system-level design, which addresses the synthesis
of complete systems based on coarse-grain specifications. This focus is driven by the stringent time-to
market requirements. To keep the pace with the market, a solution provider should be able to produce
the solution to the given problem before his/her competitor. Therefore, the emphasis is given to system
design methodologies that can minimize the design time and accuracy.

From the very first computer systems, the emphasis has been on the correctness of the result, in
addition to the cost of the system, and the execution time of the application. With the emergence of
embedded systems, the requirement for the correct results has become more stringent because these
systems are being deployed to the applications in which incorrect results may translate into loss of life or
property. In case of reliability-critical systems, the dedicated and possibly multiple replicated processors
can be used to execute the critical tasks. Even for the common applications used everyday, a minimum
level of reliability should be guaranteed. Thus, the reliability has to be engineered in the same way as
the functionality of an embedded system during the whole life cycle of a product. Most of the existing
approaches for the design of a reliable system initially design the functionality of the desired system then
they analyze the reliability figures the design. After which they replicate and/or exchange critical parts
of the embedded system in order to meet given reliability constraints. Addressing reliability in the later
stages of the design process may lead to a complete redesign of the system. Therefore, the reliability of
the system must be considered simultaneously along with other attributes.

Early computers were prone to hard errors due to overheating of components. Over the decades, the
rate of hard errors occurring in digital devices has greatly reduced due to the use of VLSI devices. The
increased level of integration has given rise to soft errors occurring in digital devices Feng et al. [2]. They
observed that the soft error rate increases almost exponentially with each new technology generation.
The scaling of the feature size has also increased the static power dissipation of the CMOS based VLSI
device, thereby causing again an increase in the hard error rate, as reported by Srinivasan et al. [3].
Therefore, a system cannot be called reliable if it ignores hard errors.

It is hence required that embedded systems used in critical systems continue their operation even
in the presence of these perturbations. In spite of the disadvantages of decreasing transistor size men-
tioned, the increased number of digital resources on the chip (e.g., 1000 core processor built by Scottish
researchers [4]) could be used to provide the needed redundancy to continue operation of the system
in the presence of these errors. However, the digital processing resource should be assumed to be fail
non-silent. As observed in [5] the fail-silent resources cost twice as much, at minimum, as compared to
the fail non-silent resources.

For these reasons, the reliability model for a system should embody both hard and soft errors. The new
data structures and the accompanying algorithms must be constructed to help evaluate the reliability of
the system considering both hard and soft errors occurring in systems. In addition, any embedded system
design process should consider such a reliability model to ensure a minimum level of assurance against
these errors. The execution time of the applications executing on digital processing resources must be
one of the main considerations of the system design. One of the important steps in embedded system
design is to evaluate the time required for the execution of the task graph on the given architecture, for
instance, the input from a sensor (or a sensor network) has to be processed before the arrival of the next
input.
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An application implemented in an embedded system can be modeled by flow graphs consisting of a
number of tasks, with the edges in the graph representing the dependence between the tasks. The number
of the digital resources allocated for an embedded system can be greater than the minimum number of
resource required for the functionality of the application being executed on the resources. Such a system
can exist in a number of states depending upon whether any of its resource has experienced hard errors.
When none of the resources allocated to the embedded system are affected by hard errors, then each task
in the task flow graph should be mapped to the resource which has minimum possibility of being affected
by a soft error while executing it. The reliability of the system in that state (when all the resources
are without hard error) depends upon the individual probabilities of every task being executed on their
respective resources without soft errors. If there is a hard error in a digital resource that was originally
allocated to one of the task then the system must be reconfigured following the rule of mapping the task
in the task flow graph to the resource from the set of remaining resources that has the minimum possi-
bility of being affected by a soft error. Again, the reliability of the system in that state (when one of the
previously mapped resources has a hard error) depends upon the individual probabilities of every task
being executed on its respective resources without soft errors. The probability of the system being in any
state depends upon the probability of the individual resources constituting the system being affected by
hard errors. In this manner, the lifetime system reliability can be defined as the reliability of system aver-
aged over various states of the system, where the minimum functionality of the application can be defined.

A system exists in two types of states. One type of state dictates when the system cannot perform
the required functionality, due to the hard errors in the resources. Whereas in second type of state, it can
be reconfigured to provide the desired functionality, in spite of the hard errors which may have affected
some of the resources. When the system is in the second type of state then the tasks should be allocated
to those resources which can execute them efficiently. The values of the execution time of the system in
these types of states can be calculated. The probability of the system being in any state depends upon
the probability of the individual resources constituting the system being affected by hard errors. The
lifetime system execution time is therefore the execution time averaged over the life time of the system.

Fig. 1 shows the advocated abstract system-level design process describing a procedure of constructing
the reliable systems while considering the lifetime system execution time. To initialize the design process,
it requires the specification of the system represented as the system specification graph (see Sec. 3) as
the input. Utilizing the specification graph, a data structure named as the system error decision diagram
is constructed. This tool is then used to efficiently evaluate lifetime reliability and execution time of the
desired system.

The proposed model denoted as System FError Decision Diagram (SEDD) is characterized by the
following novel features;

1. The model combines the system specification presented as a task graph, the platform specification
presented as a resource graph, and the mapping information into one diagram. It provides information
on the system reliability and execution time. This model is constructed only once for the whole design
space exploration process.

2. The SEDD is a complex diagram, which considers both hard and soft errors differently. The hard
errors are modeled as nodes of a binary decision diagram (BDD) and the soft errors are treated as
nodes of a zero-suppressed binary decision diagram (ZBDD).

Given the system specification a system design methodology is constructed to design system optimized
for lifetime reliability and execution time.
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Fig. 1: Abstract Design Flow for Reliable System Design

A nested genetic algorithm has been constructed to search for the Pareto-optimal DAs in the multi-
objective search space. For the genetic algorithm presented in our work, unlike the ones presented in the
published research, a new system model is not needed to be constructed for the evaluation of each indi-
vidual of the genetic algorithm. Lifetime reliability and execution time value is calculated for the system
design represented by the individual. To calculate the lifetime values, the reliability and execution time
values for each system state is calculated. In this work, we present a novel and efficient means to evaluate
the reliability value for the system in a particular state. However, to calculate the best execution time
of the system in the given state, a separate genetic algorithm is implemented. Similarly, the Pareto-set
maintained through the genetic algorithm is used to calculate the score value of the individual. At the
end of the search process, a human designer is presented with these DAs. Therefore, one can select the
DA that best suits the system requirements.

The following portion of the paper is organized as follows. Sec. 2 discusses the related work. In Sec. 3,
we introduce the system model and various terms used throughout the paper. Sec. 4 describes the novel
tool used to model lifetime reliability and execution time of the system. In addition, the process of its
construction is also discussed in this section. In Sec. 5, we present the outer most genetic algorithm for
the nested genetic algorithm. The procedure to calculate the reliability and execution time of the system
for a particular state of the system is given in Sec. 6. In Sec. 7 , we test the effectiveness of our approach
using an example from automotive domain. Finally, Sec. 8 concludes the paper.

2 Related Work

Majority of the work done in the field of reliable system design considers either hard or soft error occurring
in the system. Huang and Xu [6] have presented a simulation framework for evaluating the hard reliability



O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Nested Genetic Algorithm for Highly Reliable and Efficient Embedded System Design 5

of a processor-based system-on-chip for a given task to resource allocation. Whereas, in [7] Huang et al.
have proposed an analytical model to estimate the hard reliability of the Multiprocessor System-on-Chip
(MPSoC). Based on their models, they have presented a novel reliability-aware task allocation and a
scheduling algorithm that takes the aging of the device into account. This technique is based on the
simulated annealing optimization method.

The reliability should be considered as the integral part of the system design framework, along
with other optimization parameters. If this is not the case, then it results in techniques like [8]. In [§],
Karl et al. discuss the three main causes of the hard errors in the modern digital devices, i.e., oxide
breakdown, electromigration, and thermal cycling. They discuss the dependence of the input voltage to
above factors and propose dynamic voltage scaling as a part of dynamic reliability during the life time of
the system. They propose to trade reliability for performance when needed (especially in case of the real
time systems). This technique considers reliability only as an add-on and does not totally cover the errors
that can occur in the tasks/resources constituting the system. On the other hand, considering reliability
not as a part of design framework may result in techniques that sacrifice other design parameters in the
favor of reliability. In [9], Zhu et al. proposed a two-step approach for the reliable MPSOC synthesis. The
main concern of these authors is the hard errors occurring in the system due to thermal cycling, time
dependent dielectric breakdown, and electro- and stress migration. Mean-time-to-failure is the metric
used to quantify the dependability of the system being designed. Initially, a design alternative is selected
using simulated annealing heuristics considering area and performance as the main objectives. In the
second step, the processing is migrated from the resources with least time to failure to the redundant
resources and components. This decreases the likelihood of failure of the said resource due to thermal
stress, thereby improving the mean time to failure of the entire system. The problem with this solution
is that the performance and area of the system resulting after the task migration might not meet the
requirements, forcing the system to go through the design process again. In [10], Srinivasan et al. have
discussed two techniques to improve the hard reliability of the system. Structural Duplication (SD):
multiple spare structures are added to the processing resources and are gated-off when not in use, to
decrease the probability of the hard errors in them. They are utilized only in case of error in the original
structures. Graceful Degradation (GDR): There are many redundant structures already presented in the
off-the-shelf processing resources. Exploiting the parallelism inherent in the task results in utilization
of all of these structures, thereby enhancing the performance of the task. The graceful degradation
allows the resource to execute on lower performance. The authors found that using SD leads to greater
reliability as compared to GDR. However, this increases the overall cost of the system. In [11], Lee et al.
have proposed a static task migration of the task graph from a resource with hard error to a healthy one.
The migration schedule, calculated for various faults configurations, helps in maintaining the throughput
of the streaming application in case of faults. In [12], Meyer et al. have presented a cost effective slack
allocation approach for the improvement in the hard reliability of MPSoCs. The “slack” is defined by
the authors as the under-utilization of resources (both memory and processing). They have proposed
a design space exploration approach, resulting in the generation of a set of Pareto optimal alternatives
representing various combination of slack utilization in the event of a hard error, with the hard reliability
and cost as optimization parameters.

In [13], Bolchini et al. have presented a system level design while considering reliability as one of
the critical design criteria in the embedded system HW/SW co-design flow. The co-design framework
assesses the reliability properties. The system is implemented on dedicated architecture presented in [14].
This architecture features primary and auxiliary processing resources. A totally self-checking “system-
reconfigurator”, used as a part of the architecture, which can reconfigure the system in case of a fault
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in the primary processing resource. However, this architecture does not support online masking of soft
errors.

Similar to the techniques that consider the hard errors while designing the system, there are tech-
niques that address soft errors occurring in the system. However, many of these techniques consider
reliability to be handled later in the design process resulting in either a partial fault coverage, or sacrific-
ing other design parameters in the favor of reliability. Xie et al. in [15,16] consider soft errors occurring
in the resources of the designed system, while designing at a high level of abstraction. These authors
present a two-step approach of the system design with high performance as the main objective. Initially,
a simple list-scheduling algorithm is used to find the schedule of the task graph on the resources. Then,
the selected tasks are duplicated using the idle time in the schedule given in the first step, in such a way
that the overall execution time from the first step is not changed. In this design methodology the perfor-
mance is given a higher priority to the reliability. Not all of the tasks in the task graph are duplicated,
to cover for the soft errors. However, a duplicated execution of the task does not actually increase the
reliability of the said task. The proposed technique by Izosimov et al. [17] suggests a tradeoff between
the performance and the reliability. The faults are detected by running a small watchdog routine after
every task. Upon the detection of the error, the said task is re-executed. The authors assume “k” faults
occurring in the system during the execution of the task graph on the system resources. In [18] they
consider soft errors occurring in the resources while executing the tasks with a mixture of hard and soft
real time requirements. The authors have proposed a quasi-static scheduling technique, where initially a
static schedule is executed in case of no faults occurring in the system. Each task is followed by a fault
detection routine. Upon detection of the fault, the task is re-executed. For the re-execution, the tasks
with hard real time requirements are preferred. The resource allocation is done so that at least “k” faults
are tolerated while making sure that the hard real time tasks meet their deadlines. In case more faults
occur, then the tasks with soft real time requirements are dropped in favor of those tasks with hard real
time requirements.

In [19], Izosimov et al. have proposed a high level system design technique aiming at the mitigation
of the soft errors in the system using radiation hardened resources and task re-execution. A set of Pareto
design alternatives, that meet the deadline requirement of the hard real time system, is generated using
a Tabu search meta-heuristic. Each alternative represents various degrees of the used hardened resources
and task re-execution, with reliability and overall system cost as the optimization parameters. In [20],
these authors have proposed a high-level system design approach considering the soft error occurring
in the system. Tabu search is conducted to find the right mix of task re-execution and task replication
(on multiple resources) so that the reliability is maximized while minimizing the system cost. In [21],
Conner et al. have proposed a hybrid genetic/heuristic based HW /SW co-synthesis framework for partial
coverage of soft errors. The resulting schedule of the task graph on the given set of resources is shown
to cover 22% of the soft errors without incurring any extra cost, in terms of resources and performance
of the task graph. In [22], Calvert et al. have proposed an integrated framework for finding a set of
components best suited for the system requirements. The selection process is assisted by a simulated
annealing algorithm and a greedy approach designed to find a system with the best reliability, cost, and
delivery time.

The authors like Srinivasan et al. [23] have proposed that hard and soft reliability of the system should
be considered simultaneously. Zhang and Orshansky [24] have suggested that in spite of the “burn-in”
process, the hard errors can still occur in the system and therefore should be considered during the design
process of the system. In [25], Griittner et al. have presented the idea of the dependable state machine
for the design of embedded systems at a high-level of abstraction. The fault detection is achieved by
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monitoring the output of the tasks. Upon detection of a fault the process of rescheduling of affected task
is initiated. In [26], Jhumka et al. have developed the concept of using dependability as an optimization
criteria in the system level design process of embedded systems. The multiple instances of the tasks
in the task graph are executed in parallel to make the task execution more reliable, thereby causing
an increase in the dependability of the complete system. A set of Pareto optimal design alternative is
generated using genetic algorithms, with dependability and cost as optimization objectives. However,
they do not describe any method of error detection, thus implying the use of fail-silent resources. In [27],
GlaB et al. have reported a scheme for reliable system design at the system-level considering both hard
and soft errors. A process in the process graph is bound to multiple resources, which execute each a
copy of this process simultaneously. In the case of an error (hard or soft), the affected resource produces
an error signal indicating the corresponding process to ignore the result produced by this resource.
One disadvantage of this approach is the need of fail-silent resources, which are largely costlier than
off-the-shelf resources. Additionally, the proposed approach evaluates reliability using a binary decision
diagram, which demands higher node numbers and considerably longer calculation times for reliability
evaluation. A set of Pareto optimal design alternative is generated using genetic algorithms, with the
mean-time-to-failure, the area and the latency as the optimization objectives.

The classical reliability calculation methods like fault-trees, reliability block diagrams, and binary

decision diagrams, require a large amount of memory. If the specification for the system to be designed
is large, then the structures required for the calculation of the reliability cannot be realized. Following
approaches support the construction of reliable embedded systems in spite of this handicap. In [28], Gla8
et al. consider only the hard errors occurring in the embedded system, especially in its electronic control
units. In their paper, the hard errors are assumed to occur due to the constant vibrations experienced
by the system because of its relative position to the engine or other moving parts of a vehicle. They
utilize the binary decision diagrams in calculating the reliability of the system while considering the hard
errors occurring in the resources of the system. The BDD construction process described by these authors
requires the use of temporary variables. These variables are eliminated resulting in a BDD consisting of
the nodes with resources of the system as the variables. These temporary variables result in the memory
overrun especially in the case of large specification. To overcome this problem, the authors have proposed
to partition the specification, thereby constructing small BDDs for each partition. These small BDDs are
then combined to make the final BDD for the entire specification. This BDD is then used in calculating
the reliability value for the design alterative generated by an ILP solver.
In [29], however same authors have pointed out two disadvantages of their previous approach detailed
in [27]. First, for many specification graphs the size of the associated BDDs is often up to several orders
of magnitude larger than the available memory. Secondly, many additional temporary nodes are required
during the construction of the final data structure, thus further exacerbating the memory problem. They
have presented in [29] two methods to address these disadvantages. The first one overcomes the second
disadvantage only, whereas the second method results in just an approximate calculation of the reliability
values.

One of the important steps in the embedded system design is to evaluate the time required for the
execution of the task graph on the given set of processing resources. The input from a sensor (or a sensor
network) has to be processed before the arrival of the next input. The problem of scheduling of a task
graph has been studied for quite some time [30-32]. The number of possible schedules, in the worst-case
situation, grows as the factorial of the number of the tasks and finding an optimal schedule among them
is a non-polynomial hard problem [33-35]. These reported research work are mostly concerned with the
problem of scheduling and evaluation of the execution time of the task graph on a system based on
homogeneous processors. The use of decision diagrams has also intrigued the researchers to help solve
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this problem. In [34] the authors have tried to solve the problem of scheduling a task graph on a set of
homogeneous processors by constructing a binary decision diagram and by using the breath firth search
algorithm for finding an optimal schedule. However, their progress was halted by the problem of variables
ordering of the BDD. The complexity of scheduling a task graph on a set of heterogeneous processors is
more than that of homogeneous processors. In [36] and [37], Topcuoglu et al. proposed two algorithms
to schedule tasks in a heterogeneous environment. Both of them use the critical path to prioritize tasks
first and then schedule them. In [38] and [39], scheduling algorithms based on dynamic critical paths is
studied. In [40], a hybrid scheduling method is proposed, which consists of mapping before execution
and a remapping based on run-time values during execution.

A few researchers have tried to study both the execution time of the overall system and its reliability.
In [41], Girault et al. have considered the soft errors occurring in the system. The system is considered
as a task graph implemented on a set of heterogeneous resources. The reliability is achieved by active
replication of the tasks and is evaluated using the reliability block diagrams. The execution time of the
system is then calculated using a list-scheduling algorithm. Given that, the authors set up a bi-objective
algorithm to generate the Pareto optimal designs. Xie et al. [16], exploit the presence of time slots in
the schedule of the task graph produced by the scheduling process. These time slots are then utilized
to execute replicas of the tasks executed forehand by the system architecture, thereby improving the
reliability of the system as compared to the base system. The work done by Jhumka et al. [26] is one
of the major works that explores jointly the execution time and the dependability as the optimization
parameters for a design space exploration algorithm. The multiple instances of the tasks in the task
graph are scheduled to be executed in parallel thereby increasing the dependability of the overall system.
However, they do not describe any method for the required error detection implying the need of so-called
fail silent resources. In the paper by Glafl et al. [27], the authors use BDD to calculate the reliability
value for the task graph implemented on a set of connected resources. The output of the presented tech-
nique is a set of Pareto optimal design alternative with the reliability, the cost, and the latency as the
optimization parameters. Even though the authors do not actually state the method of calculating the
latency in the paper, the latency is displayed as the label of one of the axis in the graph depicting the
Pareto optimal alternatives.

Our research work considers both hard and soft error occurring in the system. It also considers fail
non-silent resources as this approach is significantly cheaper as compared to the other alternatives. Here,
we are using system error decision diagram to model the overall reliability. Our approach is based on a
combination of binary decision diagram (BDD) and Zero-suppressed binary decision diagram (ZBDD).
It has been found to require less number of nodes [5] (and therefore less processing time) than using pure
BDD solution.

A system design space exploration considering the reliability and the execution time as the integral
optimization parameters is described in Sections 5. The reliability of the system is expressed as a function
of both hard and soft errors occurring in the system designed using fail non-silent resources only.

3 System Model

This section contains the definitions of different terms needed to understand the system error decision
diagram (SEDD), which is introduced in Sec. 4.
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Table 1: Task Instance Sets and System Instance Sets for example SSG

[ RSV [ TI5(X) [ TIS(Y) | TIS(Z) | valid and invalid system instances [ SIS ]
T17m273 Xq. Xo} Yy, Yo} {Z3} {(X1,Y1,723), (X1,Y2,723), (X2, Y1,%3), (X2, Y2, Z3)} | {(X1,Y3.%3), (X3, Y2, Z3), (X2, Y2, Z3)}
B X1. Xo 1 Vi, Vo) El i El
r1T2T3 X3 Y {Z3} {(X3.Y1,73)} {(X1.Y7.73)}
rToTy X1 vy El o E
TiT2r3 Xo Yy {23} {(Xa, Yo, Z3)} {(X2,Y2. Z3)}

Torora Xo Yo El El El
T Tors Z] Z] Z37) Z E
FiTors i El El El El

3.1 System Specification Graph

Fig. 2: System Specification Graph Example

Fig. 2 depicts a system specification graph (SSG). It is a combined graph, which consists of three
sub-structures. A task graph is an acyclic directed graph Gy = (V4, E;), which describes the system
functionality. The vertices ¢ € V; of the graph G; represent the tasks and the edges e; € F; represent data
dependencies. The SSG also consists of a resource graph which is a directed graph G, = (V, E,), that
describes the processing resource architecture. The vertices r € V,. represent the processing resources and
the edges e, € E, represent the interconnections between the resources. Every resource r in the resource
graph are attributed with specific reliability Rs,(r), which represents the effects of hard errors on the
resource (r). In this study, the faults in the communication links are not explicitly considered. If there is
fault in the communication link then the resources connected with that link are permanently inaccessible
and therefore are considered to be suffering from hard errors. Further, the reliability of a resource node
is a function of the reliability of its processing unit and its communication link. The task graph and the
resource graph are connected by a set of mapping edges m = (t,r) € E,,, C V; x V,., which represents
all mapping possibilities of tasks onto resources. Every mapping edge is attributed with: Specific time
Tsp(m), which represents the worst-case execution time of the task ¢ on the resource r, and Specific
reliability Rg,(m), which represents the soft error occurring during the execution of the task t on the
resource r. Table 2 gives the soft reliability and the specific execution time values for the mapping edges
of the system specification graph of Fig. 2.

3.2 Task Instance

A task instance (TI) is the logical representation of a task on the resource graph. Following are the two
types of TTs studied in this work:
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Table 2: Reliability and time attributes of Mapping Edges in the SSG of Fig. 2

[ Mapping Edges (m) | Rsp(m) [ Tsp(m) [9] |

(X, 1) 0.01 0.8
(X, 72) 0.99 0.79
Y, r1) 0.09 0.81
Y, 72) 0.01 0.89
(Z,73) 0.95 0.92

3.2.1 Singular Modular Redundancy (SMR)

A SMR TT is a tuple (t,7), where ¢ represents a task and r represents a resource, which can execute
t. The resource r is both the input as well as the output resource for this TI. This means that the
resource r transmits the data, produced by executing the task ¢, to the input resources of the TIs for
the tasks that are data dependent on the task t. Also, the resource r receives the output of the TIs of
the tasks that generates data for the task ¢. A SMR TI is represented for brevity by the name of the
task indexed by the number of the resource. Xy, X5, Y7,Y5, Z3 are the SMR TIs available in the SSG of
Fig. 2. Pictorially, these TIs are represented as the nodes of lower half of the decision diagram (see Sec. 4
depicted in Fig. 7(d)). The name of the task is depicted in green color, whereas the resource, which is
both input as well as the output resource for this TI, is depicted in red color. The specific reliability
for a SMR TI (¢,7) is equal to the specific reliability assigned to the corresponding mapping edge (¢,7).
This attribute represents the soft error occurring during the execution of that task ¢ on the resource r.
The specific time attribute for the SMR TT (¢, r) is equal to the specific time of the constituent mapping
edge.

3.2.2 Triple Modular Redundancy (TMR)

A TMR TTis a 4-tuple (¢,71,79,73), where ¢ represents a task, and 71, 9, and 73 represent the resources,
which can execute t. The task ¢ is executed on all the three resources at the same time, but the voting
takes place at the resource r1. A 4-tuple (t, 71,72, 73) is a TMR TI for the task ¢, if it fulfills the following
requirements:

1. mi = (t,rl),mZ = (t,T’g),Tng = (taTB) € Em
2. {(7”2,7”1), (T37r1)} CEV {(T3?T2)? (TQ?Tl)} CE,

All the resources ry, 79, and r3 are the input resources, whereas only r, i.e., the voting resource, is
the output for this TI. A TMR TI is represented by, for brevity, the name of the task indexed by the
number of the resources. For simplicity and place reasons, the above definitions and examples assume
a single modular redundancy (SMR). A TMR TI is not possible for the SSG in Fig. 2, as none of the
requirements for TMR are fulfilled. Our solution, however, enables the construction of TMR TIs. For
example the SSG as depicted in Fig. 3(a). Note that only TIs created using this TMR are able to
correct soft errors. Fig. 3(b) depicts the pictorial representation of one of the TT defined for the system
specification graph of Fig. 3(a). The task X is depicted in green color, whereas the resource ro, which is
the output resource for this TI, is depicted in red color. The resources r; and rs, which are only input
resources, are depicted in blue color.

A TMR TI produces correct result if at most one of its resources does not suffer from soft error.
The specific reliability for a TMR TT (¢,71, 72, 73) is calculated using the specific reliability assigned to
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(a) SSG (b) TMR

Fig. 3: TIs for X of SSG in Fig. 2

the corresponding mapping edges (t,71), (t,72), and (t,7r3) and is given in Eq. 1. The first line in the
formula represent that there is no soft error in any of the resources. Whereas the second, third and fourth
lines in the formula model the effect of soft error in first, second or the third resources of the TMR TI
respectively.

Rplt,m1] X Replt, 2] X Rsplt, r3]

(1 — Ryp[t,r1]) X Replt, 2] X Rgplt, 73]
Rsp[t,rl] X (]. — Rsp[t,’l“g]) X Rsp[t,’l“;g]
Rsp[tﬂ”]] X Rsp[t,rg] X (]. — Rsp[t,r3])

_|_
+
+
The specific time attribute for the TMR TT (¢,r1,72,7r3) is expressed as the maximum of the specific

time attribute of the three constituent mapping edges. For the general TMR TT {[; 5 3; the specific time
attribute is expressed as:

Tsp(t[]_yz’g]) =max([Tsp(t,71), Tsp(t,m2), Tsp(t,73)]

3.3 Resource State Vector

Given a resource graph with m resources, a resource state vector (RSV) is a vector of literals r17a...74,,
where r; represents a resource of that resource graph. A literal with a bar indicates a hard error in that
resource. First column of Table 1 depicts the RSVs for the SSG in Fig. 2. The vector 717973, for instance,
indicates that none of the resource has a hard error. In contrast, the vector 717273 represents the case,
where all resources have hard errors.

A resource state tree is a graphical representation of all RSVs of a SSG. This tree has the following
properties:

1. The RST is a binary tree.

2. The root and each internal node represents a resource.

3. The root and each internal node has two outgoing edges. The left one indicates the corresponding
resource has a hard error and a right one indicates that the corresponding resource has no hard error

4. A path from the root node to a terminal node (i.e., a leaf) represents a RSV. This RSV is also written
as the label for this terminal node. Fig. 4 depicts the RST for the resources of the SSG given in Fig. 2.

For each task and each RSV a TI set can be defined. This set includes all TIs of that task, which can
be executed in the case of the resource state represented by that RSV. Columns 2, 3, and 4 of Table 1
show the task instance sets for all tasks and all RSVs relating to the SSG of Fig. 2. The set {X;} can
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Fig. 4: Resource State Tree for example SSG

be constructed for task X and RSV r172r3 This TIS indicates that for this RSV, the task X can only be
executed on 71, as ro has a hard error. Note that we do not yet consider soft errors.

3.4 System Instance

A system instance(SI) is a logical representation of a task graph on a resource graph. For each resource
state vector RSV several valid system instances may be found. A valid SI is defined as a tuple of n T1Is,
where:

1. n is the number of tasks in the SSG,
2. each task of the SSG is represented by one and only one TI in the tuple, and
3. the selected TTs must ensure data transfer between data-dependent tasks.

An n-tuple, which does not fulfill the last condition is called an invalid SI. The concept of invalid system
instances is needed as our algorithms produce such tuples inherently. These tuples, however, are removed
in the progress of the SEDD construction, see Section 4.2. Column 5 of Table 1 shows all valid and invalid
system instances for considered SSG example. The tuple (X1, Ya, Z3), for instance, represents a valid SI.
It indicates that the tasks Xi, Ys, and Z3 are executed on the resources r1, ro, and 73, respectively. In
contrast, the tuple (X2, Y1, Z3) is an invalid SI as there is no communication link from 7, to r1, executing
task X and Y respectively. Assuming that all the tasks in the task graph are equally important for the
system functionality, then the soft reliability for the SI is defined as follows:

R(ST) = [] Re(ti), (2)
ti; €SI
The second column of Table 3 gives the soft reliability values for all the valid system instances of the

SSG of Fig. 2. These values are calculated using the values in the Table 2.

8.4.1 Linear System Instance

Evaluating the execution time of the SI is straight forward provided the task graph and henceforth the
ST are linear (i.e., they do not contain any fork or join structures). The time attribute for such a SI can
be calculated by adding the specific time attribute values of the constituent TIs. The third column of
Table 3 gives the execution time values for all the valid system instances of the SSG of Fig. 2.

8.4.2 Non-Linear System Instances

The calculation of the time attribute for the graphs containing non-linear structures such as fork or join,
is not as simple as the summation of the specific time attribute values of the constituent TIs. The order
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Table 3: Attributes of the system instances for the SSG of Fig. 2

| System Instances | R(SI) | T(SI)[s] |

(X1, Y1, Z3) 0.855855 2.53
(X1, Ya, Z3) 0.786605 2.61
(X2, Ya, Z3) 0.855855 2.6

Aq 3
B1 1
Co 2
Ds 1

(b) Specific Time Attribute

(a) System Instance

Fig. 5: System Instance and Specific Time Values of its TIs

in which the TIs are processed by a scheduling algorithm (given in this section) becomes significant
when the task graph is non-linear. A task priority vector (TPV) is a list of the tasks in a task graph that
depicts a desired sequence in which the T1Is representing the respective tasks are to be executed on the
resource graph.

1 A B 1 B A
7'2 T T T Cl T /r2 Cl T T T
r; T T T T D 7‘3 T D T T
time > time >
0O 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7
(a) ta > tp = tc = tp (b) tg > ta > tc = tp

Fig. 6: Execution Schedules for the SI of Fig 5(a)

Fig. 6 shows the execution schedules for the two task priority vectors for the SI of Fig 5(a). Note that
this SI has nothing to do with the SSG in Fig. 2, as all the system instances of that SSG are linear. The
time attribute value for the SI with TPV: t4 — tp — t¢ — tp is 7 units as depicted in Fig. 6(a). If the
TPV is changed to tg — t4a — tc — tp, then the resulting time attribute value is 5 units as depicted in
Fig. 6(b).

The procedure in Algo. 1 evaluates the reliability and execution time attributes of a SI given a task
priority vector. The process is initialized by generating ReadySet (Step 2 in Algo. 1), initializing it
as a set of TIs with no preceding TIs in the graphical representation of the SI. If the SI of Fig 5(a) is
considered as an input to this procedure, then the ReadySet will be initialized as {A;, By }. Step 7 selects
the TI from the ReadySet that corresponds to the task with highest priority in the input TPV. For the
TPV:tc —ta — tg — tp and the ReadySet ({A1, B1}) the priority of the tasks for the TIs A; and B
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Algorithm 1: EvISIRelExTm: Reliability and Execution Time of a SI

Input: SI: a SI; TPV: the task priority vector
Output: RelSI: Reliability value of SI (SI); ExeTimeSI: time attribute for the SI (ST)

1 begin
2 Initialize ReadySet using the SI graph
8 Initialize TIFinTimeVec to zeros
4  Initialize ResAvailTimeV ec to zeros
5 RelSI <= 1.0
6 while ReadSet # @ do
7 ReadyTI < ti from ReadySet with highest priority (using TPV)
8 PredSet <= Readyl'Ipregecessor ti Set
9 foreach ti in PredSet do StartTimeé < TIFinTimeVecltiy, p7p)
10
11 foreach r resource of ReadyT1 do
12 StartTime <MAX[StartTime, ResAvailVec[rrpl]
13 end
14 FinTime < StartTime + Tep(ReadyTT)

15 TIFinTimeVec[ReadyTly, o7 pl < FinTime
16  foreach r resource of ReadyT ] do ResAwvailVec[ryp] < FinTime

17

18 RelSI « RelSI X Rgp(ReadyTl)

19 end

20 foreach tiin ReadyTIpcpendant T'ask Instance Sct 90
21 if All Preceding Tls of ti have finished crecution then

22 Insert ¢tz into the ReadySet

23 end

24 end

25 Remove ReadyTI from the ReadySet
26 BExeTimeSI < 0.0
27 for i 1to SI do EzeTimeSI <MAX|[EzeTimeSI, TIFinTimel[i]]

size

29 end

are 2 and 3, respectively. Therefore, TT A; is selected in this step. This step results in the selection of the
correct TT even though the TPV does not follow the task dependencies of the task graph, which is not
the case of the TPVs depicted in Fig. 6. Such a task priority vector may be generated as the result of the
mutation and crossover operators of the genetic algorithm (Section 13 and 19). Steps 8 to 13 evaluate
the start time of the selected TI. It is the maximum of the finish time of its preceding TIs (Steps 8
to 10) and the maximum of the available time of the resource(s) (Steps 11 to 13) it is executed on. The
evaluation of the finish time for the selected TI is done in Step 14. For evaluating the reliability of the
SI, the specific reliability attribute of the TT is multiplied and equated to a variable which is initialized
to 1.0 (Step 18) before the start of the loop. The time attribute for the input SI is then evaluated by
finding the maximum of the finish times of all TIs (Step 27).

3.4.3 System Instance Set

The set of all valid system instances belonging to a RSV is denoted as a system instance set (SIS).
Column 6 of Table 1 shows the system instance sets for all RSVs of the SSG in Fig. 2. A SI is selected
amongst all SIS to represent the system when it is in a state defined by the RSV. The chosen SI is the
one with best reliability and execution time value from system instances in the SIS. The procedure to
deterring the best SI is explained in Sec. 6.

4 System Error Decision Diagram

In this section system error decision diagram is introduced as an efficient means to model the lifetime
reliability and execution time of the desired system.
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4.1 Decision Diagram

A system error decision diagram (SEDD) is a decision diagram which describes the conditions for a
correct operation of the entire system considering both hard and soft errors. The SEDD has three types
of nodes:

1. Resource nodes, which settle on the upper portion of the SEDD. The outgoing right edge of the node
(green and continuous) indicates that the corresponding resource is free from hard errors. In contrast,
the left edge (red and dotted) represents a hard error. Each path in this portion represents one or
more RSVs.

2. Task instance nodes, which settle on the lower portion of the SEDD, model the soft errors. Together,
these nodes represent the system instance sets for the RSVs depicted in the upper portion of the
decision diagram. A task instance node and the child following its outgoing right edge (green and
continuous) belongs to the same system instance. Whereas, the child following the outgoing left edge
(red and dotted) does not belong to the same SIS.

3. Two terminal nodes: a right one labeled 1, which represents a functional system and a left one labeled
0, which represents a failed system due to hard and/or soft errors.

The resource nodes are represented at the upper portion of SEDD whereas the TI nodes are repre-
sented as the nodes of its lower half. This is because the SEDD calculates the lifetime reliability of the
system which is an average reliability value of the system calculated over the lifetime of the system. When
being in a particular state (defined as RSV Section 3.3) the system is represented by a particular system
instance whose reliability value is calculated using reliability values of its constituent task instances. The
system may be represented by a different system instances if it is in a different state. When calculating
the average value, the frequencies are always applied at the end. While traversing the SEDD graph, the
effect of the top resource nodes is considered later as they are used for frequency averaging.

Fig. 7(d) presents the SEDD for the SSG of Fig. 2. Fig. 7(a) to Fig. 7(c) depict the SEDD in
preliminary stages as it will be illustrated in the next section. Note that the reliability attributes are not
shown in these figures for clarity. A decision diagram consisting of only task instance nodes and the root
node can represent a SIS and is referred to as a task instance decision diagram (TIDD).

4.2 SEDD Construction

The procedure of constructing a system error decision diagram from a system specification graph is given
in Algorithm 2. The different steps of the algorithm are described in abstract form without implemen-
tation aspects for clearness. In the following some of the steps of Algorithm 2 are illustrated. For this
purpose the SSG of Fig. 2 and the relating examples given in the last section are utilized.

Step 1, Step 2, and Step 3.1 are straightforward and can be understood referring to Sec. 3.2.1 and
Sec. 3.3. In Step 3.2 we apply the Cartesian product from the set theory to construct all possible system
instances which are ordered tuples, whose first element stems from of the first set (in column 2), second
element from the second set (in column 3), etc. Column 5 of Table 1 shows the result of this operation.
According to the resource graph, some system instances may be invalid. Step 3.3, therefore, removes
these invalid system instances. The resulting sets are the system instance sets, see column 6 of Table 1.
Step 3.4 constructs a decision diagram, which describes the system behavior in the case of soft errors for
each resource state vector RSV. Although binary decision diagrams (BDDs) can be used for this purpose,
we applied the zero-suppressed binary decision diagrams (ZBDD). Fig. 7(a) shows the diagram resulting
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(d) After BDD reduction

Fig. 7: Constructing the SEDD for the example SSG

Algorithm 2: Construct SEDD

Input: System Specification Graph SSG
Output: System Error Decision Diagram S 12D D

1 Create all task instances TIs of the SSG;
2 Create the resource state tree RST for the SSG;
38 foreach RSV do
3.1 foreach task in the task graph do create the task instance set TIS;
3.2 Apply product operator to TI sets of all task to construct all possible system instances;
3.3 Construct the SIS by removing invalid system instances resulting from step 3.2;
3.4 Construct a ZBDD for the SIS resulting from step 3.3 [42];
3.5 Replace the terminal node of the RST by the constructed ZBDD;
4 Optimize the resulting diagram:
4.1 Merge all terminal nodes into two terminal nodes;
4.2 Remove all redundant task instance nodes using ZBDD reduction rules [42];
4.8 Remove all redundant resource nodes using BDD reduction rules [43];
5 return SEDD;

from applying Step 3.4 to all RSVs and appending the resulting ZBDDs to the RST according to Step
3.5. ZBDDs are appropriate for applications with sparse nodes, as in the case of task instance nodes.
In the case RSV = ryrors, the SIS contains 3 system instances as shown in the column 6 of Table 1.
Representing this SIS as a BDD would require a total of 9 nodes whereas it requires 5 nodes to represent
it as ZBDD shown in Fig. 7(a). Please note that the reduced number of nodes of SEDD is the first
advantage of our approach towards fast reliability evaluation. Steps 4.1, 4.2, and 4.3 are then executed
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to get the optimized SEDD shown in Fig. 7(d). In Step 4.2 all nodes with the same task instance and
with identical successor nodes are merged, which follows optimization rules of ZBDDs [42]. In Fig. 7(b)
such nodes are marked with the same color. Fig. 7(c) shows the diagram after merging these nodes. In
Step 4.3 optimization rules of BDD are applied. In Fig. 7(c) the left resource node r3 can be omitted as
both of its outgoing edges end at the same terminal node 0. Fig. 7(d) shows the final SEDD.

5 Design Space Exploration

This section describes the procedure to discover a system design optimized in terms of lifetime reliability
and execution time. It is discussed in [33-35] that the number of possible solutions increases exponentially
with the increase in the size of the problem. The Genetic algorithms are well suited for the problems
with a large search space. In addition, it is better suited for multiobjective optimization as compared
to various other meta-heuristics approaches, as it is based on the process of natural evolution where
multiple objectives are optimized, simultaneously. Here we implement multi-objectives genetic algorithm
using GALib [44] framework. In a genetic algorithm (e.g. Fig. 11) a population of designed solutions
(refereed as individuals) are transformed using the processes of mutation and crossover. This results in
the production of a new population. Only those individuals that are close to the desired goals are kept
for the next iteration. The process is continued until the system design with the desired optimization
goals is achieved.

5.1 Individuals of Population

The nature of the information in the individual should be such that when it gets manipulated by the
genetic operators, it must represent a valid system. The system specification graph consists of three por-
tions. Only the set of the task to resource mappings/bindings can be modified, i.e., without affecting the
functionality /hardware of the target system. A mapping edges set (MES) along with the SSG represents
a system design with a certain reliability and execution time values. A different MES combined with
the SSG will represents a different system design with its corresponding reliability and execution time
values. For these reasons the individual in the genetic algorithm is encoded with the set of mapping edges.
The MES, of the individual, combined with the SSG should represent atleast one full TMR SI. This will
ensure that the resulting system will be capable of tolerating soft errors at least when there is no hard
error in the system. This is referred as “One TMR Rule” in the sequel.

5.2 Genetic Operators

In this section the initialization, mutation, and crossover operators for the genetic algorithm are described.
The main input to these operators is the TIDD representation for the SIS of all one RSV of the main
SEDD. {41, Az, A3, B1, B3, B4} and the TIDD depicted in Fig 8 are used as an example to explain the
algorithms for these operators. This TIDD cannot possibility result in a MES which adheres “One TMR
Rule”. It is used here due to place reasons. The MES generated by the operators given in Algo. 3, Algo. 4,
and Algo. 5, however, adheres to the “One TMR Rule”. Therefore, the steps in the algorithm dealing
with TMR will be ignored, when these genetic operators are described, using the TIDD of Fig 8.
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Fig. 8: Example TIDD

5.2.1 Initialization Operator

Algorithm 3: DAInitRecur: Initialization Operator
Input: N: A TIDD node

Global: MpgSt: MES representing the individual in the Genetic Algorithm
Output: Unsigned integer value
begin
if N is the terminal node then return Task-Graphg;,c;
Tsklnd <= tig, k1D
if exist Uni-Cache[UNI-INIT,N] then /* N Already Visited? x/
return entry Uni-Cache[UNI-INIT,N]; /* return saved Value */
end
ti <= Ny;sTMR <= ti =IsTMR();
TInder < Rinder < Linder <= Task-Graphg;,q;
if tip;pg ¢ MpgSt then /* tipg g Set of mapping edges of ti x/
10 if GetRandomNum() < 0.5 then
11 MpgStL = MpgSL U lip pg;T1Feasible <true
12 end
13 else I'II7easible <true;
14 if T'I1Feasible and TM R then

CEN® Uk WNH

15 RIndex <=DAlnitRecur(NR)—1; /* process N’s right edge */
16 if MnTskInd > TIndex and TIndex = TskInd then

17 MnTsklInd = TskInd

18 end

19 end

20 Lindex <~DATnitRecur(Ny,);
21 if LTIndex = Tskind then TIndex < Llnde;

22 if |TIFeasbile then

23 if TMR and MnTskInd > TskInd and TIndex # TskInd then

24 MpgSt = MpgSt U tippg;

25 I'I'ndex <=DAlInitRecur(NpR)—1; /* process N’s right edge */
26 if TIndex = Tskind then MnTskInd < Tsklnd;

27 end

28 end

29 return insert Uni-Cache[UNI-INIT,N, T'Indez]; /* store value */
30 end

The procedure given in Algo. 3 is the recursive portion of the initialization operator for the genetic
algorithm. This function results in the MES M pgSt being initialized so that it adheres to the rule of “One
TMR Rule”. The random number generator plays an important role. It helps in handling initialization,
mutation, and crossover of the MES. Depending on the value produced by the random number generator
(i.e., if the number generated is less than 0.5), the TI is made feasible according to the MES MpgSt
(Step 10 in Algo. 3). The call to the random number generator is, however, only made if the TI is not
already feasible according to MpgSt (Step 9). In either of the two cases, the function calls itself for the
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right edge of the node (Step 15). The initialization operator then calls itself for the left edge of the node
(Step 20).

There is a small chance the MES resulting from the initialization operator is not following “One TMR
Rule” for some task. In such a situation Steps 23 to 26 force the TT to be feasible according to the MES
MpgSt. The process of forcing is, however, not done if MnT'skInd value is zero or less than or equal to
the current value of the task index. When the value for MnTskInd is zero, it implies that due to the
recursive process the MES already adheres to “One TMR Rule”.

Table 4: Examples to explain the Initialization Operator

Random Number Generator MES
L>L7G>G7G>G7 CEa {A2y B4}
L,G,G,G,G,G, . .. {A2, B2}
L,L,G,G,L,G, . .. {A17 A, BZ}

Table 4 depicts different output mapping edges sets generated by the initialization operator, given
the different output values of the random number generator, for the TIDD of Fig 8. The letters G and L
represent that the value produced by the random number generator is greater/less than 0.5, respectively
(see Step 10 in Algo. 3). The example in the first row of the table depicts the possibility of the MES being
initialized by only the mapping edges representing the first SI in the top down direction. The second row
depicts the possibility of the mapping edges of a TIs being forcibly selected, if there is no mapping edges
corresponding to the task represented by the TI being processed. The third row in the table depicts the
possibility of mapping edge Bs being selected, without the forcing procedure being invoked.

5.2.2 Mutation Operator

The procedure given in Algo. 4 is the recursive portion of the mutation operator for the genetic algorithm.
The basic structure of the operator is similar to initialization given in Algo. 3.

This function results in a different MES then the original OldM pgSt depending upon the probability
of mutation (pmut) and sequences of numbers generated by the random number generator. The process
of mutation is performed according to the value produced by the random number generator (Step 11).
When the mutation needs to be performed (Steps 12 to 14), the TI corresponding to the input node
is made feasible corresponding to MES MpgSt. If it is not already feasible according to the old MES
OldMpgSt, then the TI is made feasible according to the not MES N MpgSt. If it is feasible to the old
MES, then the reverse is done given no mutation is required to be performed (Steps 16 to 18).

Consider a TIDD with mixture of TMR and SMR TI nodes. Assume that a node in this TIDD is a
TMR node with an SMR. node for that same task on its left, such that MES of SMR node is subset of
MESS of the TMR node. The random number generator may make the TMR node not feasible according
to the MES MpgSt, followed by making the SMR node feasible. The second change to the MES is the
violation of the initial directives of the random number generator. To avoid such a scenario two MES’s
are maintained in Algo. 4. If the TMR is made not feasible to MES MpgSt then it will be made feasible
to MES N MpgSt. Thereby eliminating the possibility of making the SMR node feasible to MpgSt.

Table 5 depicts different output mapping edges sets produced by the mutation operator given the
output of the random number generator and the “Old MES”. M represents that the mutation is performed
for the node whereas the N represents otherwise. The example given in the first row of the table depicts
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the possibility of the first SI of the SIS represented in Fig. 8 being selected. The example given in the
third row, depicts the possibility of the “forcing” portion of the function being invoked (Steps 30 to 36).

Table 5: Examples to explain the Mutation Operator

Old MES Random Number Generator MES

{A1,B1} M, M, N, N, N, N {A2, B4}

{A1,B1} M, M, N, N, N, N {A1, Az, By, By}
{A1,A2,B1} M, M, N, N, N, N {As, B2}

Algorithm 4: DAMutRecur: Mutation Operator

Input: N: A TIDD node
Global: MpgSt, NMpgSt, OldMpgSt and pmut.
Output: Unsigned integer value

1 begin
2 if N s lhe lerminal node then return Task-Graphg;,.;
8 if exist Uni-Cache[UNI-MUT,N] then /* N Already Visited? */
4 return entry Uni-Cache[UNI-MUT,N [; /* return saved Value */
5 end
6 ti<= Ny iTMR < ti =IsTMR();
7  TlIndex < Rindex < Llndex 4 Task-Graphg,.:
8 if tipg C MpgSt then TIFcasible <true ;
9 else if lip;pg C NMpgSiL then TIFeasible <=false ;
10 else
11 if GetRandomNum() < pmut then /* Do Mutation */
12 if TIFeasible <= tipjpg ¢ OldMpgSt then
13 NMpgSt = NMpgSt U tiyrg
14 else MpgSt = MpgStU tipnrps;
15 else /* No Mutation */
16 if I'Il'casible <= tiprpg € OldMpgSt then
17 MpgSt = MpgStU tiprpg
18 else NMpgSt = NMpgSt U tiprg;
19 end
20 end
21  if I'II'casiblc and I'M R then
22 RIndex <=DAMutRecur(NR)—1; /* process N’s right edge */
23 if MnTskInd > tiygcprp and TIndex = tiy, g 7p then
24 MnTskInd = tiggcp 1D
25 end
26 end

27  Lindez <=DAMnutRecur(N{,):
28 if LU Indcx = tiy,,,7p then I'Indecx < Lindca;

20  if ITIFecasbile then

30  if TMR and MnTsklInd > ti,q..p and TIndex # tiy, 5 p then

31 MpgSt = MpgSt U tiprpg:

32 NMpgSt = NMpgStNtipnrps;

33 tindcx <=DAMutRecur(NR)—1; /* process N’s right edge */
34 if TIndex = tiyg prp then MnTskind <= tiy,,1D)

35 end

36 end

87 return insert Uni-Cache[UNI-MUT,N, T'Index]; /* store value */
38 end

5.2.3 Crossover Operator

Algo. 5 depicts the recursive portion of the crossover operator for the genetic algorithm. This function
combines the mapping edges sets of the two input individuals in such a way, that the resulting MES
contains the elements of both input mapping edges sets and adheres to “One TMR Rule”. The non-
recursive portion of the crossover operator populates the BoolVec using the output of the random
number generator. The size of this vector is equal to the size of the input task graph. If the entry in the
BoolVec corresponding to the task of the input node’s TT is true, then MES true is considered to be the
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primary MES (Step 9), and the second set is considered the secondary MES. The reverse is done if the
respective entry is false.

Steps 11 to 14 make the TI corresponding to the input node feasible to the MES MpgSt if it is
feasible to the selected MES. If any forcing must be done (Steps 25 to 31), then it is performed using
the secondary MES.

The first and second rows in Table 6 depict the normal operation of the crossover function. The
third row of the table represents the possibility of the “forcing” portion of the algorithm being invoked
(Steps 25 to 31). The portions of initialization and mutation functions, that force the TIs to be feasible
according to MES MpgSt. It requires that the TI being forced should be feasible according to the MES
of the original system specification graph. The crossover function, on the other hand, requires that the
TT being forced should be feasible to the selected secondary MES. This is the reason why in the third
example mapping edge Bj is selected instead of Bo, which would have been the case for the initialization
and mutation functions.

Table 6: Examples to explain the Crossover Operator

MpgStl MpgSt2 BoolVec MpgSt
{A2,Bs} | {A1,B1} [T, F {A2,B:}
{szBQ} {AlvBl} [Fv T] {AlvBQ}
{42, B4} | {A1, B} | [F,T] | {A1,Bi}

Algorithm 5: DAXOverRecur: Crossover Operator

Input: N: A TIDD node
Global: MpgSt: Mapping set representing the individual in the genetic algorithm
Output: Unsigned integer value

1 begin
2 if N is the terminal node then return T'ask_Graphg,,q;
8 Tskind < liggrp;
4  if exist Uni-Cache[UNI-XOVER,N] then /* N Already Visited? */
5 return entry Uni-Cache[UNI-XOVER,N J; /* return saved Value */
6 end
7 ti<= Ny TMR < ti »IsTMR();
8
9
10
11 if tipypg € MpgSt then T'IFeasible <=true;
12 else
13 if tip;pg C ParAMpgSt then
14 MpgSt = MpgSt U tip pgitil’casible <true
15 end
16 end
17 if T'IFeasible and TMN R then
18 RIndex <=DAXOverRecur(NR)—1; /* process N’s right edge */
19 if MinTskInd > TIndex and TIndex = TsklInd then
20 MinTskInd = TsklInd
21 end
22 end

23  LiIndez <=DAXOverRecur(Nr,); /* process N’s left edge */
24 if LTIndex = Tsklnd then Tindex <= Llndex;

25 if !T'IFeasbile and TMR and MinTskInd > TskInd then

26  if TIndex # Tskind and tiy; g C ParBMpgSt) then

27 MpgSt = MpgSt U tip g

28 T'I'ndex <~DAXOverRecur(NR)—1; /* process N’s right edge */
29 if TIndex = Tskind then MinTskInd < TsklInd;

30 end

31 end

32 return insert Uni-Cache[UNI-XOVER,N, TIndex]; /* store value */
33 end
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5.3 Evaluation of Individuals

As depicted in Fig. 11, the process of evaluation of each individual in the population of the genetic
algorithm needs to be performed after the initialization, mutation, and crossover operators. The attributes
of the system must be evaluated, resulting from combining the MES stored as individual with the system
task and resource graphs.

Given the information of the MES stored in the individual of the genetic algorithm, the evaluation
is composed of the following steps.

1. First, the system specification graph, constructed by appending MES to the system task and resource
graph.

2. The resulting SSG is used to construct the SEDD using the procedure detailed in Sec. 4.2.

3. Given the decision diagram, one of the algorithms in the following section is used to evaluate the
attributes of the system.

It was shown in [5] that the time to construct a SEDD diagram is greater than the time required
to evaluate the lifetime reliability of the system. The process of evaluating the system attribute values
given the MES represented in the individual of the genetic algorithm is going to take quite a lot of time
while following the three steps mentioned above.

The second possibility is to make a copy of the original SEDD. The TI nodes of the SEDD that are
not feasible to the MES of the individual are removed. This is followed by the algorithms to evaluate the
attributes of system. The SEDD constructed in this manner will be faster as compared to the approach
described in the previous paragraph. This will simplify the evaluation of the individual in the population.

The process can be further simplified by ignoring the TI nodes that are not feasible according to
the MES during the evaluation of system attribute instead of “physically” removing those nodes. This
procedure is detailed in Sec. 6.

5.4 Selection Operator: Assigning Score values to Individuals

A uni-objective genetic algorithm is a lot simpler to conceive and to implement as compared to the
multi-objective genetic algorithms. These algorithms can use the evaluated value of the single objective
as the score for the individuals. The algorithm discussed in Section 6.2, for example, uses the execution
time attribute of the individual as it score value. Thereafter, the selection process chooses the individuals
with low scores, i.e., low execution time values, to be selected to form the next population. It is, however,
not easy to assign score values for the individuals of the multi-objective genetic algorithm. Aggregation of
the objectives is a possible method of assigning score/fitness value to the individuals in a multi-objective
genetic algorithm. In this method each individual is assigned a weight w; €]0,1[, and Y w; = 1. The
evaluated values of each objective are multiplied by the respective weights and are then accumulated to
form the value, which is used as the score for the individual. This method forces the genetic algorithm
to focus its search in only one particular direction. This means that the designer has to be exactly sure
about the proportion of each objective in the final solution. This is not always the case and it is difficult
to set meaningful weights for the different objectives that can lead to “less than ideal” solution.

The genetic algorithm presented in this work produces a set of Pareto-optimal set of DAs with lifetime
reliability and execution time as design criteria. Two DAs that have same values for all design objectives
except for one, cannot be simultaneously part of the Pareto-set. However, if they are dissimilar in more
than one design objectives then they might be part of the set. Set of DAs is considered a Pareto-optimal
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if for each member set, there exists no other feasible DA which would decrease some objective without
causing simultaneous increase in at least one other objective. After the generation of a new population
every individual in it is tested to see if it can be added in the Pareto-set (also referred to as Pareto-front).
Given the individuals in the Pareto set for a current generation in the genetic algorithm, the score/fitness
value for each individual of the population can be assigned. The individual of the population closer in
“distance” to the Pareto front is assigned a “better” value as compared to the one with greater distance
from the Pareto front. Given the individual I of the population and the Pareto set P the value “score(i)”
is given as:

score(i) = mér})[”i.Rel —pj.Rel| + |[i.ExTm — p;. ExTml|] (3)
Pj

OldPSet = &

Evaluation 7
(PSet:GenParetoFront(OldPSet UNew I nd)

Crossover
Mutation

Calculate the score of
Individuals using ParetoSet

Fig. 9: Detailed Outline of Outer Genetic Algorithm

The values thus assigned to the individuals of the old population and the newly created individual
are used to discard the individuals with “worst” scores, thus forming the new population. The process
is continued until one of the Pareto set is not modified for a certain number of generations.

6 Evaluation of Lifetime Reliability and Execution of a DA

Based on the system error decision diagram and mapping edges set the lifetime reliability and execution
time of the system alternative can be derived. In this section an efficient algorithm for the system
attributes calculation which operates on the SEDD extracted in Section 4.2, is presented. Classically, a
system represented as event or fault tree [45] is converted into a BDD. Then a simple algorithm is used
on this BDD to calculate the reliability of the system, e.g., [46]. Such solutions apply recursive reliability
calculation on the decision diagram starting from the root node. The reliability of a node NN, which is
denoted as R(N), depends on the specific reliability of this node R;,(NN), and on the reliabilities of right
and the left successor nodes N and Ny, respectively:

R(N) := Rgp(N) x R(NR) + (1 = Ryp(N)) x R(NT,) (4)
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This equation calculates the average reliability value for the system being in various states. Eq. 5, which
is similar to Eq. 4, calculates the average(or lifetime) execution time value for the system being in various
states.

T(N) = Rgp(r) x T(NR) + (1 = Rsp(r)) x T(NT,) (5)

Similar to Eq. 4, Eq. 5 requires time value of 0.0 to be returned for the left terminal node. The algorithm
to evaluate the lifetime reliability and execution time values for a DA is detailed in Sec. 6.3.

It is noted that the system error decision diagram is not a pure BDD, rather a mixed BDD-ZBDD
diagram. The upper portion of the SEDD can be considered as a compact resource state tree, from
which the resource state vectors can be generated. In the SEDD, the ZBDD representations of the SIS
corresponding to the resource state vectors are related directly to these vectors. Eq. 4 and 5 can be used
on the upper portion of the SEDD as it consists of BDD nodes only. During recursion the algorithm
represented by these equations will encounter TI nodes. The first node encountered after a number of
resource nodes is the root node of the ZBDD representing a SIS. When the system is in the state as
described by the RSV the ST with best reliability and execution time value must be chosen to represent
the system. The procedure to find the SI with best attributes from the SIS has the order of O(|SIS||V4]),
where |SIS| is an exponential function of number of tasks and resources in the SSG. In contrast, the
algorithm represented by the recursive Eq. 6 is of the order O(|Gy|), where |G| is the count of the
nodes in the ZBDD representing SIS with N as the root node. In addition, in [5] it was shown that
SIS| > |Gn|.

R(N) := max(Rp(ti) x R(NR), R(NT,)) (6)

The proof that the Eq. 6 produces the reliability of the SI that has the best reliability value within
the SIS is provided in [5]. An equation to calculate the execution time of the SI with best execution
time value in the SIS, can only be constructed if the ST and hence its corresponding task graph is linear.
The majority of the task graphs, however, are not linear and have various fork and join structure. An
exhaustive search procedure to find the reliability and execution time values for best SI for the working
resource state vector is therefore not feasible. A genetic algorithm is, therefore, employed to find the time
attributes of the best SI (described in Section 6.2).

6.1 Reliability and Time attribute for best SI

Reliability has a higher precedence over the time attribute for the selection of best SI from the SIS.
There may possibly be a number of system instances amongst the SIS of the working resource state
vector that have the same highest reliability value. Therefore, instead of constructing a multiobjective
genetic algorithm at the level of SIS, a procedure is proposed to mark all the system instances that have
the highest value of reliability amongst the system instances that are feasible according of MES of the
individual.

Algo. 6 returns the reliability value of the SI, which has the highest reliability value that are feasi-
ble according to MES, corresponding to a working resource state vector represented by a ZBDD. The
algorithm also mark the nodes in the ZBDD indicating the paths that represent the SI with the highest
reliability value. The conditional statement in Step 7 of Algo. 6 make the respective algorithms passover
the nodes with the TIs not feasible to the MES and to mark their direction variable as DIR_.LEFT, so
that any other algorithm that considers the direction variables also ignores those nodes.
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Algorithm 6: InitDirMapSIS: Initialize Direction Variable in each ZBDD Node

Input: N: Node representing ZBDD for SIS of a WRSV
Global: MpgSt: Mapping edges set
Output: Rel: Max-Reliability value for the SIS representing the WRSV
begin
if N is the left terminal node then return 0.0;
if N s the righl lerminal node then return 1.0;
if exist Uni-Cache[UNI-INI'T-DIR-MAP,N| then // N Already Visited?
return entry Uni-Cache[UNI-INIT-DIR-MAP, N]; // return saved Value
end
if Nyinfmg C© MpgSt then
Rel <= Rsp(Ny;) X InitDirMapSIS(NR); /* process right edge */
RelE <« InitDirMapSIS(NL,); /* process left edge */
if Rel = RelE then Dir <DIR.LEFT_DOWN;
if Rel > RelE then Dir <DIR-DOWN;
else Rel <= RelE;Dir <DIR_LEFT;
else
Rel <= InitDirMapSTS(Ny,); Dir <DIR-LEFT // process left edge
end
if Rel = 0.0 then Dir <DIR.ZERO

Npiy < Dir
return insert Uni-Cache[UNI-INIT-DIR-MAP, N .Rel]; // store value
end

HERRBHERBRRBRR
CRNOARWNHOO N0 R WN

(a) {X1,X2,Y1,Y2, Z3} (b) {X2,Y1,Y2, 73}

Fig. 10: Example TIDD and Specific Time Values of its TIs

Consider the SSG of Fig. 2 and the soft reliability values for its mapping edges given in Table 2.
The SIS for the RSV rirars consists of three system instances. Their soft reliability values are given in
Table 3. The system instances (X1,Y7,Z3) and (X3, Y3, Z3) have the highest reliability value amongst
the SIS. The TIDD of Fig. 10(a) is the ZBDD representation of the SIS for RSV rirors. It has been
properly labeled/marked so that any traversal algorithm, considering the markings introduced in this
section, only consider these two system instances. The nodes of TIDD of Fig. 10(a) with TIs X5, Y7, Y3,
and Z3 are labeled DIR_.DOWN. These nodes, except for the node Y7, have their left edge as the left
terminal node. The traversal algorithm that considers these labels should also consider the left edge of
the node By as the left terminal node. Otherwise, it will also consider the SI (X, Y5, Z3) which is not
one of the highest reliability SI. If (Xo, Yo, Z3) is the only highest reliability SI or the MES does not
include X; then the node X; will be labeled DIR_LEFT as in the TIDD of Fig. 10(b). Any algorithm
traversing this TIDD will ignore the system instances (X1, Y1, Z3) and (X1, Ys, Z3).

6.2 SI with Minimum Time Attribute

In this section the genetic algorithm to determine the execution time of the SI from a set of system
instances that has the minimum execution time, is described. In a genetic algorithm a set of possible
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solutions (collectively called as “population”) is modified by crossover, mutation, and selection operations.
The selection operation is controlled by means of the quality of each individual (a single solution) in
the population, which in this situation means only those solutions are selected to be part of the next
generation that have least values of execution time. The implementation outline depicted in Fig. 11 is
based on the GALib package [44]. The framework of GALib is used due to its easy implementation.
It is only needed to specify the representation of the individual and to construct the needed operators
(Initialize, Mutate, and Crossover) to yield a functioning genetic algorithm.

Initialization

Crossover
Mutation

Fig. 11: Outline of Genetic Algorithm

6.2.1 Individuals in the Genetic Algorithm

An individual of the population in the genetic algorithm represents a possible solution. The result of the
genetic algorithm is the execution time of the best SI, therefore the individual of the genetic algorithm
should be able to represent all the information required for the calculation of the execution time value
of the SI. A TPV along with the actual SI is required to determine the specific time attribute of the SI.
Therefore, the TI vector is part of the information stored in the individual of the population. The SI,
however, cannot directly be part of the individual. This is because the operators of the genetic algorithm
(i.e., mutation, crossover) might result in an invalid system instances. The SI is instead represented by
the DV. The direction vector (DV) is an integer vector representing the traversal through the input
ZBDD corresponding to the SIS. The size of the DV is equal to the number of the tasks in the system
task graph (]V;|). Using the information in a DV, a SI can be represented.

Consider the TIDD given in Fig. 10(a). If all the system instances represented by this TIDD have
equal reliability value then all the nodes of this TIDD will be labeled LEFT_DOWN. The SI in the SIS
represented by this ZBDD is assumed to have equal reliability values, i.e., all of the constituent nodes of
the ZBDD are labeled LEFT_DOWN. The system instances (X1,Y1, Z3), (X1, Y2, Z3), and (X2, Ys, Z3)
are represented by the DirVecs (0,0,0), (0,1,0), and (1,0,0), respectively. Given the DV and the node
representing the ZBDD, the procedure in Algo. 7 generates the SI which can be used along with the
TPV to evaluate the specific time value of the SI.

6.2.2 Genetic Operators for Direction Vector

This section describes the three genetic algorithm operators (i.e., initialize, mutation, and crossover). The
individual representation of this genetic algorithm consists of two data structures. Therefore, operators



O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Nested Genetic Algorithm for Highly Reliable and Efficient Embedded System Design 27

Algorithm 7: DirVec2SI: SI represented by DV

Input: N: Node representing ZBDD for SIS of a WRSV; DV
Output: T'IVector: Vector of TIs representing the system instances

1 begin

2  for i I to Task_-Graphg;,, do

3 j<=0;

4 while DV [i] # j do N <« NgpLid <=4+ 1;
5 TIVector|i] < Nyij;

6 N < NgpR;

7 end

8 return 1'Vector;

9 end

for both of them (i.e., TPV and DV) have to be considered. For the TPV data structure, the operators for
genetic algorithm for the salesman problem [47], whose various implementations are readily available from
the Internet and can be used with almost no modification. The output TPV generated by these operators
might not represent the correct data dependence in the task graph. However, the procedure in Algo. 1 is
able to circumvent this problem. Please note that the steps in the algorithms, of the genetic operators,
implementing the dynamic programming are not shown due to their similarity with the previously given
algorithms. The ZBDD representation of the SIS for RSV rirorg of SSG in Fig. 2 will be used as the
input TIDD to help explain the genetic operators. In addition, all the nodes connected with left terminal
nodes are labeled DOWN, and the other ones are labeled LEFT_DOWN, implying that all the system
instances represented by the TIDD are assumed to have same reliability value.

Table 7: Output of Initialization Operator

Random Number x 100 | Direction Vector | System Instance
45, 24, 26 (0,0,0) (X1, Y1, Z3)
62, 11, 33, 25 (0,1,0) (X2,Y2, Z3)
91, 75, 27, 27, 10, 20 (0,1,0) (X2,Y2,Z3)

Initialization Operator

The initialization function is used only once in the genetic algorithm for each individual of the population.
Nevertheless, it is one of the important operators of the genetic algorithm. The function in Algo. 8
initializes the DV that represents a SI as a path through the TIDD from the root node to the right
terminal node. The recursive function returns a Boolean value. If this value is true, then it indicates
that the set of the combination of TIs represented by the TIDD with the input node as the root node
contains portion of the chosen SI. It also indicates that the DV is properly initialized.

Table 7 depicts different DVs initialized by the initialization operator (given in Algo. 8) for different
sequences of random numbers (Step 6). The first two rows of the table depict the procedure of initializing
the DV following the directives of the random number generator (RNG). The third row shows the possible
scenario when Step 10 overrides the directives of the number generator and selects node X5 as there is
no node to its left.

Mutation Operator

Algo. 9 depicts the mutation function for the DV. This function changes the DV depending upon the
probability of mutation (pmut) and sequences of numbers generated by the random number generator.
The DV modified by Algo. 9 represents a valid SI. Mutation is one of the important operators of the
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Algorithm 8: DirVeclnit: Initialization Operator.

Input: N: TIDD node; index: Integer
Global: DV: Direction Vector
Output: Boolean value

begin
if N is the special left terminal node then return false;
if N s the special righl lerminal node then return true;

level <= N —GetTask() —GetVecIndex();

Connected <false;

if GetRandNum() < 0.5 and (Connected =DirVecInil(Ngyp, 0)) then
DV [level] <= index

else Connected =DirVecInit(Ngpy,, index + 1); // Ws special left edge
9 if |Connected and (Connected =DirVeclnil(Ngyp, 0)) then

10 DV [level] < indewx

XN QU RN

11 end
12 return Connected;
13 end

genetic algorithm. Without the mutation there is a possibility of a premature convergence of the genetic
algorithm, meaning the genetic algorithm does not return the “best” individual.

Algorithm 9: DirVecMut: Mutation Operator

Input: N: A TIDD nodc; indcz: An integer
Global: DV: Direction Vector; pmut: Probability of Mutation
Output: A Boolean value
begin
if N is the special left terminal node then return false;
if N is the special right terminal node then return true;
level <= N —GetTask() —GetVecIndex();
Cnild <false; /* Connected<=false */
if GetRandNum() < pmut then /* Mutation Portion x*/
if DV[level] = index then Cntd =DirVecMut(Ngp,, inder + 1);
else if (Cntd =DirVecMut(Ngyp, 0)) then DV [level] < index;
else /* Non-Mutation Portion */
if DV[level] = index and (Cntd =DirVecMul(Ng,p,0)) then
DV[level] < index
else Cntd =DirVeeMut(Ngpr,, index + 1); /* N’s special left edge */
end
if !Cntd then
if (Cntd =DirVecMut(Ngyp, 0)) then DV [level] < index;

BoRRR R
O NRW N OO ® NOUTAWNKH

else Cntd =DirVecl\/[ut(NSpL. index + 1); /* N’s special left edge */
17 end
18 return Cntd;
19 end

Table 8 depicts different results of the mutation operator for various DVs, given the various sequences
of numbers produced by RNG. The third column in the table contains a sequence of letters M and N,
instead of actual numbers like in Table 7. M implies that the DV entry for the node under process is going
to be modified, whereas N indicates otherwise. When the output of RNG is less then pmut variable, then
the mutation operator changes the DV entry of the respective task (Steps 7 and 8). Consider the first
row in Table 8. The mutation portion is initiated for the root node. The original DV entry for the task
X denotes X7 (which is the TT for this node), therefore to mutate the entry the mutation operator for
left edge of the node, thereby ignoring the node. The mutation portion of the algorithm is again initiated
for the node X5, and it is not the part of the original DV, it is made to represent the DV entry for task
X.

When the random number generated is greater than pmut variable then the mutation operator does
not change the entry of the DV for the respective task (Steps 10 to 12 in Algo. 9). Consider the example
given in the second row of Table 8. For the root node non-mutation portion is initiated and the function
calls the mutation operator for the right edge of the node, so as to preserve the old entry of the DV for
the respective task X. On the other hand, for example in the third row in Table 8, the non-mutation
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Table 8: Output of the Mutation Operator

Input . Output
LY S Relation BV a7

(05 0, 0) (X17Y17Z3) M, M, N, N (1307 0) (X27Y27Z3)
(0,0,0) | (X1,Y1,Z3) N, M, N (0,1,0) | (X1,Y2,Z3)
(1707 O) (X27Y27Z3) N, M, N, N (1707 0) (X27Y27Z3)

portion calls the mutation function for the left node. This is because the TI for the node is not part
of the original DV entry for task X. For the node with TT X5 mutation portion is initiated and the
mutation function for left node is called. However, there is no TI node to the left of this node, therefore,
the directives of RNG will be ignored for this node. Steps 15 to 16 provide a fail-safe return and make
sure that the mutation operator always generates a valid DV.

Algorithm 10: DirVecXOver: Recursive Portion of Crossover Operator

Input: N: A TIDD node; index: An integer
Global: DV: Direction Vector; DV ecl, DV ec2: Direction vectors of Parent 1 and 2.
Output: A Boolean value

1 begin

2 if N is the special left terminal node then return false;

38 if N is the special right terminal node then return true;

4 level &= N —GetTask() —GetVecIndex();

5 Cnid «<false; /* Connected<=false =/
6 if CrossOverTempllevel] then DVec < DVecl,

7 else DVec < DVee2;

8 if DV [lcvcl] = indcz and (Cntd :DirVr,cX()ucr(NspR, 0)) then

9 DVl[level] < indew
10  else Untd =DirVecXOver(Ngpy,, index + 1); /* N’s special left edge */
11 if IOntd and (Cntd =DirVecXOver(Ngpp, 0)) then
12 DVllevel] < indew
13 end
14 return Cntd;
15 end

Crossover Operator

Algo. 10 depicts the recursive portion of the Crossover Operator for the DV. This function combines the
DVs of two individuals in such a way that the resulting DV represents a valid SI. The crossover operator
is main reason why this algorithm is called “genetic”. This operator represents the process taking place in
the multi cellular heterosexual living organisms. The two parents provide portion of the genetic material
that result in the production of a new organism, which has the properties of both of its parents. The
non-recursive portion of the crossover operator initializes the Boolean vector CrossOverTemp using
the random number generator. In Steps 6 and 7 of Algo 10 the DV entry is either chosen from one of
the parents depending upon the corresponding entry of the CrossOverTemp vector. For example the
boolean vector for first row in Table 9 is [false,true,false] which results in the DV of (0,0,0). Steps 8
to 10 calls the recursive crossover function to right or left edge based on the information in the inherited
DV entry for the task. However, there might be problems like the ones that were observed in the mutation
operator. Steps 11 and 12 handle such problems.

Table 9 shows two examples of the recursive crossover operator. The first two columns depict the DV
of the two parent individuals. The third column shows the temporary DV, which results by applying the
information in the CrossOverTemp Boolean vector to the input parent DVs. The fourth column shows
the output DV of the crossover operator corrected by Steps 11 and 12 in Algo. 10 (if there is any need
of correction).
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Table 9: Output Crossover Operator

Input DV
Parent 1 | Parent 2 Temp DV | Output DV SI
(1,0,0) (0,1,0) (0,0,0) (0,0,0) X179
(1,0,0) | (0,1,0) (1,1,0) (1,0,0) (X2.Ya, Z3)

6.2.3 Evaluation of the Individual

Individual

(TPV) (DirvVeg(ZBDD(SIS)
) )

| Algorithm 7 |

| Algorithm 1 |

Fig. 12: Data Flow for Execution Time Attribute for Individual

Before the selection process in the genetic algorithm, each individual in the population contains a
TPV and a DV. The time attribute evaluation algorithm in Algo. 1, however, requires the SI. It can be
easily generated using the function in Algo. 7 (as depicted in Fig. 12) with DV and the root node to
7ZBDD representing the input SIS to the genetic algorithm. Algo. 1 then uses the SI and the TPV to
get the time attribute value for the SI. When all the individuals in the population are evaluated, then
selection process can start.

The individuals in the current population and the newly constructed individuals that have the least
execution time values are selected (selection operator of Fig 11) to be part of the next generation.
The genetic algorithm terminates (stopping criteria of Fig 11), after processing a certain number of
populations or when all individuals in the population have converged to a single individual.

6.3 Lifetime Reliability and Execution Time of the System DA

Fig. 13 depict the data flow for calculating the lifetime reliability and execution time of the system as de-
scribed by the original system specification graph and the given MES. The function RelExTmMapSEDD
in Algo. 11 evaluates the Lifetime reliability and execution time values for the system represented by the
MES of the individual, with the SEDD constructed using the original system specification graph as the
input. This procedure implements Eq. 4 and 5 on the resource nodes of the SEDD. This procedure calls
Algo. 6 function for every TI node encountered during the traversal. This function not only calculates the
reliability value, but also marks the TIDD with the directional labels indicating the path representing
the system instances with the highest reliability value amongst the SIS represented by the TIDD. The



O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Nested Genetic Algorithm for Highly Reliable and Efficient Embedded System Design 31

(R(DA) (SEDD) (T(DA))

RelEmeBindSEDD

| |
(R(!IS) (ZBDD(SIS) @_Ai_s) (T(SIS)

| Algorlthm 6 | GA: Min. Exec Time |

(Labeled ZBDD(SIS))

Fig. 13: Data Flow for Lifetime Reliability and Execution Time of DA using SEDD

genetic algorithm described in Sec. 6.2 then calculates the time attribute of the SI with minimum time
value.

Algorithm 11: RelExXTmMapSEDD: Lifetime Reliability and Execution Time

CRNQM b WNH

11
12
13

15

Input: SEDD, a node N, MpgSt: MES/individual in the main Genetic Algorithm
Output: Rel, ExTm: Lifetime reliability and execution time of the system
if N s the left terminal node then return (0.0, 0.0);

if exist Uni-Cache/[UNI-SEDD-REL-EXTM,N | then /* N Already Visited? */
entry Uni-Cache[UNI-SEDD-REL-EXTM, N ,Rel,ExTm];
return (Rel, ExTm); /* return saved Values */
end
if N represents a resource then
RelExTmMapSEDD(NR ., RelRight, EeT'mRight); /* process right edge */
RelExTmMapSEDD(Ny,, RelLeft, ExTmLeft); /* process left edge */

RRslt < Rgp(r) X RelRight + (1 — Rep(r)) X RelLeft:
LaeRslt < Rep(r) X LaeTmRight - (1 — Rep(r)) X BazlmLeft

else /* N represents a TI */
RelExTmMap(N, MpgSt, SysRel, SysExzTm); /* Start the Genetic Algorithm x/
end

insert Uni-Cache[UNI-SEDD-REL-EXTM, N ,SysRel,SysExTm)]; // store values
return (SysRel, SysExzTm);

7 Case Study

To evaluate the functionality and the performance of the proposed approach, it was applied to a real-
world system specification provided in [48]. This work presents a cruise control system (CCS) for modern
cars. The CCS maintains the speed of the vehicle between 35 km/h and 200 km/h. It offers an interface
to increase or decrease the cruise speed. The cruise control operation is disabled when brake is applied.
Many of the tasks in the task graph given in [48] are combined to form a compound task. This does
not affect the functionality of the system as constituent tasks were being executed on same processing
resources. The resulting task graph is given in Fig. 14(a) while Fig. 14(b) represents the resource graph.
Due to industrial nondisclosure requirements, neither the full tasks code nor the absolute execution time
values were available. Only their approximate ratios were given. We therefore take the execution time
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Table 10: Execution Time attribute of the tasks on the resources

Tasks | Timels]
ta 0.096
tp 0.08
tc 0.08
tp 0.04
123 0.056
tp 0.024
ta 0.04
ta 0.024
tr 0.136
ts 0.04

values shown in Table 10 and denote them in relative time units. Despite these restrictions, this approach
still allows for a high-level assessment of the overall dynamic behavior of the system. The soft-error rate
used in these experiments is 0.01 errors/sec.

@ @
)

@ OO

@ W

(b) Resource Graph

(a) Task Graph

Fig. 14: Task and resource graphs for the case study

To estimate the performance of the presented approach the construction time and the memory re-
quired was measured on an Intel Pentium 4 Dual Core 3.00 GHz machine with 2.00 GB memory. The
SEDD constructed using the SSG of the case study consists of 12465 nodes. Whereas, a pure BDD so-
lution has a higher memory requirement as it consists of 84595 nodes. In addition, the time required to
construct SEDD was 0.134727273 sec, whereas 0.411909091 sec are required to construct a pure BDD
model. Tt was found that original SSG results in 63 RSVs representing a non-failed working system. In
addition, the total number of system instances in the SIS for all-one RSV is 13876438948.

This SEDD is used as an input to the nested genetic algorithm described in Sec. 5 and 6, which
generates the DAs with various lifetime reliability and execution time. Kindly, note that time required
to construct the Pareto set was 278 sec, whereas the genetic algorithm executed for the given SSG from
other technique in the literature [27] requires 219 minutes.

Fig. 15 shows the Pareto front for the SSG for this case study. It consists of 40 DAs. The bottom left
point on the Pareto front is (0.99998514396877, 0.615999986784s), whereas the top right point on the
Pareto front is (0.99998514413651, 0.615999999856s). These DAs are then presented to a human designer
for further processing. In our study we have selected the DA marked by the red circle in the Fig. 15.
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Fig. 15: Pareto Optimal DAs

Table 11: Mapping Edges Set for the selected DA

Tasks | Binded Resources

ta r1,73,74

tp r2,73,74,76
tc r3,74,75

tp 12,74,75,76
tE T3,74,75,76
tr r2,73,7T4,75
tg T1,73,7T4,75
tn r2,73,74,75
tr r1,72,73,74
ty r1,72,75,76

The lifetime reliability and execution time value for this DA is 0.9999851441327 and 0.615999998656 sec,
respectively. This solution is chosen because it has the best execution time attribute amongst the other
alternatives with almost similar lifetime reliability values. Table 11 represents the MES for the DA.

Table 12 shows all (28) of the permutations for the RSV-string with the corresponding non-failed
system. The columns 2 and 4 in Table 12 show the number of system instances value for the corresponding
RSV that consist of only SMR TIs and TMR T1Is, respectively. Whereas column 3 represents the number
of system instances that consists of mixture of SMR and TMR TIs. Columns 5 and 6 of this table
depicts the reliability and execution time value of the “Best” SI. For each of the RSV these attributes
are calculated using the algorithms in Sec. 6.
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Table 12: RSVs and corresponding system instance sets and reliability and execution for Best SI

RSVs 515 I -
T TS T e T Reliability Exe-Timel[s]
T11111 2026 | 1668268 126 0.000908514415808 0616
TI1110 1066_| 1334194 73 0.00098514415808 0610
OI1111 653 95710 0 0.00862032434817 0616
011110 640 81716 0 0.00862932434817 0.616
101111 700 50031 0 0.00878827500388 0.616
101110 640 31047 0 0.00838031030344 0616
001111 220 2547 0 0.00648204038223 0.616
001110 216 1624 0 0.90608400507571 0616
TI0111 756 12516 0 0.00703661850020 0536
110110 GO6 G042 0 0.00647037002236 0.536
010111 203 077 0 0.00528936494313 0.48
010110 160 548 0 0.00473300300201 0.44
100111 336 1332 0 0.00520061140331 0.48
100110 276 168 0 0.00425608007021 0.424
000111 77 135 0 0.00481208435648 0.496
000110 64 4] 0 0.99385893390244 0.432
Tiii01 700 12756 0 0.00783131577G8 0576
111100 700 42756 0 0.0078313157768 0.576
OI1101 180 1680 0 0.00647841621256 0.576
011100 180 1080 0 0.00647841621256 0.576
101101 15 205 0 0.0065571638796 0.616
101100 i5 205 0 0.0065571638796 0.616
110101 128 32 0 0.00520590186141 0.448
110100 128 32 0 0.00520500186141 0.448
010101 32 0 0 0.00385803300244 0352
010100 32 0 0 0.00385803300244 0.352
100101 Z 0 0 0.00385803300244 0.44
100100 1 0 0 0.00385803300244 0.44

(a) RSV 111111

(b) RSV 001111

(¢) RSV 100100

Fig. 16: “Best” system instances for selected RSVs

Fig. 16(a), 16(b), and 16(c) depicts the pictorial representation for the “Best” SI for RSVs 111111,
001111, and 100100, respectively. The reliability and execution time attributes for these system instances
are given in the corresponding row of Table 12.

We have repeated the experiment number of times, presented in this section on the system specifica-

tion graphs adapted from numerous research publications that are consider as benchmarks. It was found

that model constructed to evaluate lifetime reliability and execution time (i.e., SEDD) is far superior to
others presented in literature [25-27] as it requires 4 times less number of nodes and the construction
time is 3 times faster. Similarly, the execution of our genetic algorithm for various SSGs requires few
minutes whereas the execution time for other genetic algorithm considering reliability and execution time

is in hours.
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8 Conclusion

In this work, we have presented a nested genetic algorithm to explore the design alternatives with best
reliability and execution time values. First, we have introduced a novel reliability model that considers
both hard and soft errors occurring in the digital resources (which are assumed to be fail non-silent) of
the system is presented. Based on the reliability model and the accompanying execution time models a
novel framework for system design is proposed and explained.

System error decision diagram which is a novel data structure, was introduced as an efficient means
to calculate the lifetime system reliability and execution time. In addition, the process of its construction
was described. This efficiency stems from the two aspects: a) the SEDD has fewer nodes than tradi-
tional BDDs, b) the algorithm for reliability evaluation demands fewer computations than comparable
algorithms working on BDDs.

A novel design space exploration algorithm that consider the reliability and the execution time is
presented. These algorithms take the system specification graph and system error decision diagrams as
input and generate the required set of Pareto design alternatives. This provides the system designer a
broader spectrum of implementation variants to select the “best” system implementation for the given
requirements. The individual of each algorithm contains a mapping edges set. The genetic operators
were constructed that operate on the TIDD, a novel data structure introduced in this work. For these
algorithms, unlike the ones presented in the published research, a new system error decision diagram is
not needed to be constructed for the evaluation of each individual of the genetic algorithm. The score
values are assigned to individuals of the algorithm in a novel and unique manner. The Pareto design
alternative set is updated for every generation of the genetic algorithms. For every RSV of each design
alternative constructed by the genetic algorithm, a SI that has best reliability and execution time value
is selected. The genetic algorithm for exploring the SI with minimum execution time is presented. The
algorithm takes the ZBDD representing the set of highest reliability system instances as input.
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