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Abstract 

A variety of control architectures have been investigated for 
active suspension systems to improve ride comfort and 
holding ability of passenger cars. The most popular ones 
among these are the linear quadratic and fuzzy logic based 
controllers. While the former cannot produce desired 
outputs when there are strong nonlinearities and non-
negligible disturbances, the latter overcomes such problems 
although it requires a comprehensive rule-base involving 
heavy computation loads. The proposed controller in this 
paper, which unifies the capability of fuzzy logic with the 
robustness of sliding mode controller, presents prevailing 
results and hence surpasses them with its adaptive 
architecture and proves to overcome the global stability 
problem. Effectiveness of the controller and the 
performance comparison with chosen control techniques 
including PID and PD type self-tuning fuzzy controller is 
performed on a 2DOF quarter car model which consists of 
component-wise nonlinearities. 
 
 

1. Introduction 
Research works on active suspension systems for 

automotive industry have drawn a great deal of interest in 
recent years both from academia and automobile industry, 
[1]. There are two major objectives in these studies that are 
to improve ride comfort by reducing the vertical 
acceleration of the sprung mass and to increase holding 
ability of the vehicle by providing adequate suspension 
deflections. The research works on control of Automotive 
Active Suspension Systems (AASSs) are mostly based on 
the Linear Quadratic (LQ) control theory, [2-5]. However, 
even a simple car model is a multivariable, relatively 
complicated system and involves nonlinear sub-systems and 

non-negligible disturbances. Therefore the controller that is 
based on the LQ theory may not be reliable when perturbed 
conditions occurred. 

To overcome the problems that originate from the 
complexity and non-linearity of vehicle systems such as the 
one used in this paper, various kinds of Fuzzy Logic 
Controllers (FLCs) are suggested [6-7]. The prominent 
superiority of the FLC is that, it can effectively control 
complex, ill-defined systems involving nonlinearities, 
parameter variations and disturbances just like the 
suspension systems in vehicles. The control method, which 
models the way of human thinking and decision-making can 
have many advantages, such as using past experiences, 
making generalizations, being robust and involving only 
simple calculations rather than necessitating exact 
mathematical descriptions of the system to be controlled. 
This is particularly advantageous in controlling nonlinear 
plants. Successful applications have been reported for a 
number of complex and non-linear processes, [8-10]. The 
majority of the research works reported in the field of fuzzy 
control deal with 2-input, 1-output structure, where the 
inputs are generally the error and the change rate of the 
error, and the output is either the control signal or the 
change rate of it. Such fuzzy logic controllers are 
considerably suitable for simple plants, where low-order 
plant models are dealt with. The higher order models 
represent relatively more complex plants, which can exhibit 
various dynamic behavior states. Designing an FLC for 
such plants requires a multi-dimensional rule base involving 
hundreds of computations. Moreover, the construction of 
such a rule-base will be a cumbersome and tedious job even 
for a specialist of the plant of interest. Finally the most 
important problem to be solved is the global stability of the 
closed-loop system which was addressed in [11]. 



Taking these drawbacks into consideration, we propose a 
novel robust, simple and industrially applicable FLC with a 
single state feedback for AASSs, where the stability of the 
controller is proven in the sense of Lyapunov stability. The 
other benefit is that the rule-base for the proposed controller 
does not need to be tuned since an adaptation mechanism 
takes the responsibility for tuning.  

2. Modeling the nonlinear active suspension 
system 

A typical active suspension system for a quarter car 
model is illustrated in Figure 1. The wheel is connected to 
the car body through a massless axle. The tire is modeled as 
a simple linear spring attached between the wheel and the 
ground. It is assumed that the tire never leaves the ground. 
The motion of the axle of the suspension system is 
controlled by an external actuator force, damper and spring 
combination. The actuator force is denoted with ƒu. 
Nonlinear damping and spring forces are provided as 

( ) ( )33
4 su

s
suss zzkzzkf −⎟

⎠
⎞⎜

⎝
⎛+−=  

F  

and 
( )sususb zzzzbf &&&& −⋅−⋅=

  
in which damping coefficient and spring coefficient are 
denoted with, bs and, ks respectively [12]. Car body 
displacement, zs wheel displacement zu and road 
displacement zr are all measured from the static equilibrium 
position.  

The dynamic equations of the quarter car active 
suspension system are, 
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where ms and mu are the masses of the car body and the 
wheel respectively. 

3. Design of Robust Single-Input Adaptive 
Fuzzy Sliding Mode Controller for Nonlinear 
AASS 

In general, compact dynamic equation for AASS can be 
regarded as a second order differential equation, such as 

udsss FTtzKtzBtzM =+++ )()()( &&&&   ( 2) 

where M is the total mass of the body, B is the damping 
coefficient, Td is the total definition for unknown load 
disturbances such as noise or friction terms that effect the 
body and finally is the applied control force to the 
system. By rearranging terms, (2) can be rewritten in the 
following form: 
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p=-B/M, Kp=-K/M, Dp=-1/M , Mp=1/M and u(t) is 
rol effort. The control objective is to find a suitable 
signal so that the body acceleration of the sprung 
minimized. The error of sprung mass displacement 

)()( tztz ds −     ( 4) 

d(t) is the desired displacement of the car body. The 
p of sliding mode controller design process is 
 the sliding surface which is directly related to 

 and the time response of the closed loop system. 
ond step of the sliding mode controller design 
consists of determination process of the control 
ch that the state trajectories are forced towards the 
switching surface. Although linear switching 

 are addressed in many articles, a nonlinear 
onal-integrator type surface is used in the proposed 
as in [13], since the conventional linear sliding 
 are insufficient to eliminate the static steady-state 
nd produces sharp control signals. Therefore, 
g sliding surface is employed, 
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oduces smooth control signals and is capable of 
ing the steady-state errors. k1 and k2 are both non-
sitive constants and if the state trajectory of the 
is trapped on the sliding surface )()( tsts &=  then 
uivalent dynamics of the AASS will be, 

0)()( 21 =+ tekte&    ( 6) 



It is obvious that the error dynamics in (6) is 
exponentially stable if-and-only-if (6) is Hurwitz. Assuming 
that the system dynamics (2) is well known, a feedback 
linearization such as, 
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achieves (6) when the control law (7) is applied to (3). 
However, generally, the system dynamics and disturbances 
acting on the system cannot exactly be known. Therefore, 
control law defined by (7) cannot be directly applicable. 
Thus, one method to overcome this difficulty is to imitate 
the feedback linearization method given in (7) by an 
adaptive fuzzy logic controller such as 
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where θr, r=1,2,…,N are the discrete singleton control 
signals labeled as adjustable parameters and wr is the firing 
weight of the rth rule. On the other hand the fuzzy rules are 
in following form: 
Rule r : IF s is , THEN u is r

sΩ rθ    ( 9) 

If θr is chosen as an adjustable parameter, (8) can be 
rewritten as  

δθTu =fz , 

Where θ=[θ1,θ2,…,θN]T and δ=[δ1,δ2,…,δN]T
 are regression 

vectors where each element is in the form of, 
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In the present work, we have chosen Gaussian 
membership functions for the fuzzification process of s. The 
mathematical description of a general Gaussian function is 
in the form of, 

( ) ( )[ ]{ }22 2/exp),,( σσµ cscs −−=   ( 11) 

where c represents the center of the membership function 
and σ determines its width. In the extreme case, when the 
width is zero, the logic reduces to crisp logic. 
According to the universal approximation property of the 
fuzzy systems, [14], (7) can be approximated by a fuzzy 
system with a bounded approximation error ε with a bound 
of E such as, 
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Let δθT(( =fzu  be the approximation of  and )(* tu θ
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 is the 

approximation of . Moreover, in order to compensate the 

approximation error 

*θ

*
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, we add a variable structure 
controller  term to the control signal which results, 
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Then the closed loop system is obtained as, 
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After some algebraic manipulations one, can achieve, 
[ ] suuuMekeke p &
(

&&& =−+=++ *
vsfz21   ( 15) 

Denoting ε*
fzfz

*
fz −−=− uuuu ((

 as fzu)  and *-θθ
(

 as θ
)

 
then,  
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is obtained. The second term in control signal is the variable 
structure controller which is defined as  

)/(sat1vs Φ−= su ρ     ( 17) 

where ρ1 is the variable switching gain and Φ  is the 
thickness of the boundary layer and chosen as 0.0008 for 
the present application and sat is the saturation function of 
the form, 
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Let  is the equivalent gain of the sliding controller and *
1ρ

1ρ
(

 is the estimated gain. Then, the error of switching gain 
estimation is defined as, 

*
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     ( 19) 

In order to achieve minimum approximation error and to 
guarantee the existence of sliding mode, we have chosen a 
Lyapunov function candidate as, 
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where ρ2 is a positive constant. The time derivative of V 
along the closed-loop trajectory is,  
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In order to achieve,  the adaptation law for 0<V& 1ρ&
(

 is 
chosen as, 

)/(sat21 Φ= ssρρ&(     ( 22) 

then (21) can be rewritten as 
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Defining [ ]ερ −1sM p  as, )(tψ  then  

),()( θ
)

& sVt −≤ψ     ( 24) 

is valid. Since ( θ))& ),0(sV  is bounded and ( )θ)& ),(tsV  is 
bounded and non-increasing, then, one can easily conclude 
that  

∞<∫ ττψ d
t

0
)(      ( 25)  

Since (25) is valid as t→∞ and ψ(t) is uniformly continuous, 
based on Barbalat’s Lemma, [15], ψ(t)→∞ as t→∞. That is 
s(t)→∞ as t→∞ Thus, the stability of the proposed 
controller and adaptation laws are achieved in the sense of 
Lyapunov. 

4. Simulation Results 
To evaluate the proposed controller presented above, a 

simulation environment of AASS with the parameters in 
Table 1 is created for the quarter car model which has 
component-wise nonlinearities within. Damper and spring 
element nonlinearities as in original ones is used in the 
system dynamics equations. Vehicle speed of 36 km/h is 
chosen to emulate normal driving conditions and two types 
of road profiles are prepared for controller performance 
evaluation: standard bump-type surface profile with 10cm 
length x 10cm height and a random road profile generated 
to simulate stabilized road with 1cmx1cm pebbles. Open 
loop, PID and Proportional-Derivative (PD) type self-tuning 
fuzzy controllers are employed along with the proposed 
controller. Feedback of these evaluatory controllers are 
obtained through suspension deflection while proposed 
controller feedback signal is directly zs, car static 
equilibrium position. The reason behind this difference is 
that evaluatory controllers do not provide reasonable system 
control with provided zs feedback. The block diagram of the 

PD-type self-tuning fuzzy controller includes a main 
controller which processes the error and the error derivative 
values and the self-tuning mechanism that adjusts the gain 
matrix. The rule-bases for the main FLC and self-tuning 
mechanism are chosen, described in [15]. On the other 
hand, PID controller is tuned with well-known Ziegler-
Nichols tuning method. Although the initial rule table of the 
proposed controller is not important because of the self 
organizing structure of the proposed controller, initial value 
of the adjustable vector θ is chosen as 

[ ]T5000300010000100030005000 −−=θ , the 
values of k1 and k2 are chosen as 10.1 and 0.16, respectively.  

First, bump-type road profile is applied to the system for 
four types of controllers and results are given in Figure 2, 
Figure 3 and Figure 4. Although the car body acceleration 
in vertical direction is the main target to reduce, car body 
displacement and suspension deflection are plotted for the 
ease of understanding. Car body displacement represents the 
system performance better than the other parameters, while 
suspension deflection illustrates the actuator response to 
road imperfections. 

In Figure 2, proposed controller apparently produces the 
shortest response time of 0.85 sec. and the lowest peak 
value of 0.4 cm. Open loop response has continuing 
oscillations of 25 sec and also it has high peak value. PID 
controller decreases the peak value while decreasing the 
response time. On the other hand, STFPD still has high peak 
value and low response time comparing to the proposed 
controller. However, for chosen PD parameters, classical 
PID seems to perform better than PD type self-tuning fuzzy 
controller. 
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Figure 2. Car Body Displacement for a simulated bump 

(Proposed controller: solid bold; passive suspension: 
dotted; PID controller: dash-dot; STFPD controller: 

dash) 
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Figure 3. Car body acceleration for a simulated bump 
(Proposed controller: solid bold; passive suspension: 
dotted; PID controller: dash-dot; STFPD controller: 

dash) 
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Figure 4. Suspension deflection for a simulated bump 
(Proposed controller: solid bold; passive suspension: 
dotted; PID controller: dash-dot; STFPD controller: 

dash) 

The controller design purpose as indicated at the 
beginning of this paper is to decrease the body acceleration 
because of its effect on ride comfort. Comparing to other 
controllers listed, the proposed controller reduces peak 
acceleration value and response time drastically as shown in 
the figure. However, all three controllers have either high 
peak response or long response time for this type of road 
profile. 

Because of the designed sliding mode controller and of 
chosen sliding trajectory, in case of the first road profile, the 
error and the error derivative follow the indicated trajectory 
till the set point on the sliding surface as shown in Figure 5. 
During this response, the actuator provides the highest 

possible control output when proposed controller is used, 
yet other controllers fail to sustain sufficient actuation. 

Proposed controller and evaluatory ones has been tested 
using the random road profile. Figure 6 shows the response 
of all four controllers for this road profile and it is pretty 
obvious that the proposed sliding mode controller has 
overwhelming success over other controllers because of its 
quick response and provided ride comfort. 

Additionally, acceleration response comparison for 
random road profile is shown in Figure 7 and the proposed 
controller has a unique response over other controllers. 
Summary of all responses to two kinds of road conditions 
can be seen through Table 2. 

5. Conclusion 
A novel single-input adaptive fuzzy sliding mode 

controller is proposed and successfully employed to control 
component-wise nonlinear AASS. The proposed scheme 
does not require any information from the controlled plant 
and any expert knowledge because of its learning capability. 
The strategy is robust since it has a single input FLC as a 
main controller. Thus, the rule base of the FLC drastically 
decreases when it is compared with the traditional FLCs. On 
the other hand, the efficiency of the controller is improved 
by combining a sliding mode compensator which also has 
an adaptive structure. The stability of the proposed scheme 
is achieved in the sense of Lyapunov. In order to 
demonstrate the effectiveness of the proposed method, the 
controller is applied to the suspension system in comparison 
with the passive suspension, PID controller, PD–type self-
tuning fuzzy controller. Road profiles that are tested are a 
simulated random road surface and a bump. The 
experimental results show that the proposed scheme 
improves the ride comfort considerably when compared to 
the aforementioned controller structures. To demonstrate 
the efficacy of the controller and future study purposes, 
higher order geometric and component-wise nonlinear 
vehicle models will be approached for further research. 
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Figure 5. Control trajectories for proposed controller 
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Figure 6. Body displacement for random road profile 
(Proposed controller: solid bold; passive suspension: 
dotted; PID controller: dot-dash; STFPD controller: 

dash) 

Table 1. Two DOF car model system parameters 

Parameters Definition Value 
ms Car body mass 250.3 kg 
mu Wheel mass 30.41 kg 
ks Suspension spring 

constant 
45000 N/m 

kt Tire spring constant 150000 N/m 
bs Suspension damping 

coefficient 
1000 N/(m/sec) 

v Vehicle speed 72 km/h 
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Figure 7. Car body acceleration for random road profile 

(a:Proposed controller, b: passive suspension, c:PID 
controller, d:STFPD controller) 

Table 2. Comparison of the controller performances 

Controller

Body 
acc. - 

random 
road 

profile 
(RMS) 

Body acc- 
simulated 

bump 
(RMS) 

First 
Peak - 

simulated 
bump(m) 

Sett. 
Time - 

simulated 
bump 
(sec.) 

Proposed 0.1288 1.2538 0.004 0.85 

Passive 
(Open-
loop) 

0.4994 1.6369 0.0133 25 

STFPD 0.3209 1.4876 0.0135 6 

PID 0.2936 1.4097 0.0112 4.15 
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