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Abstract

In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions

of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design

considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship

utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves

are implemented by a well-established randomization theory in order to find heave force and pitch moment at

Fn = 0.40 and Fn = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which

pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain

the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and

rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable

state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC

is also compared with an elipsoid based H∞ controller. An extensive amount of simulation studies are

presented at the end to illustrate the effectiveness of the proposed approach.
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1. Introduction

Seakeeping ability of a ship is strongly associated with the improvements of undesired motions in rough

seas. Seasickness level of passengers on board should be reduced sufficiently for passenger comfort and

crew operability. The first experimental studies that reveal the influence of ship vertical accelerations on the

human body were conducted by O’Hanlon and McCauley in 1974 [1]. This experimental work was carried out5

with a large group of voluntary male students. Subjects were undergone different amplitude of acceleration

at different oscillation frequencies in order to observe vomiting tolerance. According to the results of this

work, number of graphs were plotted describing the seasickness regions by means of the frequency and

amplitude of the oscillation. Additionally, it is understood that the most dangerous frequency to the human

body is in the vicinity of 1 rad/s and seasickness incident is proportional to the exposure time. Since most10

wave frequencies at sea are observed in the vicinity of 1 rad/s, reducing the pitch motion of the ship by a

control system is required for safer operations in a seaway.

The techniques used to reduce the pitch motion of ships have been primarily passive. However, using

passive methods has significantly increased the resistance of the ship [2], [3], [4]. Hence, it is understood

that when the forward speed of the ship is higher than 10− 15 knots, active actuators such as fins yielded15

more effective solutions [5],[6].

It is well known that controller design plays a significant role in ship motion control. Therefore, a

large variety of control approaches for reducing the vertical motions of ships have been presented in the

literature. A proportional, integral, derivative (PID) based controller with the aim of reducing pitch and

heave acceleration for a high-speed ferry form using flap and T-foil is proposed in [7]. An experimental20

campaign was carried out in [8] to demonstrate the effectiveness of active control to damp the vertical

motion of a scaled down replica of a fast ferry. In this study, vertical accelerations which are the main

cause of seasickness has been reduced with a fuzzy control system based on the fuzzy model of a ship is

proposed in [9]. A new model-free control approach to reduce the vertical motions induced by random

waves on a high–speed ferry was also introduced at [10],[11]. In these studies, a comparison study between25

Proportional-Derivative (PD) and so-called i-PD (intelligent PD) was performed and the results showed

that i-PD exhibited a better ability to handle the varying system parameters and operating velocity. On the

other hand, Zhang et al. proposed a H∞ output feedback control method using Ricatti equations to reduce

the longitudinal motion and the sickness incidence of the wave piercing catamaran. They used instantaneous

heave and pitch velocities as feedback signals [12]. [6] applied a numerical and experimental study for pitch30

stabilization in head waves. In this work, a short term predictor has been proposed to predict hydrodynamic

forces. Then these predicted motions are used in a force estimator to forecast the ship’s hydrodynamics.

In a similar way, [13] studied on pitch-roll stabilization problem by active fins. However, although the

proposed control strategy considers magnitude bound on the angle-of-attack, it does not consider any rate

2
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constraint on the control signal which makes it difficult to realise on a full-sized ship having huge control35

fins with very large time constants. Similarly, a Linear Matrix Inequality (LMI) based robust static output

feedback H∞ controller design was developed in [14] to mitigate vertical acceleration of a motor yacht

form. Among these aforementioned works, it is apparently seen that to the best of our knowledge, no study

exists in literature utilizing the MPC strategy for reducing vertical ship motion by the use of anti-pitching.

Moreover, actuator amplitude and rate saturation problems have never been jointly taken into consideration40

in controller design as provided in this paper. These investigations motivate us to develop a practically

applicable model predictive controller for ships having actuator amplitude and fin velocity saturation. It is

noted that the optimal H∞ controller is also applied in this paper in order to have comparative results.

In this work, a disturbance attenuation type discrete-time MPC under different wave conditions and

ship forward speeds is proposed which considers actuator amplitude and rate saturation. The popularity of45

MPC arises from the fact that the resulting control action respects all the system and problem information,

in conjunction with interactions and constraints of the system parameters, which would be very difficult to

achieve by any other controller [15]. The bounds on the rate of the actuator force (torque, thrust, etc.) have

also been identified as a source of severe performance degradation or instability in control applications and

might yield critical limitations on the system[16]. Different from the literature, the aim of this study is to50

develop a more realistic, practically implementable optimal controller which attenuates vertical motions of

a passenger ship subject to irregular wave disturbances by respecting actuator constraints.

This paper is organized in a way to develop from modelling of a ship and wave disturbance to the

MPC design for the active foil system having actuator amplitude and rate saturation. Therefore, Section 2

describes the mathematical model of the ship and the wave disturbance. Disturbance rejection type MPC55

strategy is developed in Section 3. Section 4 considers the design of a discrete-time state feedback H∞
controller for systems having magnitude and rate based actuator limitations. Section 5 provides extensive

simulations on the system under different sea conditions and ship speeds. Finally, Section 6 concludes

the paper with some final remarks on possible research directions. The paper is further structured into

subsections for better readability.60

Notation. Throughout the paper, a fairly standard notation is used. The symbol R denotes the set of

real numbers, Rm×n stands for m × n matrices having real entries. Column vectors having n entries are

represented by Rn. The symbolˆis used to represent estimated signals. ‖z‖2Y stands for the quadratic term

zTY z. 0m×n denotes a rectangular null matrix having a size m × n whereas In represents a square n × n

identity matrix. Lower case italic letters are generally used to represent vectors whereas capital italic letters

are used for matrices. An ellipsoidal set having a weighting matrix P = PT � 0 and centred at the origin

is defined as

Elp(P ) ,
{
x |xTPx ≤ 1

}
(1)

3
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For matrices and vectors, (·)T indicates the transpose operator. For symmetrical matrix elements, ? denotes

the transposed symmetric element induced by the symmetry. X � (�)0 indicates that X is a negative

semi-definite (possitive semi-definite) matrix. diag{X,Y } stands for the diagonal matrix having elements

X and Y on its main dioganal. Finally, supX stands for the supremum (smallest upper bound) of a set X.

2. Mathematical Model of a Passenger Ship65

During the derivation of the mathematical model, Cummins’ equation is used to represent the vertical

ship motions of the considered passenger ship subject to irregular waves. First, the frequency domain

coefficients are calculated using an in house code based on strip theory. Then, the convolution integrals used

in the equation of motions are approximated by a well-known time-domain identification method. Finally,

irregular head wave scenario is realized with wave-based excitation signals by the randomization theory.70

2.1. Ship Model

In this study, we consider a passenger ship of LWL = 42.95 metres waterline length, 5.3 metres in

breadth, 205 tons of mass and 2011.05kN of displacement force. In the static condition, the location of the

centre of gravity (LCG) is assumed to be the same as the centre of buoyancy (LCB) which is 18.67 metres

from the transom. The mass inertia moment for pitch motion, I5 = 23385 tonm2 and the advance velocity75

V of the ship is assumed to be 8.2304m/s and 10.288m/s. Figure 1 shows the sketch of the ship, excited

with irregular long-crested head waves, in the global coordinate axis. The direction of the ship longitudinal

axis is aligned to the opposite direction of the incoming waves. So the heading angle is 2π for the head

waves. Note that, in this paper, heave motion is negative from the origin downwards while pitch motion is

negative when the bow of the ship goes up.80

2.2. Cummins equation for coupled heave and pitch motions

Vertical motions of ship in a rough sea condition having a constant forward speed V can be modelled by

using Cummins’ Equation [17] as follows:

(M̄ +A∞)z̈(t) +B(V )ż(t) +

∫ t

0

K(t− τ)ż(τ)dτ + Cz(t) = FE(t) (2)

where, M̄ stands for the ship mass, A∞ denotes the mass matrix at the infinite frequency, B(V ) is the

constant damping matrix, C is the restoring matrix which is a function of only geometry, z(t) is the oscillatory

response of the ship and finally FE(t) is the transient wave force vector that can be created by a linear

superposition of frequency domain results based on different wave spectra. On the other hand, K(t) is the

impulse response function matrix which is defined as

K(t) =
2

π

∫ ∞
0

[B(ωe)−B(V )] cos(ωet)dωe (3)

4
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Figure 1: The sketch of a ship under head wave excitation.

Here, B(ωe) is the damping matrix in frequency domain. ωe denotes the encounter frequency whose value

can be obtained by the equation, ωe = ω + (kV ) for the head waves where ω denotes the wave frequency

and k denotes the wave number.

Then the coupled Cummins’ Equations for the vertical motion of the ship advancing with a constant

speed V can be re-written as follows:

(M̄ +A∞33)z̈3(t) +B33(V )ż3(t) +

∫ t

0

K33(t− τ)ż3(τ)dτ + C33z3(t)

+A∞35z̈5(t) +B35(V )ż5(t) +

∫ t

0

K35(t− τ)ż5(τ)dτ + C35z5(t) = F3(t) (4)

5
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(I5 +A∞55)z̈5(t) +B55(V )ż5(t) +

∫ t

0

K55(t− τ)ż5d(τ) + C55z5(t)

+A∞53z̈3(t) +B53(V )ż3(t) +

∫ t

0

K53(t− τ)ż3(τ)dτ + C53z3(t) = F5(t) (5)

Here, z3(t), ż3(t), z̈3(t) are the heave motion, heave velocity and heave acceleration of the ship whereas85

z5(t), ż5(t), z̈5(t) are the pitch motion, pitch velocity and pitch acceleration of the ship, respectively. F3(t)

represents the heave force based on irregular waves whereas F5(t) represents the pitch moment based on

irregular waves in time domain. Further, I5 is the ship inertia moment for pitch motion. A∞ij is the

added mass coefficient at infinite frequency. Kij(t) is the impulse response function whereas Cij is the

restoring coefficient for the motion in mode i with respect to the motion in the mode j. Bij(V ) appears90

in Cummins’ equation if the ship has a forward speed. Note that these terms have approximated values

at infinite frequency and their values are obtained using the Riemann-Lesbesque Lemma [18]. Therefore,

Bij(V ) = B∞ij where i = {3, 5} and j = {3, 5}. The value of A∞ij is dependent only on the ship geometry and

can be obtained by the convergence value from the frequency domain graphs. Similarly, restoring values,

Cij are also dependent on the ship geometry and can be calculated with the geometric properties of the95

ship.

2.3. Calculation of Radiation Terms

Kij(t) is the impulse response function which can be calculated as

Kij(t) =
2

π

∫ ∞
0

[Bij(ωe)−B∞ij ] cos(ωet)dωe i, j = {3, 5} (6)

where the damping coefficient, Bij(ωe) is obtained by using strip theory implemented in an in-house code as

shown in Figure 2. Note that the definite integrals for impulse response functions defined in (6) are calculated

in the encounter frequency range and their variations are demonstrated in Figure 3. In the present study,

the definite integrals for impulse response functions defined above are calculated for a particular frequency

range, 0.6− 4rad/s. The frequencies lower than 0.6 rad/s and higher than 4 rad/s are ignored because the

ship has almost zero response beyond this frequency range. Please note that the impulse response functions

are chosen identical for the ship advance speeds which are 8.2304m/s and 10.288m/s since the encounter

frequency range is set sufficiently large. Hence,

Kij(t) ∼=
2

π

∫ 4

0.6

[Bij(ωe)−B∞ij ] cos(ωet)dωe (7)

However, it is still a very time-consuming process to calculate (4) and (5) due to the existence of the

6
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Figure 2: Damping-we relations.

following terms which include convolutions:

η1(t) ,
∫ t

0

K33(t− τ)ż3d(τ) +

∫ t

0

K35(t− τ)ż5d(τ)

η2(t) ,
∫ t

0

K53(t− τ)ż3d(τ) +

∫ t

0

K55(t− τ)ż5d(τ) (8)

Note that the direct implementations of these convolution integrals, as underlined above, are computa-

tionally expensive, especially for the control applications such as model predictive control where a huge

amount of information is being processed in real-time. Therefore, in this study, these convolution terms

are approximated with suitable transfer functions. Following [19], in this note, filters that are obtained by

using Prony’s method are utilised to approximate each impulse function. Prony’s method is a technique

for modelling discrete data as a linear combination of exponentials. Although it cannot be classified as a

spectral estimation technique, it has a close relationship with the least squares based system identification

algorithms [20]. Using the Prony’s method along with system identification techniques, one can obtain the

7
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Figure 3: Impulse Response Functions.

approximated transfer functions for K33, K35, K53 and K55 as follows:

K33(s) ∼=
364.51s5 − 1810.8s4 + 3598.9s3 − 3576.7s2 + 1777.6s− 353.42

s6 − 5.96s5 + 14.84s4 − 19.68s3 + 14.68s2 − 5.84s+ 0.96
(9)

K35(s) ∼=
432.47s5 − 2156.3s4 + 4301.1s3 − 4290.4s2 + 2140.2s− 427.13

s6 − 5.98s5 + 14.93s4 − 19.86s3 + 14.86s2 − 5.93s+ 0.98
(10)

K53(s) ∼=
598.49s5 − 2981.2s4 + 5940.6s3 − 5919.6s2 + 2949.6s− 587.96

s6 − 5.98s5 + 14.90s4 − 19.81s3 + 14.81s2 − 5.91s+ 0.98
(11)

K55(s) ∼=
53875.3s5 − 267779.8s4 + 532457.01s3 − 529444.10s2 + 263259.89s− 52368.2

s6 − 5.97s5 + 14.85s4 − 19.71s3 + 14.71s2 − 5.85s+ 0.97
(12)

As it can be seen from Figure 4, the Prony approximations represent the retardation functions with very

high accuracy, particularly at the first instants of the impulse response. In this work, following a few trials,

we decided to use a 6th order approximation. However, more accurate results could be obtained by using100

higher order filters albeit at a high computational cost.

8
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2.4. Prediction of Excitation Terms

It is very common to define a wave spectrum in order to represent the behaviour of ocean waves. If

there are sufficient data from wave ride bouys, the wave spectrum can be obtained by spectral estimation

techniques [5]. If these measurements are not available directly, then the idealized wave spectrum formulae105

can be used. In this paper, Pierson-Moskowitz spectrum, one of the most famous idealised spectrum to

define the distribution of energy with frequency within the ocean, is applied.

Pierson-Moskowitz spectrum [21] can expressed as

Sζ(ω) = Aω−5e−
B
ω4 (13)

where the frequency domain is used to represent excitation terms. Here, ω stands for the frequency in

radians per second whereas Sζ(ω) denotes the encounter wave energy spectrum. In line with the physical

parameters listed in Table 2, one can obtain the constants A and B as follows:

A = 0.0081× g2 (14)

B =
0.032g2

H2
s

(15)

where Hs denotes the characteristic wave height and g denotes the acceleration of gravity. In this study,

three different significant wave height conditions (0.70, 0.88 and 1.0 metres) were considered during the

simulation of irregular waves. For the excitation term predictions, the linear superposition principle which

was proposed in [22] is used. Hence,

SHF/PM(ωe) = Sζ(ωe)× |TFHF/PM(ωe)|2 (16)

9
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where, Sζ(ωe) can be calculated as

Sζ(ωe) =
Sζ(ω)

1 + 2V ω
g

(17)

For example, wave encounter energy spectrum Sζ(ωe), is plotted in Figure 5 for Hs = 0.88. In (16),

TFHF/PM(ωe) denotes the heave force or pitch moment in regular head waves while the ship has a forward

speed V = 10.288m/s and they are given in Figure 6. Please note that different ship advance speeds refer

to different wave excitations under the same wave conditions. On the other hand, SHF/PM(ωe) stands for

the heave force or pitch moment response spectrum for the investigated wave. According to linear random
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Figure 5: Wave encounter energy spectrum Sζ(ωe) for Hs = 0.88 m.

wave theory, unidirectional and long-crested waves can be expressed by the sum of finite regular waves.

Therefore, instantaneous wave amplitude can be stated as

ζ(x, t) =

Ni∑
i=1

Ai sin(θi(t)) (18)

where ζ(x, t) denotes the mean wave amplitude measured from the free surface and Ai =
√

2Sζ(ωi)∆ωi

denotes wave amplitude of each frequency component. In this expression, θi(t) = kix + ωit + εi, where t

denotes the time, ωi denotes the ith frequency and εi denotes the ith phase lag whose value is randomly110

assigned between 0 and 2π. Also ∆ωi is the ith step size of the frequency. x denotes the position of the wave

and ki denotes ith wave number. By taking the wave position (i.e xi = 0 for all i) and following the same

procedure, the heave force or pitch moment response spectra, shown in Figure 7, can be transformed to the

10
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Figure 6: Heave force and pitch moment TF at V = 10.288m/s.
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Figure 7: Heave Force-Pitch Moment Response Spectra representing Hs = 0.88 m. at V = 10.288m/s.

time domain as shown in Figure 8, for a simulation that lasts 100 seconds [5]. In this work, the number of

regular wave components, Ni is taken as 132. Here, the number of components of regular waves are chosen115

11
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sufficiently enough to represent heave force and pitch moment due to wave-ship interactions.
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Figure 8: Heave Force and Pitch Moment in Time Domain at Hs=0.88 m.at V = 10.288m/s.

2.5. State Space Representation of Mathematical Model of Vertical Ship Motions and Actuator Equipped

with Anti-Pitching foils

In this study, state-space representation is used to define the model of the system due to its multi-input

and multi-output structure. The vertical motion of the ship can be represented as

ẋ(t) = Ax(t) +B1[wave(t)− conv(t)] +B2α(t) (19)

where x(t) ∈ Rn denotes the differentiable state vector, wave(t) ∈ Rmw denotes the wave load input vector,

conv(t) ∈ Rmw denotes the convolution vector, and α(t) ∈ Rmu denotes the control input vector. A, B1 and

B2 are known state-space matrices with appropriate dimensions. Using the change of variables, x1(t) , z3(t),

x2(t) , z5(t), x3(t) , ż3(t) and x4(t) , ż5(t), the system matrices, disturbance input, control input and

12
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states of the system can be obtained as follows:

A =

 02×2 I2

−M−1R −M−1D

 , B1 =

02×2

M−1

 ,

B2 =


02×2

0.5× ρ× V 2 × (180/π)×

−1 −1

mb −ms

CLbow 0

0 CLstern

Sbow 0

0 Sstern

×M−1

 ,

wave(t) =

F3(t)

F5(t)

 , α(t) =

αbow(t)

αstern(t)

 , conv(t) =

η1(t)

η2(t)

 , x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
(20)

where, x1(t) denotes the heave motion, x2(t) stands for the pitch motion, x3(t) represents the heave velocity

and x4(t) symbolises the pitch velocity. F3(t) denotes the heave force due to waves, F5(t) is used to represent

the pitch moment due to waves. The terms aforementioned in the state-space matrices are as follows:

M =

M̄ +A∞33 A∞53

A∞53 I5 +A∞55

 , R =

C33 C35

C53 C55

 , D =

B∞33 B∞35

B∞53 B∞55

 (21)

It should be noted that in B2 matrix, moment arms mb and ms were taken as 19.25 metres from the bow

Table 1: Parameters of the ship model

Parameter (Unit) Value

M (ton) 205

I5 (tonm2) 23385

A∞33 (ton) 214

A∞35 (tonm) 560

A∞53 (tonm) 568

A∞55 (tonm2) 19752

B∞33 (ton/s) 153

B∞35 (tonm/s) 2841

B∞53 (tonm/s) −630

B∞55 (tonm2/s) 27752

C33 (ton/s
2
) 1566

C35 (tonm/s
2
) 1287

C53 (tonm/s2) 1287

C55 (tonm2/s2) 173322

and 16.80 metres from the stern with respect to centre of gravity. In addition to this, M denotes the mass

matrix, R denotes the restoring matrix and D denotes the damping matrix. The passenger ship is equipped

13
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with two submerged anti-pitching active foils. Table 1 summarizes the model parameters and their physical

values used in this note. As shown in Figure 1, a pair of foils having symmetrical sections situated at bow

and stern part of the ship to reduce the vertical motions. These foils are used to control vertical motions of

the ship body in accordance to the control forces Ubow(t) and Ustern(t) computed by the real-time controller.

Note that these actuators produce lift force as a function of ship speed V , effective angle of attacks, αbow(t)

and αstern(t), projected area of the foils Sbow and Sstern, lift coefficients of the foils CLbow and CLstern and

finally water density ρ. Note that in this work, Sbow=Sstern = S and CLbow = CLstern = CL. Then one can

define

Ubow(t) , 0.5× ρ× Sbow × CLbow × (180/pi)× V 2 × αbow(t) (22)

Ustern(t) , 0.5× ρ× Sstern × CLstern × (180/pi)× V 2 × αstern(t) (23)

Hence, 22 and 23 can be used to transform the vertical forces Ubow(t) and Ustern(t) into effective foil angles,

αbow(t) and αstern(t) assuming that the impact of the unsteady behaviour of lift characteristics is negligible.

Here, the angle of attacks, αbow(t) and αstern(t) should be measured with respect to the parallel water flow.

Therefore, the real angle of attacks can be expressed in terms of the online foil angle and the position of the

ship as follows:

αbow(t) = βbow(t) + x2(t) + θFbow(t) (24)

αstern(t) = βstern(t) + x2(t) + θFstern(t) (25)

where, βbow(t) is the bow foil angle and βstern(t) is the stern foil angle of the ship. θFbow(t) and θFbow(t)

depict the change the angle of attacks due to the online pitch and heave velocities of the ship and can be

expressed as follows assuming that the arguments of the arctan functions vary in a very small interval:

θFbow(t) = arctan

(
mb × x4 − x3 + ξ̇

V

)
∼=

(
mb × x4 − x3 + ξ̇

V

)
(26)

θFstern(t) = arctan

(
−ms × x4 − x3 + ξ̇

V

)
∼=

(
−ms × x4 − x3 + ξ̇

V

)
(27)

Here, ξ̇ stands for the heave velocity of wave on hydrofoil surface and its value is neglected since the foils are

positioned sufficiently deep under mean water surface. Please note that there is also a contribution coming120

from the drag component due to the flow passing through the foil. However, this contribution may also be

ignored since it is very small compared to the lift component.

Taking the foil opening angle u(t) , β(t) as the the actual control input, the state-space equations of

the vertical motion can be expressed as

ẋ(t) = (A+B2B3)x(t) +B1[wave(t)− conv(t)] +B2u(t)

y(t) = Cx(t) (28)

14
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where

C =

0 1 0 0

0 0 0 1

 , B3 =

0 1 − 1
V

mb

V

0 1 − 1
V −ms

V

 (29)

All parameters that belong to the actuators are given in Table 2. In this paper, two identical active foils are

used to actuate the system and their rotation angles are limited to ±20 deg (±0.349 rad), and rotation rates

are limited to ±20 deg/s (±0.349 rad/s), due to mechanical restrictions of the actuators that drive foils [23].125

On the other hand, it is well-know that the projected foil area is related to the water plane area of the ship

and assessed according to a survey study for the cruise ships [23]. In this study, NACA 0021 hydrofoil is

selected as the foil’s section. Based on [24], Computational Fluid Dynamics (CFD) calculations gives 0.047

for the lift coefficient of NACA 0021 profile, having the aspect ratio AR = 2. This is obtained by fitting a

linear curve to numerically calculated data.

Table 2: Parameters of the actuators

Parameters Bow Foil Stern Foil

Span (m) 1.866 1.866

Chord (m) 0.933 0.933

S (m2) 1.742 1.742

AR (Span/Chord)(-) 2 2

Max. angle limit (umin, umax)(rad.) ±0.349 ±0.349

Max. rotation rate limit (rad/s) (udmin, udmax) ±0.349 ±0.349

CL(−) 0.047 0.047

Distance to CoG (mb and ms) (m) 19.25 16.80

130

3. Disturbance Rejection Based Model Predictive Controller (MPC) Design

It is well known that input saturation, which can restrict the capability of actuators might cause re-

markable performance degradation on the control system performance, sometimes even destabilization [25].

In many electro-mechanical applications including the active foil systems considered in this study, actuator

can be saturated both in terms of the magnitude and the rate of change of the signal that is applied to135

the system. Therefore, the controllers that were designed by not considering these physical limitations can-

not demonstrate the high performance that they exhibit in the simulation environment on the real system.

Hence, in order to have a realistic and practically implementable controller, the design must consider the

physical restrictions on both angle and the rate of the angle of foil. To overcome this issue, in this study,

we propose an MPC strategy for the control of active foil system which is capable of eliminating the slowly140

varying disturbances such as waves by its integral type structure.

15
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MPC is an advanced control strategy that is used to control complex processes while satisfying a set

of constraints arising from the engaged system’s characteristics. The main advantage of MPC is the fact

that it allows the current timeslot to be optimally controlled, while keeping future behaviour of the system

into account. This is achieved by optimizing a running finite time-horizon, but only modifying the current145

timeslot and then optimizing again, repeatedly, thus differing from any other offline optimal control method.

The rest of this section investigates the design of an integral type multi-objective MPC that can be used in

active foil control systems in ships.

Consider a linear discrete-time state-space model of the vertical motions of a ship governed by the

following difference equations:

xk+1 = Axk + Buk + Bwwk

yk = Cxk + vk (30)

where the subscripts refer to the sampling instants, xk ∈ Rn is the state vector, uk ∈ Rm is the control

vector, wk ∈ Rs, is the disturbance signal having effect on the states, vk ∈ Rp is the output disturbance150

and yk ∈ Rp stands for the outputs. A, B, Bw and C are the system matrices obtained by discretising the

continuous-time system having system matrices A+B2B3, B2, B1 and C, using a Zero-Order-Hold (ZOH)

on the inputs and a sample time of Ts seconds, respectively. On the other hand, since the period of sea

waves that affect the ship is much larger than the sampling time Ts, one can assume that the rate of change

of the disturbance signals wk and vk are negligible, i.e, wk ' wk−1 and vk ' vk−1 for all k ≥ 0. Hence, one155

can assume that wk = w and vk = v for all k ≥ 0. Note that for discrete-time models used in control, there

is normally no direct feed-through term Duk. Hence, the measurement yk does not depend on the input at

time k, but it depends on the input at time k − 1 through the state xk.

The control task of this note is to design an MPC strategy so that the output yk follows a pre-defined

reference input rk as close as possible for all iterations k without violating the following component-wise

control signal constraints:

umin ≤ uk ≤ umax, ∀ 0 ≤ k < N − 1 (31)

udmin ≤ uk − uk−1︸ ︷︷ ︸
∆uk

≤ udmax, ∀ 0 ≤ k < N − 1 (32)

umin stands for the lower bound of the control signal and umax represents the upper bound of the control

signal. udmax corresponds to the upper bound of the rate of the control signal whereas udmin denotes the160

lower bound for the rate of the control signal. For our case, the numerical values of these limits are shown

in Table 2. Here, N is called the prediction horizon.

16
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Hence, the optimisation problem can be stated as follows:

minimise

∆ut, . . . ,∆ut+N−1

J =
1

2
‖et+N‖2S +

1

2

N−1∑
k=0

(
‖et+k‖2Q + ‖∆ut+k‖2R

)
(33)

where t represents the current time, J is the running cost function, ek , yk − rk stands for the tracking

error; S, Q and R denote the symmetric positive definite constant weighting matrices with appropriate

dimensions.165

Our goal is to find out a suitable optimal MPC controller signal array u? ∈ RN ·m that solves the

optimisation problem (33) along with system trajectory (30) . Also the solution must satisfy the input

constraints (31), (32) and capable of coping with the effects of slowly varying disturbances w and v on

the states and the outputs, respectively. To achieve this goal, let us define a new augmented state vector

x̃k , [∆xTk yTk−1]T where ∆xk , xk − xk−1. Hence,

∆xk+1 = xk+1 − xk

= Axk + Buk + Bww −Axk−1 − Buk−1 − Bww

= A(xk − xk−1) + B (uk − uk−1)︸ ︷︷ ︸
∆uk

= A∆xk + B∆uk (34)

Similarly,

yk − yk−1 = Cxk + v − Cxk−1 − v

yk = C∆xk + yk−1 (35)

Then, for the sampling instant k, one can define the following augmented state and output equations which

are reliant on the rate of change of the control signal ∆uk.∆xk+1

yk

 =

A 0n×p

C Ip


︸ ︷︷ ︸

Ã

∆xk

yk−1


︸ ︷︷ ︸

x̃k

+

 B

0p×m


︸ ︷︷ ︸

B̃

∆uk

yk =
[
C Ip

]
︸ ︷︷ ︸

C̃

∆xk

yk−1


︸ ︷︷ ︸

x̃k

(36)

It is also obvious from these equations that the new augmented state-space system is independent of the

disturbances, w and v. Then, using the definitions

r ,


rt+1

...

rt+N

 ∈ RN ·p , x̃ ,


x̃t+1

...

x̃t+N

 ∈ RN ·(n+p), ∆u ,


∆ut

...

∆ut+N−1

 ∈ RN ·m (37)

17
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one can write the prediction equation as follows:

x̃ = C̄∆u+ Āx̃t (38)

where

C̄ =


B̃ 0 · · · 0

ÃB̃ B̃ · · · 0
...

...
. . .

...

ÃN−1B̃ ÃN−2B̃ · · · B̃

 , Ā =


Ã

Ã2

...

ÃN

 (39)

Hence, in the light of these definitions, the optimisation problem (33) can be rewritten as

minimise
∆u

J =
1

2
∆uTH∆u+

[
x̃Tt rT

]
F∆u (40)

where

H = C̄T Q̄C̄ + R̄ (41)

F =


ĀT Q̄C̄

−TC̄

 (42)

Q̄ =


C̃TQC̃

. . .

C̃TQC̃

C̃TSC̃


N − 1 times (43)

T =


QC̃

. . .

QC̃

SC̃


N − 1 times, and R̄ =


R

R

. . .

R




N times (44)

Here, H is called the Hessian matrix which needs to be always positive definite. In order to utilise (40) in

the MPC design, the control constraints (31) and (32) must also be defined in terms of the decision variable

∆u.

Note that 
ut

ut+1

...

ut+N−1

 =


Im

Im
...

Im


︸ ︷︷ ︸
Ĩm

ut−1 +


Im 0 · · · 0

Im Im · · · 0
...

...
. . .

...

Im Im · · · Im


︸ ︷︷ ︸

Ω1


∆ut

∆ut+1

...

∆ut+N−1


︸ ︷︷ ︸

∆u

(45)
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Hence, (31) can be replaced with 
Ω1

−Ω1

∆u ≤


UMAX

−UMIN

−

Ĩm

−Ĩm

ut−1 (46)

where

UMAX =


umax

...

umax

 ∈ RN ·m, UMIN =


umin

...

umin

 ∈ RN ·m (47)

On the other hand, it is also possible to put physical constraints on how fast the inputs can change. The

input rate of movement is the amount of control signal that changes when the iteration moves from sample

k − 1 to k and therefore is called ∆uk. The constraints can be directly written as

UdMIN ≤ ∆uk ≤ UdMAX, ∀k ∈ {t, . . . , t+N − 1} (48)

where

UdMAX =


udmax

...

udmax


 ∈ RN ·m and UdMIN =


udmin

...

udmin


 ∈ RN ·m (49)

which implies 
IN ·m

−IN ·m

∆u ≤


UdMAX

−UdMIN

 (50)

Assuming that a full measurement of the state xt is available at the current time t, the following finite-

horizon optimal tracking problem is solved at every time instant t to find the optimal control sequence ∆u?:

minimise
∆u

1
2∆uTH∆u+

[
x̃Tt rT

]
F∆u

subject to




Ω1

−Ω1

∆u ≤


UMAX

−UMIN

−

Ĩm

−Ĩm

ut−1


IN ·m

−IN ·m

∆u ≤


UdMAX

−UdMIN



(51)

Once a feasible solution ∆u? to the quadratic optimisation problem (51) is obtained, only the first m entries

of the signal is used as a control signal for the system (30). Thus, the control signal at time t can be obtained
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as

ut = ut−1 + ∆ut (52)

The satisfaction of the predictive control is highly influenced by the choice of the sampling period, Ts,

prediction horizon N and the control horizon Nu. A recommended practice is to choose Ts between 10%170

and 25% of the minimum desired closed-loop response time. Qualitatively, as Ts decreases, the satisfaction

of the attenuation of the disturbance w usually improves and then does not change much. But, as Ts

becomes small, the computational effort increases dramatically due to the need for an increase in N . Thus,

the optimal choice for Ts is a trade-off between performance and computational effort.

In MPC, the choice of the prediction horizon, N is also an important consideration. It is the number175

of predicted future time steps and shows how far the controller predicts into the future. If one chooses to

hold the prediction horizon duration (N × Ts) constant, N must vary inversely with Ts. As can be seen

above, many array sizes are proportional to N . Thus, as N increases, the controller memory requirements

and quadratic programming solution time increase.

Another design parameter is the control horizon, Nu. It is the number of non-zero control actions that180

can be used to keep the system’s output in the predicted horizon. Each control move in the control horizon

can be thought of as a free variable that needs to be computed by the optimizer. However, it is not a

reasonable approach to set Nu = N , since only the first few steps are dominant on the response of the

system. Hence, it is a common practice to keep Nu as small as possible and set uk = 0 for Nu + 1 ≤ k ≤ N

since, smaller the control horizon, the fewer the computations we have.185

In this work, based on the dynamics of the open-loop system, the sampling period is chosen as Ts = 0.01

seconds. Also, through a trial and error approach, it is seen that the best performance is obtained for the

design parameters N = 150 and Nu = 2.

In this note, when Fn = 0.5, using a Zero Order Hold type discretization, one can obtain the system

matrices as follows:

A =


0.9998 0.0001 0.0100 −0.0003

0.0000 0.9998 0.0000 0.0100

−0.0378 0.0122 0.9971 −0.0669

0.0002 −0.0401 0.0002 0.9980

 , Bw = 10−4 ×


0.0012 0.0000

0.0000 0.0000

0.2439 −0.0032

−0.0032 0.0024



B =


0 0

0 0

−0.0078 −0.0048

0.0012 −0.0009

 , C =

0 1 0 0

0 0 0 1

 (53)

For Fn = 0.4, we have the same system matrices given in (54) except
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A =


0.9998 0.0001 0.0100 −0.0003

0.0000 0.9998 0.0000 0.0100

−0.0378 0.0167 0.9969 −0.0656

0.0002 −0.0402 0.0002 0.9972

 , B =


0 0

0 0

−0.0050 −0.0031

0.0008 −0.0006


(54)

On the other hand, during the design of MPC, weighting matrices of the objective function are chosen190

as follows: S = diag{100, 100}, Q = diag{1, 1} and R = diag{0.1, 0.1} both for Fn = 0.4 and Fn = 0.5.

Finally, the reference trajectory is chosen to be r = 0 ∈ R300 for very iteration k.

4. Discrete-time H∞ state-feedback control for systems having magnitude and rate-saturated

actuators

In this section, to demonstrate the efficiency of the proposed MPC strategy and to provide a fair com-195

parison with MPC approach, derivation of a novel optimal state-feedback H∞ controller for discrete-time

systems having amplitude and rate limited actuators is considered.

Assume that the vertical motions of a ship are governed by the difference equations (30). Also, assume

that the system is subject to control constraints defined by (31) and (32). Note that the control action can

be modelled in state-space as

uk = Imuk−1 + Im∆uk (55)

Then, the augmented state-space system can be written as

x̄k+1 =

 A B

0m×n Im


︸ ︷︷ ︸

A

 xk

uk−1


︸ ︷︷ ︸

x̄k

+

 B
Im


︸ ︷︷ ︸

B

∆uk +

 Bw
0m×s


︸ ︷︷ ︸

Bw

wk

yk =
[
C 0p×m

]
︸ ︷︷ ︸

C

x̄k (56)

Denoting the transfer function from w to y by Twy, the following theorem provides an optimal static state-

feedback H∞ control law for the augmented system (56).

Theorem 1. There exists a static state-feedback controller in the form of

uk = uk−1 +MX−1︸ ︷︷ ︸
K

x̄k (57)
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such that the inequality ‖Twy‖∞ < γ holds if and only if there exist a symmetric matrix X , and a matrixM

of appropriate dimensions such that the following Linear Matrix Inequalities(LMIs) hold:
X 0 ? ?

0 γIs ? 0

AX + BM Bw X 0

CX 0 0 γIp

 � 0 (58)

and  X MT
i

Mi (udi,max)2

 � 0,

X XLTn+i

?
(
ui,max − udi,max

)2
 � 0 (59)

for all i = 1, . . . ,m whereMi is the i-th row ofM and Ln+i is a row vector whose (n+ i)-th entry is 1 and200

all other entries are 0. Finally, ui,max is the i-th row of the vector umax and udi,max is the i-th row of the

vector udmax.

Proof. Consider a Lyapunov functional of the form Vk = x̄TkX−1x̄k at time instant k along the system

trajectory (56). Assume that the augmented system is controlled by a control signal of the form ∆uk = Kx̄k.

It is easy to show that if

Vk+1 − Vk +
1

γ
yTk yk − γwTk wk ≤ 0 (60)

then ‖Twy‖∞ , supw 6=0
‖y‖2
‖w‖2 < γ. According to Bounded-Real Lemma [26], this inequality is equivalent to

X−1 0 ? ?

0 γIs ? 0

X−1A + X−1BK X−1Bw X−1 0

C 0 0 γIp

 � 0 (61)

Applying a congruence transformation by pre- and post multiplying (61) with diag{X , I,X , I} and defining

M , KX yields (58).

On the other hand, let ∆ui,k denotes the i-th entry of the rate-of-control signal at time instant k. From

the slew-rate requirements of the control signal, |∆ui,k| ≤ udi,max must to be satisfied for all k ≥ 0 and

i = 1, . . . ,m. Note that this inequality is equivalent to ∆u2
i,k ≤

(
udi,max

)2
which can be further written as

x̄TkKTi Kix̄k ≤
(
udi,max

)2
, i = 1, . . . ,m (62)

where Ki stands for the i−th row of the feedback matrix K. Rate constraints can be satisfied if the ellipsoid

Elp

(
KTi Ki(
udi,max

)2
)
, x̄Tk

KTi Ki(
udi,max

)2 x̄k ≤ 1 (63)
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contains the closed-loop system’s energy ellipsoid x̄TkX−1x̄k ≤ 1 for all k ≥ 0. From the theory of ellipsoids

26, this can only happen when
KTi Ki(
udi,max

)2 � X−1, i = 1, . . . ,m (64)

Pre- and post multiplying both sides of the (64) by X and using the definition KX =M yields

MT
iMi(

udi,max

)2 � X , i = 1, . . . ,m (65)

Finally, using Schur complement formula [26] on (65) gives the first LMI in (59).205

Similarly, let us denote the i-th entry of the control vector uk by ui,k. The control signal should satisfy

|ui,k| ≤ ui,max for all k ≥ 0 and i = 1, . . . ,m which is equivalent to u2
i,k ≤ (ui,max)

2
. However, since

the control system do not have access to uk at sampling time k, but uk−1, one can consider a bound

|ui,k−1| ≤ ui,max− udi,max for all k ≥ 0 and i = 1, . . . ,m. This can be further described as an ellipsoid of the

form

Elp

(
LTn+iLn+i(

ui,max − udi,max

)2
)
, x̄Tk

LTn+iLn+i(
ui,max − udi,max

)2 x̄k ≤ 1 (66)

So, magnitude constraints on the control signal can be satisfied at all times if

Elp

(
LTn+iLn+i(

ui,max − udi,max

)2
)
� X−1, i = 1, . . . ,m (67)

Pre- and post multiplying both sides of the (67) by X and using Schur complement formula [26] yields the

second LMI given in (59). This concludes the proof. �

5. Simulation Study

In this section, the results of the simulation studies which were performed for mitigating the vertical

accelerations of the passenger ship in irregular head waves having Froude number Fn = V√
gLWL

= 0.40 and210

0.50 are presented with the help of several tables and graphs. The optimisation problem (51) is solved in

real time for a suitable MPC using the system matrices given in (54). All computations are accomplished

using MATLAB along with quadprog solver by taking all initial conditions equal to zero. Each simulation

representing Hs = 0.70, 0.88 and 1.00 metres at Fn = 0.40 and Fn = 0.50 last 100 seconds. In order

to compare the performance of the proposed MPC with another optimal control method, discrete time215

H∞ state feedback controller has been performed for the modelled passenger ship under consideration of

magnitude and rate saturated foils.

During the simulation study, an H∞ controller gain

K =

 0.0007 0.1905 −0.0024 −0.0351 −0.0042 0.0035

−0.0020 −0.1776 0.0019 0.0102 0.0036 −0.0033

 (68)
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is used for Fn = 0.4, and

K =

−0.0175 −3.5550 −0.0160 −9.3183 −0.1187 0.0891

0.0173 3.9295 0.0161 9.2341 0.1191 −0.0900

 (69)

for Fn = 0.5. These controller gains are obtained by solving the LMIs given in (58) and (59) using

YALMIP [27] with SeduMi solver in MATLAB. Time-domain comparison of uncontrolled and controlled

states (MPC and H∞) and vertical accelerations at the bow, stern and central locations of the ship for220

Fn = 0.40 are given in Figure 9 - Figure 14 for Hs = 0.70, 0.88 and 1.00 metres, respectively.
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Figure 9: Time histories of uncontrolled and controlled states at Fn = 0.40 (Hs = 0.70m).

Similarly, time-domain comparison of uncontrolled and controlled states (MPC and H∞) and vertical

accelerations at the bow, stern and central locations of the ship for Fn = 0.50 are provided in Figure 15 -

Figure 20 for Hs = 0.70, 0.88 and 1.00 metres, respectively. Figures 9-Figure 20 reveal that the MPC design

is very successful in reducing pitch motion and pitch velocity for two forward ship speeds even in higher225
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Figure 10: Time histories of uncontrolled and controlled accelerations at Fn = 0.40 (Hs = 0.70m).

sea states. In conjunction with the improvements in pitch motion and pitch velocity of the passenger ship,

bow and stern accelerations are reduced remarkably as well particularly in Hs = 0.70 metres significant

wave height. It is also noted that the attenuations of the heave acceleration are less than the attenuation

of the bow and stern accelerations due to the phase difference between the pitch and heave motions. In

other words, only heave or pitch motion can be attenuated with a high level of efficiency. As known, the230

consideration of the seasickness index of the passengers who sit at bow and stern are more important since

the motion is larger at bow and stern than center. Therefore, in this study, it is aimed to reduce preferably

pitch motion and velocity rather than heave motion and velocity.

On the other hand, the control signals for the real foil angles β(t) and their rates β̇(t) at Fn = 0.40

are given in Figure 21, Figure 22 and Figure 23 in corresponding sea sates. In the same way, the control235

signals for the real foil angles β(t) and their rates β̇(t) at Fn = 0.50 are given in Figure 24, Figure 25 and
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Figure 11: Time histories of uncontrolled and controlled states at Fn = 0.40 (Hs = 0.88 m).

Figure 26 in corresponding sea sates. As it can be seen from the figures, both the foil angles and their

rates are remained within the limits of actuator opening angle (20deg, 20deg) and (20deg/s, 20deg/s) rate

of opening angles at all times for Fn = 0.40 and Fn = 0.50.

In Table 3 - Table 5, the responses at Fn = 0.40 are tabulated with uncontrolled and controlled responses240

of the passenger ship under the disturbance corresponding to Hs = 0.70, 0.88 and 1.00 metres, respectively.

In Table 6 - Table 8, the responses at Fn = 0.50 are tabulated with uncontrolled and controlled responses

of the passenger ship under the disturbance corresponding to Hs = 0.70, 0.88 and 1.00 metres, respectively.

As it is readily seen from Table 3 - Table 8, conducted simulation studies show that the designed MPC

controller has better performance than H∞ controller. The underlying reason behind this is, MPC has245

advantages in a wave attenuation problem with its preview capability of wave disturbances and handling

the foil angle and rate of foil angle constraints. Therefore, Table 9 and Table 10 summarise the acceleration
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Figure 12: Time histories of uncontrolled and controlled accelerations at Fn = 0.40 (Hs = 0.88 m).

Table 3: Uncontrolled and controlled vertical responses at Fn = 0.40 (Hs = 0.70 metres).

Uncontrolled Controlled (H∞) Controlled (MPC)

Pitch Motion (rms) (radians) 0.00425 0.00282 0.00117

Bow Vertical Acceleration (rms) (m/s2) 0.6806 0.5077 0.1695

Stern Vertical Acceleration (rms) (m/s2) 0.3085 0.2878 0.1111

CoG Acceleration (rms) (m/s2) 0.2085 0.1719 0.1072

reduction capabilities of MPC for Fn = 0.40 and Fn = 0.50 . As seen from Table 9 and Table 10, the

designed MPC controller is generally more effective at Fn = 0.50 since the advance speed of the ship affects

the control input matrices quadratically. It is interesting to note that the excitation terms are also different250

at different Froude numbers when the ship is exposed to the same wave spectrum. Therefore, the efficiency
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Figure 13: Time histories of uncontrolled and controlled states at Fn = 0.40 (Hs = 1.00 m).

Table 4: Uncontrolled and controlled vertical responses at Fn = 0.40 (Hs = 0.88 metres).

Uncontrolled Controlled (H∞) Controlled (MPC)

Pitch Motion (rms) (rad.) 0.00742 0.00672 0.00356

Bow Vertical Acceleration (rms) (m/s2) 0.9767 0.9162 0.4401

Stern Vertical Acceleration (rms) (m/s2) 0.4809 0.4397 0.2466

CoG Acceleration (rms) (m/s2) 0.2985 0.3039 0.1998

of the controller is also dependent of excitation terms. That is the reason why a direct proportional relation

may not set for the motion reductions at Fn = 0.40 and Fn = 0.50.

Ship accelerations, especially the vertical ones, have a great impact on the human body since they may

cause motion sickness. The term motion sickness on ships is named as seasickness and it is a health problem255
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Figure 14: Time histories of uncontrolled and controlled accelerations at Fn = 0.40 (Hs = 1.00 m).

Table 5: Uncontrolled and controlled vertical responses at Fn = 0.40 (Hs = 1.00 metres).

Uncontrolled Controlled (H∞) Controlled (MPC)

Pitch Motion (rms) (rad.) 0.01052 0.00982 0.00708

Bow Vertical Acceleration (rms) (m/s2) 1.4439 1.4127 0.9498

Stern Vertical Acceleration (rms) (m/s2) 0.6079 0.5573 0.4283

CoG Acceleration (rms) (m/s2) 0.4926 0.53293 0.4162

due to ship motions that may result in physical discomfort on the body. Seasickness might cause irregular

breathing, nausea, vertigo and vomiting. The Motion Sickness Index (MSI) is commonly used for assessing

the likely occurrence of the illness. As discussed in [28], MSI can be expressed as a function of the mean

absolute value of vertical acceleration signal and the mean peak frequency of the vertical acceleration signal.
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Figure 15: Time histories of uncontrolled and controlled states at Fn = 0.50 (Hs = 0.70m).

Table 6: Uncontrolled and controlled vertical responses at Fn = 0.50 (Hs = 0.70 metres).

Uncontrolled Controlled (H∞) Controlled (MPC)

Pitch Motion (rms) (radians) 0.00426 0.00087 0.00039

Bow Vertical Acceleration (rms) (m/s2) 0.7885 0.2156 0.1389

Stern Vertical Acceleration (rms) (m/s2) 0.3662 0.1552 0.0831

CoG Acceleration (rms) (m/s2) 0.2387 0.1307 0.1051

Since we have time series of vertical acceleration data for uncontrolled and controlled cases, both values260

can be obtained easily and finally MSI can be calculated. Table 11 shows the MSI for uncontrolled and

controlled (MPC) cases for different locations on the ship and different sea states as regards the two hours

cruise (Fn = 0.50). Results indicate that a significant decrease in the MSI values are observed in Hs = 0.70
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Figure 16: Time histories of uncontrolled and controlled accelerations at Fn = 0.50 (Hs = 0.70m).

Table 7: Uncontrolled and controlled vertical responses at Fn = 0.50 (Hs = 0.88 metres).

Uncontrolled Controlled (H∞) Controlled (MPC)

Pitch Motion (rms) (rad.) 0.00842 0.00653 0.00459

Bow Vertical Acceleration (rms) (m/s2) 1.3835 1.1374 0.8156

Stern Vertical Acceleration (rms) (m/s2) 0.6663 0.5698 0.3863

CoG Acceleration (rms) (m/s2) 0.4083 0.3850 0.2987

and remarkable improvements are observed even in higher sea states.
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Figure 17: Time histories of uncontrolled and controlled states at Fn = 0.50 (Hs = 0.88 m).

Table 8: Uncontrolled and controlled vertical responses at Fn = 0.50 (Hs = 1.00 metres).

Uncontrolled Controlled (H∞) Controlled (MPC)

Pitch Motion (rms) (rad.) 0.01095 0.008554 0.00663

Bow Vertical Acceleration (rms) (m/s2) 1.6248 1.3636 0.9689

Stern Vertical Acceleration (rms) (m/s2) 0.8348 0.7207 0.4581

CoG Acceleration (rms) (m/s2) 0.5045 0.5124 0.4125

6. Conclusion265

In this study, it was aimed to reduce the vertical accelerations of a passenger ship which is operating at

two different advance speed and in the different level magnitude of head waves. For this reason, Cummins’

equation was solved with the time domain identification of fluid memory effects. Firstly, radiation terms
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Figure 18: Time histories of uncontrolled and controlled accelerations at Fn = 0.50(Hs = 0.88 m).

Table 9: Percentages improvements of accelerations at different sea states (Fn = 0.40) by MPC.

% Improvement % Improvement % Improvement

at Hs = 0.70 at Hs = 0.88 at Hs = 1.00

Pitch Motion 72.36 51.97 32.64

Bow Vertical Acceleration 75.09 54.93 34.21

Stern Vertical Acceleration 63.97 48.71 29.54

CoG Acceleration 48.56 31.22 15.49

were calculated in the frequency domain. By the aid of the information in the frequency domain, all

parameters in the Cummins’ equation were set for the solution in the time domain. The heave force and270

pitch moment acting on the ship due to irregular head waves were predicted in the time domain by the
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Figure 19: Time histories of uncontrolled and controlled states at Fn = 0.50 (Hs = 1.00 m).

Table 10: Percentages improvements of accelerations at different sea states (Fn = 0.50) by MPC.

% Improvement % Improvement % Improvement

at Hs = 0.70 at Hs = 0.88 at Hs = 1.00

Pitch Motion 90.67 45.47 39.42

Bow Vertical Acceleration 82.37 41.04 40.36

Stern Vertical Acceleration 77.32 42.01 45.12

CoG Acceleration 55.93 26.84 18.23

randomization process of the excitation response spectra. Then, an optimal MPC was designed to reduce

the vertical accelerations. During operation of the passenger ship, all states were measured with sensors

because MPC works with full state feedback procedure. The designed MPC focused on reducing pitch motion
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Figure 20: Time histories of uncontrolled and controlled accelerations at Fn = 0.50 (Hs = 1.00 m).

Table 11: Percentage MSI values for uncontrolled case (NC) and model predictive controlled case (C) at different significant

wave heights(Hs) (Fn = 0.50).

MSI Hs = 0.70 MSI Hs = 0.88 MSI Hs = 1.00

NC[%] - C[%] NC[%] - C[%] NC[%] - C[%]

Bow Vertical Acceleration 1.32− 0.0002 6.91− 0.27 8.34− 0.60

Stern Vertical Acceleration 0.069− 0.0000156 0.98− 0.02 1.91− 0.07

CoG Acceleration 0.037− 0.0002 0.20− 0.03 0.85− 0.37

and velocity. The results showed that MPC results present better performance than H∞ discrete time state275

feedback controller since MPC has advantages in a wave attenuation problem with its preview capability of

excitations and handling the constraints. Thanks to the designed MPC discrete based controller, vertical
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Figure 21: Time Histories of bow and stern foil angles and rates (Hs = 0.70 m) at Fn = 0.40. Here, dotted horizontal lines

represent the physical bounds on the corresponding actuator signal.

accelerations in the bow, centre and stern locations of the ship were reduced by approximately 75%, 64%

and 49%, respectively with a significant reduction of pitch motion in Hs = 0.70 metres at Fn = 0.40). On

the other hand, vertical accelerations in the bow, centre and stern locations of the ship were reduced by280

approximately 82%, 77% and 56%, respectively in Hs = 0.70 metres at Fn = 0.50). As the magnitude of the

sea state increases to Hs = 0.88 and 1 metres, the reduction rates were decreased to the level of 45% due to

the excitation terms are remarkably increased for both Fn. In other words, as the foils have strict limitations

on their opening angles and rotation rates, improvements in the performance of controllers were decreased.

It was noted that, in contrast to pitch motion, the same motion reduction was not observed for the heave285

motion and midship acceleration due to the phase differences between the pitch and heave motions.

In contrast to the general belief in the community which states that active motion attenuation can only

be effective on high-speed ships, the results of this study showed that MPC could still provide remarkable
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Figure 22: Time histories of bow and stern foil angles and rates (Hs = 0.88 m) at Fn = 0.40. Here, dotted horizontal lines

represent the physical bounds on the corresponding actuator signal.

performance even on moderate-speed vessels having strict actuator amplitude and rate limits. The developed

MPC presents favourable performance even for the displacement ship speed range i.e Fn ∼= 0.4− 0.5. As a290

planned future study, the estimator design will be regarded in order to avoid the obligation of measuring all

states during a ship voyage. Also, the problem of controlling the vertical ship motions under varying speeds

has been left as a future study since the topic falls into the scope of a linear parameter varying type MPC

design.
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Figure 23: Time histories of bow and stern foil angles and rates (Hs = 1.00 m) at Fn = 0.40. Here, dotted horizontal lines

represent the physical bounds on the corresponding actuator signal.
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