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Abstract 

Impaired wound healing and ulceration caused by diabetes mellitus,is a significant 

healthcare burden, markedly impairs quality of life for patients, and is the major cause of 

amputation worldwide.  Current experimental approaches used to investigate the complex 

wound healing process often involve cultures of fibroblasts and/or keratinocytes in vitro, 

which can be limited in terms of complexity and capacity, or utilisation of rodent models in 

which the mechanisms of wound repair differ substantively from that in humans.  However, 

advances in tissue engineering, and the discovery of strategies to reprogram adult somatic 

cells to pluripotency, has led to the possibility of developing models of human skin on a 

large scale.   Generation of induced pluripotent stem cells (iPSC) from tissue donated by 

diabetic patients allows the (epi)genetic background of this disease to be studied, and the 

ability to differentiate iPSC to multiple cell types found within skin may facilitate the 

development of more complex skin models; these advances offer key opportunities for 

improving modelling of wound healing in diabetes, and the development of effective 

therapeutics for treatment of chronic wounds.  (178 words) 
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Perspectives 

 The cost of diabetic wounds to the National Health Service is estimated to be around 

£5 billion per year.   

 Rodent models of wound healing fail to recapitulate human wound repair, and in vitro 

systems using human skin cells can be limited in terms of complexity and capacity 

 Reprogramming of cells derived from human donor tissue into pluripotent stem cells 

may allow the development of fully translational skin models of diabetic wound 

healing, facilitating the drug discovery process. 

 

AbbreviationsCardiomyocytes (CM): Cluster of differentiation (CD); Checkpoint kinase 1 

(CHK1);Clustered regularly interspace short palindromic repeats (CRISPR); CRISPR 

associated protein 9 (Cas9); Diabetic cardiomyopathy (DCM) Hair follicle-associated-

pluripotent (HAP);Human leukocyte antigens (HLA); Human skin equivalents (HSE); Human 

umbilical vein endothelial cells (HUVECs);  Induced pluripotent stem cells (iPSCs); 

Krueppel-like factor-4 (Klf4); Laminin subunit beta 3 (LAMB) gene deficient Junctional 

Epidermolysis Bullosa (JEB); Maturity Onset Diabetes of the Young (MODY);Mesenchymal 

stem cells (MSC); Maternal inherited diabetes and deafness (MIDD); Myc proto-oncogene 

protein (c-Myc); Non-obese diabetic (NOD);Octamer-binding transcription factor 4(Oct4) 

Platelet-derived growth factor (PDGF); Recessive Dystrophic Epidermolysis Bullosa 

(RDEB); Reduction, refinement and replacement (3Rs); Retinal pigment epithelial (RPE); 

Sex determining region Y-box 2 (Sox2);Transcription activator-like effector nuclease 

(TALEN) Transforming growth factor- (TGF-Type 1/2 diabetes mellitus (T1/2DM); Zinc 

finger nucleases (ZFNs). 
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Introduction 

Diabetes mellitus is a major global health concern, affecting around 425 million adults 

worldwide, a figure predicted to rise to 629 million people with diabetes by 2045 

(International Diabetes Federation).  Type 1 diabetes mellitus (T1DM) is an auto-immune 

disorder, caused by destruction of insulin-producing pancreatic -cells [reviewed in 1], while 

type 2diabetesmellitus (T2DM) is a polygenic condition characterised by loss of insulin 

secretion and sensitivity, strongly influenced by environmental factors such as obesity [2].   

Single gene disorders, such as neonatal diabetes, Maturity Onset Diabetes of the Young 

(MODY), and mitochondrial mutations (m.3243A>G), can trigger diabetes in younger age 

groups [3].  Diabetes mellitus also presents in a number of rare genetic conditions 

(congenital lipodystrophies [4], Huntington’s disease [5], Friedreich ataxia [6], and Turner 

syndrome [7]), genetic obesity (Prader-Willi syndrome [8], Alstrom syndrome [9] and 

premature aging conditions such as Werner [10] and Hutchinson-Gilford progeria [11] 

syndromes.   It is a complex metabolic disorder, diagnosed clinically by hyperglycaemia [12] 

and associated with chronic inflammation, pro-coagulability, impaired fibrinolysis and 

macro- and microvascular defects, promoting cardiovascular disease (coronary heart 

disease and stroke) [13], renal dysfunction [14, 15], retinopathies [16], neuropathies[16, 17] 

and impairment of wound healing in the extremities [17-20].Foot ulceration is major cause 

of morbidity in type 1 and type 2 diabetes, a significant healthcare burden, and results in 

markedly impaired quality of life for the patient. Globally, the prevalence of diabetic foot 

ulceration in 2017 was 6.3% (95% CI 5.4 to 7.3%) [20]anddiabetes is estimated to cause 

loss of a lower limb (or part thereof) to amputation every 30 seconds worldwide 

(International Diabetes Federation).   

The healing of diabetic woundshas traditionally been investigated using animal models, 

immortalised cell lines and primary cells. Rodents are often used to examine the complex 

healing process in vivo, butdo not fully recapitulate the wound repair process in humans[21, 

22]. Moreover, the requirement forreduction, refinement and replacement (3Rs) of animal 

models, and the severity of the procedures involved,mean that a valid replacement is 

ethically desirable. The use of human primary cells from dermal biopsiesto study wound 

repair in vitro, particularly in 3-dimensional (3-D) organotypic models,has provided valuable 

insights into the wound healing process: for example, the incorporation of diabetic patient-

derived fibroblasts into a 3-D model accurately replicated key features associated with 

chronic ulcersin vitro and in vivo [23].  This article will review these approaches, and 



4 
 

highlight recent advances in reprogramming of adult somatic cells to pluripotency, which 

offer exciting opportunities to develop improved models for diabetic wound healing.   

Wound healing: acute and chronic wounds 

Wound healing involves four distinct, but overlapping phases: haemostasis, inflammation, 

proliferation and remodelling (Table 1) [24-26].  Wound clotting is followed by re-

epithelisation at the wound edge around 12-18h post-wounding; concomitantly, a 

granulation tissue is formed by dermal fibroblasts at the wound margin, some of which 

convert to contractile myofibroblasts.  Bone-marrow derived mesenchymal stem cells 

contribute to granulation tissuewhich contains a dense network of capillaries, and 

contraction reduces the surface area requiring re-epithelisation [22-26].  Neutrophils are 

recruited to the site of wounding, to kill microorganisms, followed by macrophages which 

phagocytose cell and matrix debris; these inflammatory cells then either die or leave the 

site of injury, aiding final resolution of the wound.   

Chronic (non-healing) wounds in diabetic patients are characterised by persistent, 

unresolved inflammation, mediated predominantly by infiltrating neutrophils, with a 

significant impairment in local bacterial invasion control.  Diabetic conditions, such as 

inflammation, hyperglycaemia and hyperlipidaemia induce epigenetic changes, promoting 

an inflammatory macrophage phenotype [27] which fails to transition to a pro-healing 

phenotype within the local wound environment [28].   Keratinocytes at the epidermal edge 

are hyper-proliferative, adjacent to an ulcer base which contains exudate and necrotic 

debris; dermal fibroblasts appear senescent and recalcitrant to the migratory stimulant, 

transforming growth factor- (TGF-, and few myofibroblasts are present.  Instead of 

granulation tissue, vessels are surrounded by fibrin cuffs and do not form an effective 

network, rendering the wound poorly vascularised [26, 29].  Advanced glycation end-

products act in concert with inflammatory mediators, and commit fibroblasts and vascular 

cells to apoptosis, contributing to the demise of granulation tissue [30].   

Primary cells, immortalised cell lines and skin explants 

The simplest cell-based model of wound healing in vitro involves culturing a monolayer 

ofprimary fibroblasts, keratinocytes or immortalised cells (e.g.HaCaT keratinocytes) and 

introducing a ‘scrape’ across the surface using a sterile pipette tip: the ‘scratch’ wound 

assay [31, 32, 33]. Migration of cells across the wound can be measured using static or 

time-lapse microscopy, and the expression of proteins involved in inflammation, migration, 
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proliferation, differentiation and remodelling of the extracellular matrix investigated (Table 

1).  Variability can be introduced into the system through changes in oxygen tension, the 

addition of drugs, growth factors or cytokines, or the use of extracellular matrices and 

specialised culture surfaces. These models can also be used to examine differences 

between healing and non-healing wounds, using normal and diabetic cells and altered 

tissue culture environments [23, 34-38]. 

Since the 1970s there has been increasing interest in generating skin constructs which are 

physiologically relevant, capable of mimicking barrier formation, immune and sensory 

functions [39, 40].  Co-cultures of keratinocytes with other cell types, including immune cells 

and dermal fibroblasts, are often used for investigations of wound healing, but these cannot 

entirely replicate the cell-cell and cell-matrix interactions found in a 3-dimensional 

environment.  The use of dermal fibroblasts encapsulated in gel/matrix, combined with 

differentiated keratinocytes forming a 3-D epidermis,often at the air-liquid interface, can 

address some of these limitations, and are useful for modelling changes in keratinocyte 

function, cytokine release after drug treatment, metabolism, irritation and sensitisation, and 

skin aging[23, 41-46].  Tissue-engineered skin products have also been used clinically (e.g. 

Apligraf, Dermagraft) to aid wound repair, particularly to provide barrier function [47, 48]. 

However, the complexity of skin tissue, including the roles of a number of specialised cell 

types such as melanocytes, immune cells (macrophages, Langerhans cells, T cells, 

dendritic cells) and stem cell niches, and of skin appendages (hair follicles), sweat and 

sebaceous glands, obviously cannot be wholly recapitulated in cultures of just keratinocytes 

and/or fibroblasts. 

Vascularisation can be achieved by the addition of endothelial cells, stimulated to form 

capillaries within the dermal environment, and to form a vascular network when supported 

by a suitable scaffold and perfusion system [49].  Other approaches have focused on the 

introduction of melanocytes, to study melanin transfer to keratinocytes, allowing studies of 

photoprotection and acquired (drug-induced) hyper-pigmentation [50], and the inclusion of 

hair follicles, sweat and sebaceous glands, to facilitate study of cosmetics, treatments for 

alopecia and sebo-regulating drugs [40].  The addition of immune cells, innervation of skin 

models, and introduction of the hypodermis (adipose tissue) are desirable for effective drug 

and allergen testing.   

At present, however, it can be difficult to achieve some of these outcomes with primary cells 

derived from human skin biopsies, due to their limited availability and/or growth potential 
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[40, 50].Tissue biopsies are small, making it possible to isolate and expand in culture only 

the most numerous cell types, i.e. dermal fibroblasts and epidermal keratinocytes [50], and 

a negative relationship exists between the extent of expansion of keratinocytes in culture, 

and their longevity in a tissue-engineered epidermis [51, 52].  Minority skin cell populations, 

such as Merkel cells, cannot be greatly expanded in culture [50] and many cell types found 

in skin, such as macrophages, are transient, entering the skin only in response to a 

pathological challenge.  While the use of multiple donors is possible, this approach ignores 

individual responses, and can greatly complicate data analysis [50].Immortalisation of 

primary cell lines can solve some of these problems [32, 33, 53], but the constitutive 

expression of oncogenes can markedly influence cellular phenotype and proliferation rate, 

which maylimit their value for wound healing studies and negate their usefulness clinically.   

Animal models in wound healing studies 

Animal models have been used to replicate the complexity of wound healing in vivo.  Mice 

are the most widely used species for in vivo studies, although other larger species, such as 

pig, more closely mirror human wound healing and are often used in pre-clinical trials [29, 

54].   The epithelial architecture, extracellular matrix, vascular networks and innervation in 

porcine skin are similar to those in human skin, but swine are difficult to house in most 

vivariums, do not lend themselves easily to in vivo imaging experiments and are not fully 

characterized at cellular and physiological levels.  Moreover, the availability of swine-

specific reagents, such as antibodies and growth factors, may be restricted.  Acute wound 

healing in rodents is commonlymonitored following excisional (biopsy punch, surgical 

scissors or laser) or full thickness incisional (scalpel) wounds, made to the foot, thigh or 

back, although considerable variance exists as to the size and number of wounds per 

animal, the tools employed, the presence of occlusive dressings, splints, or non-occlusive 

bandages of varying types, and the use of sutures to close the wound margins [29, 54].   

Chronic wound healing models involve introducing an acute wound, usually in a murine 

model, within the clinical context involved, such as diabetes or ischaemic injury [22, 29] 

Type 1diabetes mellitus can be induced by transgenic breeding (e.g. non-obese diabetic 

(NOD) mice),spontaneous autoimmunity, chemical ablation of pancreatic -cells 

(streptozotocin) or viral infection[55, 56].  High fat feeding or genetic deletion is often used 

to induce a condition resembling T2DM in mice [56]: the most widely used models of T2DM 

are leptin (ob/ob) or leptin receptor (db/db) deficient rodents, which become obese around 

six weeks of age, and subsequently develop T2DM with marked delays in wound healing.  
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Polygenic diabetic strains, such as NONcNZO10/LtJ mice which model human metabolic 

syndrome and obesity-induced diabetes,have also been developed which exhibit defects in 

wound repair [56-58]. 

Despite the common use of animal models to study acute and chronic wound healing, 

physiological differences between species need to be considered [22, 59, 60]. Mouse and 

human skin have markedly different architecture, responsiveness and functionality, due to 

differences in thickness, hair density and appendages; murine skin is also largely devoid of 

sweat glands.  Murine subcutaneous tissue has a thin layer of muscular tissue, the 

panniculus carnosus, which has substantive contractive potential; up to 90% of excisional 

wounds in mice close by contraction.  By contrast, re-epithelization and formation of 

granulation tissue is the predominant mechanism of cutaneous wound healing in human 

dermis [22, 59, 60].  Attempts have been made to address this issue, by splinting excision 

wounds to more closely replicate wound healing in human skin; topical administration of 

platelet-derived growth factor (PDGF), for example, fails to promote closure of a splinted 

wound by re-epithelisation in db/db mice [61], despite its efficacy in othermurine models of 

wound healing.  While wound splinting does allow histologic monitoring of wound bed 

granulation, the healing process still does not fully mimic human wound healing [22, 59, 60].  

Outcomes from wound healing studies in rodents may therefore not be fully translatable to 

humans,possibly explaining the dearth of effective treatments currently available.  

An alternativein vivo approach involves thegeneration of humanised mouse models. 

Shunmugamet al (2015) grafted human skin biopsies from elective abdominoplasty surgery 

onto athymic (nu/nu) mice for three months, before inducing a excision wound into the graft, 

and monitoring wound healing using near infra-red fluorescent imaging [62].   Human skin 

constructs have also been transplanted onto immunodeficient mice: a 3-D matrix, enriched 

with fibrin from human blood plasma was seeded with human fibroblasts to form a dermis, 

before adding an epidermal layer using human keratinocytes [63]; the same group have 

also described a humanised model of delayed wound healing in streptozotocin-induced 

diabetic mice [64].It is clear, however, that all of these approaches to the study of wound 

healing in animals are classified as ‘severe’, likely to cause pain and distress: an ethical 

imperative exists to develop an in vitro translational model of human wound healing.   
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Induced pluripotent stem cells 

The concept of cell plasticity originates from the groundbreaking work of John Gurdon in the 

1960s [65-67], culminating in the award of the Nobel Prize in Physiology or Medicine (2012) 

jointly with Shinya Yamanaka, more than forty years later;  Yamanaka, together with 

Kazutoshi Takahashi, discovered how mature somatic cells can be reprogrammed to 

become pluripotent stem cells [68-70].  Induced pluripotent stem cells (iPSCs) can be 

derived from individuals with differing genetics, disease conditions or ethnic origins, and 

differentiated to cell types of the three germ layers, revolutionising research and drug 

discovery, and increasing the prospect of personalised regenerative medicine [68-74].   

While early reprogramming strategies used retroviral and lentiviral vectors to deliver the 

transcription factors (e.g. Oct4, Sox2, Klf4, c-Myc) required to reprogram adult somatic cells 

to the pluripotent state [68-71], current reprogramming approaches avoid genomic 

integration [75], by utilising integration-free strategies such as Sendai virus, mRNA, 

microRNA, episomal vectors and non-nucleotide based methods [76-79] (Figure 1).   

Induced pluripotent stem cells are characterised by the ability to self-renew indefinitely, 

stable karyotype, and the potential to differentiate into cell types of the ectoderm, 

mesoderm and endoderm [80-83].  Robust protocols are then needed to differentiate iPSCs 

into cells and tissues of the desired type, characterised by function and/or expression of key 

biomarkers, and the presence of the disease phenotype; disease mechanisms can then be 

investigated, or potential therapeutics tested [80-83].  Age and/or sex matched control 

donor material can be subjected to equivalent reprogramming and differentiation 

procedures; alternatively,isogenic controls can be generated by gene correction of the 

pluripotent cells, using clustered regularly interspace short palindromic repeats (CRISPR)-

.CRISPR associated protein 9 (Cas9), zinc finger nucleases (ZFNs) or transcription 

activator-like effector nuclease (TALEN) systems [84, 85].   

The direct reprogramming and trans-differentiation of somatic cells to specialised cell types, 

including those involved in diabetes and wound healing, has also been described; this 

approach bypasses the pluripotent stage and may therefore prove safer for cell therapy [86-

88].Primitive stem cells, such as hair follicle-associated-pluripotent (HAP) stem cells 

resident in the skin, also have potential to be converted to keratinocytes and melanocytes 

for therapeutic epidermal regeneration without the risk of tumour formation [89].  These 

approaches do not, however, offer the same opportunities for expansion and banking as 

conversion to pluripotency.   
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Pluripotent stem cells and generation of human skin constructs in vitro 

The ability to model the complex interactions of whole tissues and organs using entirely 

human biology is a major goal for tissue engineering and stem cell research, and may 

eventually lead to the production of whole organs for transplantation [90].  Indeed, 

dermatology may be the ideal context for application of iPSC-based therapies, as it is 

readily accessible and easy to monitor, and excision is possible if adverse side effects 

occur [91].  Many of these challenges are also relevant to the development of accurate 

representations of tissue for disease modelling, including skin for wound healing assays.  

The generation of iPSCs from dermal fibroblasts, keratinocytes, melanocytes and dermal 

papilla cells is established, with reprogramming occurring at higher efficiency in 

keratinocytes and melanocytes than in fibroblasts [39, 40, 50].  Moreover, iPSCs have been 

derived from patients with genetic skin disorders, including Type VII collagen-deficient 

Recessive Dystrophic Epidermolysis Bullosa (RDEB), laminin subunit beta 3 (LAMB) gene 

deficient Junctional Epidermolysis Bullosa (JEB), Epidermolysis Bullosa simplex with a 

dominant R125C keratin 14 mutation, and from gene corrected RDEB fibroblasts[92-95].  

Regeneration of human epidermis in vivo using iPSCs is yet to be achieved, but the 

potential of this approach was recently demonstrated by Hirsch et al (2017) who utilised 

autologous transgenic keratinocyte cultures to renew the epidermis in a seven year old 

child suffering from severe JEB [96].  In this case, the epidermis was sustained by a limited 

number of long-lived stem cells or holoclones, self-renewal of which provided progenitor 

cells capable of replacing terminally differentiating keratinocytes [96].   

Notably, it seems that reprogrammed cells retain epigenetic features of the cell type of 

origin (although these disappear on continued passaging) and it has been suggested that 

this residual epigenetic memory may facilitate differentiation back to the corresponding 

original cell type [91, 97-99]. Intriguingly, the process of reprogramming down-regulates 

senescent pathways, elongates telomeres and restores mitochondrial function [100-102] 

effectively ‘rejuvenating’ the cellular phenotype; indeed, ‘rejuvenated’ fibroblasts can also 

be generated from iPS cells derived from very old patients, offering new strategies for 

treatment of chronic wounds in the elderly [91, 102].   

Keratinocytes, fibroblasts and melanocytes have been successfully derived from human 

iPSCs, and iPSCs can be differentiated into immune cells (T-lymphocytes, macrophages 

and dendritic cells), endothelial and smooth muscle cells, Schwann cells and peripheral 
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neurons [39, 40, 50, 103-107] and  iPSC-derived ectodermal precursor cells can contribute 

to hair follicle morphogenesis in vivo [108].  Thus, iPSC-derived skin cells have huge 

potential for skin tissue engineering, and for the development of in vitro skin models for 

healthy and diseased skin, and inacute and chronic wound healing studies.   

Human skin equivalents (HSE) have been generated using iPSC-derived fibroblasts 

and/orkeratinocytes[106-109].  The transcriptome of iPSC-derived keratinocytes proved 

very similar to primary healthy human keratinocytes, while incubation of iPSC-derived 

keratinocytes at an air/liquid interface resulted in epidermal stratification and the 

development of a functional permeability barrier [109].  Itoh et al (2011) generated an in 

vitro 3-D skin equivalent, using a type I collagen matrix to support iPSC-derived fibroblasts 

in the dermis, and iPSC-derived keratinocytes to form an epidermis, and demonstrated 

normal morphology, stratification and terminal differentiation at the air-liquid interface [107]. 

Enriched complexity was achieved by Gledhill et al (2015), by introduction ofiPSC-derived 

melanocytes, responsible for both skin colour and protection against ultraviolet radiation, 

into a 3-D HSE [50].  A collagen I matrix was seeded with iPSC-derived fibroblasts, to 

support iPSC-derived keratinocytes and melanocytes.  The iPSC-derived melanocytes 

localised to the basal layer, extending dendrites into the suprabasal layer of the epidermis, 

and produced melanin which was taken up by iPSC-derived keratinocytes [50]. 

Endothelial and smooth muscle cells, differentiated from human iPSC, cooperate to 

enhance formation of tubular networks in vitro, and in athymic nude mice; co-

transplantation of these cells markedly increased neovascularisation and wound healing in 

a murine dermal wound model [110] compared to primary somatic cells or implantation of 

differentiated endothelial cells alone.   Vascularisation of HSE, comprised of primary 

neonatal dermal fibroblasts and keratinocytes, has also been achieved using iPSC-derived 

endothelial cells [39, 110]. The formerstudy focused on developing an in vitro platform 

capable of recapitulating the cutaneous microcirculation, allowing perfusion and evaluation 

of endothelial barrier function [39].  A 3-D printing technology was used to create the 

desired patterns of vasculature, including inlet-outlet tubes for perfusion, from sacrificial 

microchannels of cross-linked alginate embedded in a dermis consisting of uncrosslinked 

collagen I gel and fibroblasts. Within this context, the diffusion barrier function provided by 

iPSC-derived endothelial cells proved similar to that provided by human umbilical vein 

endothelial cells (HUVECs) [39].   



11 
 

Finally, using a rather different approach Zhang et al (2015) developed patient-specific 

mesenchymal stem cells (MSC) from human iPSC, and isolated the exosomes released 

into the extracellular milieu [111].  Exosomes, positive for cluster of differentiation (CD) 9, 

CD63, CD8a, are nano-sized vesicles (30-100nm in diameter) that contain proteins, mRNA 

and micro RNA, and are thought to facilitate wound healing in a paracrine manner.   In this 

study, exosomes derived from iPSC-MSCs enhanced the proliferation and migration of 

fibroblasts and human umbilical vein endothelial cells (HUVECs), increased the secretion of 

collagen and elastin and promoted the formation of tubular networks of endothelial cellsin 

vitro; in a rat wound model, the introduction of iPSC-MSC derived exosomes enhanced 

wound repair, collagen synthesis and angiogenesis [111].   

Thus, the technology exists for use of pluripotent stem cell-based systems in creating 

physiologically relevant and translatable3-D models of human wound healingin vitro,toaid 

the development of novel therapeutics, identifying effective treatments and reducing attrition 

in the later and more costly stages of drug development.  Some barriers exist, however, to 

widespread adoption of these models.  Financial constraints may ultimately be addressed 

by optimisation of cell culture, reprogramming and differentiation protocols; the labour 

intensive nature of the work may also be resolved by high throughput automated 

approaches [112]. Other limitations include variability among iPSC cell lines [113] and 

genomic instability [114, 115].  The establishment of selection criteria for iPSC and iPSC-

derived cells, such as cell-specific markers, assessment of proliferation rate and lifespan, 

and investigation of the transcriptome [112, 113],can help to minimise variability, while 

limiting replication stress during reprogramming, either genetically by targeting checkpoint 

kinase 1 (CHK1) or by using nucleoside supplementation, can help to reduce genomic 

instability [115].   The quality of 3-D skin constructs should also meet key criteria such as 

histological morphology, cell viability and barrier function [106-109].   

Pluripotent stem cells derived from diabetic individuals: disease modelling 

Induced pluripotent stem cells have been derived from individuals with monogenic forms of 

diabetes, and from patients with type 1 and type 2 diabetes mellitus, facilitating research 

into multiple aspects of the complex pathogenesis of these disorders (Table 2), although it 

is clear that the potential for utilisation of these cells in studies of diabetic wound healing is 

yet to be fully realised.The autoimmunity that arises in T1DM results from a complex 

interaction between genetic and immunologic factors [1].  Risk of T1DM progression is 

polygenic, with a large number of genes conferring small risk effects, and a small number of 
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genes having large effects, most particularly the human leukocyte antigens (HLA) DR/DQ 

alleles (e.g. DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4) [1].   To date, 

genomic wide association studies have identified at least 75 independent genetic loci for 

T2DM although whether all of these variants are causal is not known, and their mechanism 

of action requires further clarification [2, 136, 137].  Further, most of the common variants 

identified confer a relatively low risk of T2DM (odds ratio 1.0 to 1.4) and explain only 10-

15% of the heritability of this disease [136, 137].   These complex inheritance patterns 

highlight the importance of generating iPSCs from diabetic individuals to develop skin 

wound healing models in vitro, although they may effectively negate the possibility of 

generating isogenic controls.   

Epigenetic changes, including those due to an early metabolic insult, are also critical in the 

development of T2D: changes in DNA methylation markers have been identified in blood 

samples and pancreatic islets from T2D patients [137].  At present, it is not clear whether 

these epigenetic changes would be retained during reprogramming to pluripotency, a 

process which induces metabolic changes, including a shift from oxidative to glycolytic 

metabolism of glucose.  However, Harvey et al (2018) recently demonstrated retention of 

metabolic memory in human iPSC: in response to challenge with reduced oxygen 

concentration, iPS cell lines did not respond appropriately, indicating that metabolism had 

not been functionally reprogrammed, failing to recapitulate the metabolic responsiveness of 

embryonic stem cells [138].   

This may pose a significant problem in cell replacement therapy designed to correct defects 

in diabetic patients; for example, the generation of functional insulin-secreting pancreatic -

cells from iPSCs, for potential cell replacement therapy represents a key goal for treatment 

of type 1 and type 2 diabetes [139].Induced pluripotent stem cells have been generated 

from fibroblasts from ulcerated skin of diabetic foot ulcer patients, and compared with those 

from non-ulcerated diabetic skin and from healthy individuals: all of the skin fibroblasts were 

reprogrammed to iPSC with similar efficiencies, indicating that even repair-deficient 

fibroblasts may be useful therapeuticsfor wound healing [134]. Human iPS cells from Type 

1 diabetic patients have also been differentiated into early vascular cells and mature 

endothelial cells which can assemble into 3-D networks when embedded in engineered 

matrices, incorporate into developing zebrafish vasculature, and may prove to be a useful in 

vascular repair for diabetic patients [133].  The challenges currently facing this type of 
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regenerative cell therapy, which are outwith the scope of this review, have been recently 

and comprehensively reviewed [73, 112-115, 140]. 

Arguably, however, retention of the diabetic epigenome, together with the presence of 

genetic variations which increase the risk of T2D, may facilitate the development of 

authentic models, including wound healing, of this disease in vitro.  To date, dermal 

fibroblasts, from patients with the mitochondrial A3243G mutation, associated with maternal 

inherited diabetes and deafness (MIDD) have been used to generate heteroplasmic iPSC 

clones for studies of mitochondrial function [117].  Isogenic iPS clones with either high 

levels of this mutation or undetectable levels of the mutation, from the same individuals; 

complex I activity, mitochondrial respiration and ATP production were compromised in 

some of the mutation-high clones, while those from the mutation-undetectable clones were 

similar to those of iPS cells from healthy subjects [117].   Induced pluripotent stem cell 

clones derived from patients with the same mitochondrial mutation were differentiated into 

retinal pigment epithelial (RPE) cells [141].  The RPE cells contained morphologically 

abnormal mitochondria and melanosomes, and marked functional defects in phagocytosis 

of photoreceptor outer segments, facilitating dissection of the complex tissue-specific 

pathology associated with this mitochondrial mutation [141]. Insulin-resistant iPS cells, 

derived from patients with genetic defects in the insulin receptor, have also been shown to 

exhibit altered mitochondrial size and function, and changes in cellular metabolism [127].  

Thepower of disease modelling using human iPSC is clearly illustrated by Drawnel et al 

(2014), who utilised this approach to develop a patient-specific iPSC model and drug-

screening platform for diabetic cardiomyopathy (DCM) [135].  Firstly, the authors developed 

a surrogate DCM phenotype; iPSC-derived cardiomyocytes (CM), which more closely 

resemble neonatal CMs, were induced to an adult pattern of metabolic activity in two 

differing experimental conditions.  A maturation media, supplemented with insulin and fatty 

acids, which requires the cells to maintain ATP by fatty acid -oxidation, was used to mimic 

the metabolic substrate of adult ventricular CMs, while the re-introduction of glucose, and 

hormonal mediators of diabetes (endothelin-1, cortisol) generated a pattern of gene 

expression associated with hypertrophic stress, and recapitulated the DCM phenotype in 

vitro.   Secondly, iPSC cells were derived from patients with two extreme DCM phenotypes: 

fast progression to cardiovascular disease (within 5y of diagnosis of diabetes) and slow 

progression (no cardiovascular disease despite 15y of T2D).  Dermal fibroblasts were 

reprogrammed to patient-specific iPSC with normal karyotype and differentiation potential; 
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the patient-specific iPSC-derived cardiomyocytes, cultured in the presence of maturation 

media, displayed a basal cardiomyocyte phenotype which corresponded to the clinical 

status of the original donor, in the absence of diabetic stimulus, suggesting retention of 

epigenetic factors.  Suppression of the diabetic phenotype in the environmental model of 

DCM was then successfully employed as a screenable endpoint for small molecules which 

could rescue the phenotype of patient-specific cardiomyocytes [135].  An equivalent 

approach to modelling diabetic wound healing could prove equally insightful and valuable 

therapeutically.   

Concluding remarks:challenges for the future 

The development of robust protocols for reproducible derivation of iPSC from diabetic 

patients, and for differentiation of iPSC into the multiple cell types found within human skin, 

is increasingly being performed using chemically defined and animal-origin free cell culture 

conditions; this is key in limiting batch variability, reducing the use of animal models and 

animal-derived materials, and in improving models of human diabetic wound healing.  

These goals rely on the altruistic donation of tissue from patients, a process facilitated by 

creation of large Biobanks (or Biorepositories) associated with universities, research 

organisations and the National Health Service in the UK.  Biobanks provide ethically 

donated human tissue (normal and diseased), and associated anonymised clinical data, for 

individual studies or to smaller research tissue banks (e.g. GCU Skin Research Tissue 

Bank: www.gcu.ac.uk/hls/research/researchgroups/gcuskinresearchtissuebank/), dedicated 

to the study of human diseases involving complex genetic backgrounds.   The derivation of 

diabetic pluripotent cells, capable of indefinite self-renewal and expansion, and 

differentiation into multiple lineages, may provide new insight into disease mechanisms and 

hold considerable promise for the development of effective therapeutics for treatment of 

chronic wounds in diabetic individuals  
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Table 1: Summary of the stages of wound repair 

Stage Main processes Key molecules  REF 

Haemostasis  Platelet-dependent vasoconstriction 
and fibrin clot formation 

ADP, ATP, GDP, 5-HT 
P2Y12 receptor axis 

Integrin IIb3 
Von Willebrand Factor 
Fibrinogen 

[24] 

Inflammation Release of cytokines 
Invasion of inflammatory cells 
(neutrophils, monocytes) 

Transforming growth 

factor- (TGF-1, 

2,3)/TGF receptor 
I/II 
Platelet-derived growth 
factor (PDGF) 

[22, 25,26] 

Proliferation Dermis 
Macrophages and fibroblasts release 
growth factors 
Migration of fibroblasts and 
proliferation 
Biosynthesis and deposition of matrix 
proteins 
Angiogenesis 
Epidermis 
Migration, proliferation and 
differentiation of keratinocytes 
Contributions from hair follicle stem 
cells/interfollicular epidermal stem cells 

 

TGF-
Matrix 
metalloproteinases 
(MMPs) 
Fibronectin, type (III) 
collagen, type (I) 
collagen 
Vascular Endothelial 
growth Factor (VEGF) 

 
[22, 25, 26] 

Remodelling Wound fibroblasts adopt a contractile 
myofibroblast phenotype 
Degradation and reorganisation of the 
extracellular matrix 
Apoptosis of a variety of cell types 
Wound contraction 

TGF- 
MMPs 
Type (I) collagen 

 
[22, 25, 26] 
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Table 2: Establishment and utilization of iPS cells from diabetic patients 

Mutation Patient 
characteristics 

Uses REF 

Mitochondrial tRNA 
(A3243G) 

Maternal 
Inhibited 
Diabetes and 
Deafness 
(MIDD) 

Analysis of mitochondrial 
(dys)function associated 
with diabetes 

[116, 117] 
 

Glucokinase (GCK) Maturity Onset 
Diabetes of the 
Young (MODY) 
2 

Defects in insulin 
production and gene 
correction. 

[118] 

Hepatocyte nuclear 
factor (HNF) 1A 

MODY 3 Defects in insulin 
production 

[118, 119] 

Pancreatic and duodenal 
Homeobox 1 (PDX1)  

MODY4 Generation of glucose-
responsive insulin 
secreting cells 

[120] 
 

Heterozygous PDX1  MODY4 Pathogenesis of MODY4 
and T2DM 

[121] 

HNF1B  MODY5 Pancreatic hypoplasia 
Development of pancreatic 

-cells 

[122]  
[123] 
 

Heterozygous activating 
mutation inpotassium 
inwardly-rectifying 
channel, subfamily J, 
member 11 (KCNJ11) 

MODY13 Pathogenesis of MODY13 [124] 

Arginine vasopressin 
(AVP) gene carrying an 
adFND1 causing variant 
in exon 1 

Autosomal 
dominant 
familial neuro-
hypophysealdia
betesinsipidus 
(adFND1) 

Pathogenesis of adFND1 [125] 

Activating germline 
mutation in signal 
tranducer and activator of 
transcription (STAT3) 

Neonataldiabete
s 

Pancreaticendodermaldev
elopment 

[126] 

Insulin receptor 
mutations 

Genetic insulin 
resistance 

Mitochondrial (dys)function [127] 

Loss of paternal gene 
expression in an 
imprinted (epigenetic) 
interval on 15q11.2-q13 

Obesity (Prader-
Willi syndrome) 

Pathogenesis of Prader-
Willi syndrome and 
associated morbidities 

[128] 

Lamin A/C (LMNA) Hutchinson 
Gilford Progeria 
syndrome 
(HGPS) 
(accelerated 
aging, 

Pathology of HGPS [129] 
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lipodystrophic 
insulin 
resistance) 

Berardinelli-Seip 
congenital  
lipodystrophy 2 
(BSCL2/SEIPIN) 
mutations 

Congenital 
generalized 
lipodystrophy 

Defects in adipogenesis 
and pathology of human 
lipodystrophy 

[130] 

- Fulminant type 
1 diabetes 

Cytokine-induced apoptotic 

reactions of -like insulin 
producing cells 

[131] 

- Type 1 diabetes Expression of pancreas-
specific microRNAs 

[132] 

- Type 1 diabetes Autologous vascular 
therapy 

[133] 

- Diabetic foot 
ulcer  
Type 2 diabetes 

Future regenerative 
therapies for diabetic foot 
ulcer 

[134] 

- Type 2 diabetes Disease modelling and 
drug screening for diabetic 
cardiomyopathy 

[135] 

 

Figure 1: Modelling of diabetic wound repair using induced pluripotent stem cells   

Patient skin biopsies (diabetic and non-diabetic) can be used to supply frozen tissue or wax 

embedded sections for interrogation by Q-PCR, immunohistochemistry or 

immunofluorescence; alternatively, primary fibroblasts and keratinocytes isolated from the 

dermis and epidermis can be utilised directly in 2- and 3-dimensional studies of wound 

healing, or reprogrammed to pluripotency by delivery (viral, episomal plasmids, mRNA, 

microRNA) of combinations of transcription factors such as octamer binding transcription 

factor 4 (Oct4), Krueppel-like factor-4 (Klf4), sex determining region Y-box 2 (Sox2), Myc 

proto-oncogene protein (c-Myc), lin-28 homolog A (Lin28) or Nanoghomeobox (Nanog).  

Retention of epigenetic ‘memory’ can be assessed from gene expression profiles, 

persistence of donor-cell gene expression and ease of differentiation and both ‘memory’ 

and ‘non-memory’ iPSC which are capable of indefinite self-renewal and expansion can be 

banked; iPSC cell lines can also undergo targeted gene correction by  CRISPR/Cas9, 

TALEN or ZFN systems.   Established and developing protocols can be used to differentiate 

iPSC into a range of cell types found within human skin (fibroblasts, keratinocytes, 

melanocytes),and immune cells (T-lymphocytes, macrophages, dendritic cells and 

neutrophils), endothelial and smooth muscle cells, Schwann cells and peripheral neurons.  

When combined with tissue engineering methodologies, utilisation of skin models derived 
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fromdiabetic iPSC may provide new insight into disease mechanisms, and facilitate the 

development of effective therapeutics for treatment of chronic wounds in diabetic 

individuals.   
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