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ABSTRACT 

 

Preferences elicited with matching and choice usually diverge (as characterized by 

preference reversals), violating a basic rationality requirement, namely, procedure 

invariance. We report the results of an experiment that shows that preference reversals 

between matching (Standard Gamble in our case) and choice are reduced when the 

matching task is conducted using non-transparent methods. Our results suggest that 

techniques based on non-transparent methods are less influenced by biases (i.e. 

compatibility effects) than transparent methods. We also observe that imprecision of 

preferences influences the degree of preference reversals. The preference reversal 

phenomenon is less strong in subjects with more precise preferences. 
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1. INTRODUCTION 

Resource allocation decisions in health are often justified on the basis that they reflect 

societal preferences. In practice, those preferences are reflected in the valuation of 

health states obtained from techniques like the Standard Gamble or the Time Trade-Off. 

Values produced by these techniques ought to comply with some rationality 

assumptions. One of them is procedure invariance: normatively equivalent procedures 

for assessing preferences should give rise to the same preference order. Unfortunately, 

there is evidence that this principle is violated in the elicitation of preferences for health 

states. One example of violation of procedure invariance is the well-known preference 

reversal phenomenon. Preferences change depending on the method (matching or 

choice1) used to elicit them. The main objective of this paper is to understand better the 

mechanisms that generate preference reversals and how to avoid/reduce that 

phenomenon. More specifically, we study the role of different preference elicitation 

methods and the role of preference imprecision in the explanation of the preference 

reversals.   

Violations of procedure invariance have been observed in the health domain in the two 

main methods used in health economics, namely, Time Trade-Off (Sumner & Nease, 

2001) and Standard Gamble (Oliver, 2013a; 2013b). There is also evidence suggesting 

that utilities elicited with choice experiments and utilities elicited with matching 

methods (Time Trade-Off and Standard Gamble) are different (Bansback, Brazier, 

Tsuchiya, & Anis, 2012; Robinson, Spencer, Pinto-Prades, & Covey, 2016). Choice and 

matching seem to produce different results.  According to Oliver (2013a, abstract) 

																																																								
1 In choice the decision maker selects an option from an offered set of two or more alternatives. 
In matching the decision maker is required to set the value of some variable in order to achieve 
equivalence between options. 
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“those violations pose a challenge to health economics, where choice and valuation 

methodologies often are used interchangeably”. The literature suggests (Fischer, 

Carmon, Ariely, & Zauberman, 1999; Bostic, Herrstein, & Luce, 1990; Loomes & 

Pogrebna, 2016) that matching methods based on non-transparent sequences of 

choices can produce results more consistent with choices. However, there is very little 

evidence about the role that these methods can play in avoiding preference reversals in 

the domain of health outcomes. Attema and Brouwer (2013) test the internal 

consistency of choice and matching tasks, using Time Trade-Off, and conclude that 

choice tasks – more precisely, choice-based matching (CBM) tasks, lead to more 

consistent results than direct matching tasks. One objective of this study is to determine 

if there are elicitation methods that reduce or eliminate the discrepancy between 

matching and choice in the domain of the evaluation of health outcomes. It has also 

been suggested (MacCrimmon & Smith, 1986; Butler & Loomes, 2007; Loomes & 

Pogrebna, 2016) that imprecision in preferences may also explain the degree of 

preference reversals. For this reason, another objective of this study is to test the role 

of preference imprecision in the preference reversal phenomenon.  

We present the results of an experiment that compares choices and several matching 

procedures. All these matching methods are choice-based since they match two options 

using sequences of choices. Our main finding is that CBM methods which hide the final 

goal of the sequence from respondents (what we call “non-transparent” methods) 

reduce the rate of preference reversals. That is, when subjects do not see that each 

choice is part of a sequence aimed at establishing indifference between options, the 

number of preference reversals is reduced. We suggest that methods like the Time 

Trade-Off or the Standard Gamble can be improved using non-transparent sequences of 



3	
	

choices. We also find that preference reversals are related to preference imprecision. In 

the next section, we review the explanations provided in the literature about the choice-

matching discrepancy. Sections 3 and 4 contain the methodology and the results, 

respectively, of our study. The paper ends with the conclusions.	

 

2. THE CHOICE-MATCHING DISCREPANCY 

2.1. The phenomenon 

The choice-matching discrepancy was first observed using monetary gambles 

(Lichtenstein & Slovic, 1971). In stylized form, the phenomenon can be explained as 

follows. Subjects are presented with two lotteries, L1 and L2. Assume, that L1=(Q,m;0) 

and L2=(q,M;0), where m and M are the best outcomes of L1 and L2 respectively while 

q and Q are the corresponding probabilities. M is significantly larger than m and q is 

significantly lower than Q. The expected value of L1 is not too different from L2 (maybe 

a little bit larger for L2 since it is riskier than L1). L1 is called the P-bet since it offers a 

high chance of winning some positive outcome and L2 is called the $-bet since it offers 

the possibility of winning a larger prize. Subjects are asked to state their preference 

between the two lotteries with two different tasks: monetary equivalence (a matching 

task) and direct choice. In the monetary equivalence task, subjects have to state a 

certain monetary amount that has the same value as the lottery. In the choice task, 

subjects must choose between the P-bet and the $-bet. A reversal may occur when an 

individual gives a higher monetary equivalent to the $-bet but prefers the P-bet in direct 

choice or, conversely, when she assigns a higher monetary equivalent to the P-bet but 

prefers the $-bet in direct choice. Lichtenstein & Slovic’s finding, confirmed many times 
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since then (Seidl, 2002) was that the first type of discrepancy greatly outnumbered the 

other one.  

Slovic, Griffin, and Tversky (1990) studied the potential discrepancy between choice and 

matching using what they called probability matching. They asked people to state the 

probability q* such that subjects were indifferent between the lottery (Q,m;0) and the 

lottery (q*,M;0). Interestingly, they did not find preference reversals in this case. Butler 

and Loomes (2007) found a discrepancy between choice and matching in another type 

of matching task, that they called Probability Equivalent. In their case, matching was 

conducted using a “Reference lottery” (p,R;0) (R-bet). This lottery was characterised by 

having a 0 outcome if unsuccessful, and a payoff larger than the highest payoff in the $-

bet if successful (R>M). Subjects had to state the probabilities in the R-bet such that they 

were indifferent between the R-bet and the lottery under evaluation (P-bet or $-bet). 

We will call this method Reference Probability Equivalent (RPE). Butler and Loomes 

(2007) found the opposite asymmetry to Lichtenstein and Slovic (1971) for monetary 

equivalents, that is to say, P-bet more favoured in matching than in straight choice.  

2.2. Explanation of the phenomenon 

Preference reversals have been explained in several ways. One explanation is 

psychological, since it is based on a principle called compatibility between stimulus and 

response, originally observed by Fitts and Seeger (1953) in sensory tasks. Another 

explanation is that some people have truly intransitive preferences because, for 

example, their preferences can be characterized by Regret Theory (Loomes & Sugden, 

1982). A different explanation is built on the idea of preference imprecision 

(MacCrimmon & Smith, 1986; Butler & Loomes, 2007). We analyse in this paper the 

explanations based on compatibility and imprecision.  
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2.2.1. Compatibility. 

According to this principle, the respondent weights more heavily those characteristics 

of the stimulus that are more compatible with the response. Several effects have been 

explained using this general principle. One is scale compatibility, according to which, it 

is the similarity between stimulus and response scales that leads subjects to overweight 

the compatible attribute. In the study of Lichtenstein and Slovic (1971), the response 

scale was money in the matching task, so the monetary outcomes of the lotteries were 

overweighted. This favours the $-bet lottery in matching, since it has the highest 

monetary price. The finding, in Butler and Loomes (2007), that the P-bet was preferred 

to the $-bet using RPE could also be explained by scale compatibility2, since probability 

is the attribute that is used to reach indifference. 

A second form of compatibility that may contribute to the choice-matching discrepancy 

is strategy compatibility, which assumes that the strategies that subjects follow in each 

task are different. In choices, subjects may follow qualitative strategies; for example, a 

choice may be decided using lexicographic principles or aspiration levels. The 

implication is that, in choice, subjects focus mainly on the most important (or 

prominent) attribute. This is called the prominence hypothesis (Tversky, Sattath & Slovic, 

1988), which implies that the most important attribute receives a higher weight in 

choices than in matching. In summary, scale compatibility leads to an overvaluation of 

the $-bet when matching is conducted using monetary equivalents while choice leads 

to an overvaluation of the P-bet due to prominence, assuming that probability is the 

																																																								
2 Butler and Loomes (2007) explain their results in a different way, namely, imprecision of 
preferences. See 2.2.2. 
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most important attribute. This leads to the well-known result that P-bet≻$-bet in choice 

and $-bet≻P-bet in matching. 

When matching is conducted using the prominent attribute, the psychological 

interpretation depends of the relative strength of the two effects. Slovic et al. (1990) 

suggest that the lack of discrepancy between probability matching and choice in their 

study can be explained by two effects (scale compatibility and prominence) going in the 

same direction with the same strength. In matching the P-bet is favoured over the $-bet 

because of scale compatibility and in choice the P-bet is favoured over the $-bet because 

probability is the most prominent attribute. Fischer and Hawkings (1993), using choices 

under certainty (e.g. apartments characterized by price and distance to university 

campus) also compared choice against matching in the prominent attribute (price) and 

found that the cheaper apartment was more preferred in choice (55%), than in price 

matching (31%). They interpret their result as evidence that the effect of prominence 

was larger than the effect of scale compatibility.  

Fischer et al. (1999) provide another explanation for the choice-matching discrepancy: 

the Task-goal hypothesis. According to this, the prominent attribute is weighted more 

heavily in tasks whose perceived goal is to differentiate between alternatives than in 

tasks whose goal is to equate alternatives. The reason is that to differentiate only 

requires to rank-order the alternatives, which is naturally compatible with choosing the 

alternative that is superior in the prominent attribute. To equate requires making trade-

offs between attributes, which is naturally compatible with giving some weight to all the 

attributes. The implication is that the prominent attribute will receive more weight in 

response tasks whose perceived goal is to differentiate between alternatives (choice) 

than in tasks whose perceived goal is to equate between alternatives (matching). 



7	
	

 

2.2.2. Imprecision 

The second explanation of preference reversals is based on the idea that preferences 

are imprecise for, at least, the type of experimental tasks presented to subjects. This 

explanation was suggested originally by MacCrimmon and Smith (1986) and it has been 

explored in Butler and Loomes (2007) and Loomes and Pogrebna (2016). Those papers 

explain preference reversals using two main assumptions, namely, preferences are 

imprecise, and “the imprecision interval is positively correlated with the ranges within 

which dominance is not transgressed” (Butler & Loomes, 2007, p. 290). This implies that 

in the monetary equivalent task the imprecision interval is wider for the $-bet than for 

the P-bet but in the RPE task, the imprecision interval is wider for the P-bet than for the 

$-bet. We will use a numerical example to illustrate the link between preference 

reversals and imprecision in both cases. 

We start with preference reversals between monetary equivalents and choice. Assume 

that a subject is truly indifferent in choice between the following two lotteries: (0.8, €20; 

0) – the P-bet - and (0.2, €90; 0) – the $-bet -. We ask the subject to state the monetary 

equivalent for each of those two lotteries. If preferences were deterministic and 

transitive, the monetary equivalent would be exactly the same amount of money for 

both lotteries. The subject would always provide the same response. However, subjects 

with imprecise preferences are not sure about the exact monetary equivalent. 

Sometimes they may give an answer and sometimes a different one. Those answers will 

be bounded by transparent dominance. The upper bound is higher in the $-bet (€90 in 

our example) than in the P-bet (€20) while the lower bound is the same (€0). The range 

within which dominance is not transgressed will be [0, €20] for the P-bet and [0, €90] 
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for the $-bet. Given the assumption that the imprecision interval is positively correlated 

with those ranges, the imprecision interval will be wider for the $-bet than for the P-bet. 

For example, the imprecision interval could be [€10, €16] for the P-bet and [€12, €30] 

for the $-bet. The imprecision interval will contain larger values for the $-bet than for 

the P-bet. If this is the case, it will be easier for the subject to state a larger monetary 

equivalent for the $-bet than for the P-bet even though she is truly indifferent in choice.  

This will produce the pattern observed, namely, $-bet more favoured in matching than 

in straight choice.  

Let us now see what this model predicts for the choice vs. matching discrepancy using 

RPE. Using our example, assume that the reference lottery is R:(p, €120; 0). The response 

(p) will be bound by the range within which dominance is not transgressed. This range 

is larger for the P-bet [0, 0.8] than for the $-bet [0, 0.2]. Again, under the assumption 

that the imprecision interval is correlated with those ranges it will be wider for the P-

bet than for the $-bet. For example, it could be [0.10, 0.16] for the $-bet and [0.12, 0.30] 

for the P-bet. If this is the case, it will be easier for the subject to state a larger probability 

value for the P-bet than for the $-bet in the RPE task even though she is truly indifferent 

in choice. Applying the same argument as before, matching with RPE would produce the 

pattern observed by Butler and Loomes (2007), namely P-bet more favoured in 

matching than in straight choice. 

2.3. Classifying choice-based matching methods 

2.3.1. Standard matching vs. choice-based matching. 

Assume we have two objects (A, B) with two attributes (X, Y), that is, object A is 

characterised by (XA, YA) and object B by (XB, YB). To estimate a combination of attributes 

such that A and B are equally attractive, we may fix three of the four attributes and ask 



9	
	

the subject to specify the value of the omitted attribute that makes her indifferent 

between A and B. For example, the subject has to state the missing value (?) in an open 

question so that (XA, YA) and (XB, ?) are equally preferred. We call this standard (or direct) 

matching. Choice-based matching (CBM) does not reach indifference with an open 

question but with a sequence of choices. This process generates an interval where the 

indifference point is located. Assume that (XA, YA) ≻ (XB, 𝑌#$) but (XA, YA) ≺ (XB, 𝑌#&). We 

then know that the value of YB that will make the two options equally attractive will be 

in the interval [𝑌#$, 𝑌#&]. Researchers may take the middle point of the interval as the 

indifference (matching) point, or they may ask an open question with the matching point 

constrained by the interval where indifference was located. 

2.3.2. Iterative vs. non-iterative choice-based matching	 

In an iterative CBM method, the choice that the subject is presented depends on her 

response to a previous choice. For example, assume that the subject says that (XA, 

YA)≺(XB, 𝑌#$). In an iterative method, the subject would then be offered a choice 

between (XB, 𝑌#&) and (XA, YA) for 𝑌#& < 𝑌#$, but she would never be presented with a 

choice between (XB, 𝑌#&) and (XA, YA) for 𝑌#& > 𝑌#$. In non-iterative methods, a number of 

questions are set up in advance, each including different values of YB and subjects 

respond to all of them independently of their responses to previous choices.  

In health economics, CBM methods (Time Trade-Off and Standard Gamble) are usually 

iterative. Non-iterative methods are not very common in health economics, although 

the Multiple Price List method, widely used to elicit risk preferences (Holt & Laury, 2002) 

is non-iterative. One problem with non-iterative methods is that subjects can give 

inconsistent responses and an indifference point (or interval) cannot be estimated for 

those subjects. Finally, depending on the rules to generate the stimuli from one choice 
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to another we can further split iterative methods into Titration, Bisection, “Ping-pong” 

and so on. The differences between those methods will be explained later. 

2.3.3. Transparent vs. non-transparent choice-based matching. 

When subjects can easily observe that there is a link between the choices of a 

converging sequence, we say that the method is “transparent”. If it is difficult for people 

to observe this link, we talk about a “non-transparent” method. Let us see an example. 

Assume we want to estimate the utility of N health states. This requires N converging 

sequences of choices in CBM. The usual way of eliciting preferences would be to start 

with a certain health state (say health state 1), apply the corresponding converging 

sequence (say #1) until indifference is reached and then move to a different health state 

and do the same. Since choices of converging sequence #1 keep all attributes constant 

except the attribute used to match options (e.g. time in Time Trade-Off, probability in 

the Standard Gamble), some subjects may quickly realise the kind of “game” they are 

playing. However, an alternative way of eliciting preferences would be to ask subjects 

to make one choice from the converging sequence #1, then one choice from sequence 

#2 (a choice corresponding to health state 2), one choice from sequence #3 (a choice 

corresponding to health state 3), …, one choice from sequence #N (a choice 

corresponding to health state N), before returning to a choice corresponding to 

sequence #1. In this way, when the subject is presented with the second choice of 

converging sequence #1, we hope she cannot see that this choice is related to a choice 

that she made N questions previously. This is the method used by Fischer et al. (1999), 

which they coined as Hidden Choice-Based Matching (HCBM). This is a non-transparent 

method. 
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While the iterative or non-iterative nature of a CBM method is objective, it is not the 

same in the case of transparency. For example, in the HCBM method, we can expect the 

method to be less non-transparent the fewer converging sequences we use. However, 

we would expect that the majority of people might find it more difficult to observe that 

the choice belongs to a sequence with HCBM than with the ordinary CBM methods. 

2.4. Avoiding the discrepancy 

In this paper, we address the issue of how to avoid preference reversals. If we accept 

the psychological interpretation based on compatibility and prominence, we can predict 

that some preference elicitation methods will produce more preference reversals than 

others. If scale compatibility or strategy compatibility were the reasons behind the 

choice-matching disparity, it would be enough to move from standard matching to CBM 

to avoid preference reversals. If each of the tasks in CBM is perceived as an independent 

choice, preferences elicited with CBM and direct choices should converge, since the 

matching task becomes qualitative and it does not involve the use of a scale to match 

two options. However, if the Task-Goal is the correct explanation of the discrepancy, it 

would not be enough to use CBM methods to avoid preference reversals. If CBM are 

transparent the subject will perceive that the objective of the CBM task is to equate 

between alternatives while the objective of the choice task is to differentiate between 

alternatives. To avoid preference reversals subjects should not perceive the objective of 

the task (equate vs. differentiate). In this paper, we will use different CBM methods that 

combine the iterative or non-iterative nature of the procedure with its transparency or 

opacity. If the combination of scale and strategy compatibility explains the choice-

matching discrepancy, all methods should eliminate the discrepancy since they are all 
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choice-based. If the Task-goal is the correct explanation, non-transparent methods will 

perform better in that regard. 

If the explanation based on imprecision in preferences is correct, we have to introduce 

some mechanism to detect the degree of imprecision in preferences. For this reason, 

we asked subjects to repeat their choices and valuations in three occasions. According 

to the imprecision hypothesis we should find more preference reversals in those 

subjects with more imprecise preferences.  

3. METHODS 

3.1. Participants 

We recruited 250 undergraduate students at the University of Murcia (Spain). 

Participants were randomly allocated3 to one of five groups, which differed in the type 

of elicitation mode used in the CBM procedure. The sessions took place in the Lab of the 

Faculty of Economics and Business of the University of Murcia under the supervision of 

members of the research team. Fourteen sessions were held with less than 25 students 

in each session. Students were paid €15 for their participation. Sessions took about 40 

minutes to complete the study. 

3.2. Gambles and tasks 

Two pairs of lotteries were used (see Table I). In each lottery, one outcome was a chronic 

health condition described in terms of an EQ-5D-3L4 health state, and the other outcome 

																																																								
3 We included all subjects who volunteered for the experiment in a database, and they were 
allocated to one of the five CBM methods using a random number generator. Since we wanted 
to have exactly the same number of subjects in each version, the number corresponding to each 
CBM method was omitted once we had 50 subjects allocated to that procedure. When they 
introduced their National Identity Card number in the computer, they were allocated to only 
one of the methods. 
4	The EQ-5D-3L descriptive system includes five dimensions: mobility, self-care, usual activities, 
pain/discomfort and anxiety/depression. Each dimension has three levels: no problems, some 
problems and severe problems. State 12231, for instance, describes the condition of an 
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was immediate death. Lotteries A and C (P-bet) offered the individuals a large 

probability of being in a bad health state for the rest of their lives, whereas lotteries B 

and D ($-bet) gave them a low probability of living in a better health state but a higher 

risk of death. The two sets of paired lotteries (A-B, C-D) had similar expected utilities 

according to the EQ-5D-3L Spanish tariff (Badia, Roset, Herdman, & Kind, 2001). 

INSERT TABLE I 

The scenarios described a hypothetical situation where subjects had to choose between 

two treatments - otherwise, they would die in a few days. Assuming that the reference 

point was certain death (and assuming utilities of the four health states are positive), 

each treatment was in the gain domain. Therefore, a P-bet is a treatment that offers a 

large probability of a small health gain, while the $-bet offers a smaller chance of a 

bigger health gain. Visual aids were used to represent the probabilities of success and 

failure in each treatment. An example can be seen in Figure 1 that represents a direct 

choice between lotteries A and B. 

INSERT FIGURE 1 

The valuation task consisted of a sequence of choices between each of the lotteries and 

a reference gamble (R), whose best outcome was full health (more precisely, the best 

state described by the EQ-5D-3L descriptive instrument) and the worst was death, that 

is, R: (p, 11111; Death). We therefore used a Reference Probability Equivalent (RPE) 

technique, as in Butler and Loomes (2007), where the attribute used to reach the 

equivalence is the probability in the reference lottery (p). An example of a RPE question 

can be seen in Figure 2. 

																																																								
individual who has no problems in walking nor is anxious or depressed, but who has some 
problems washing or dressing him/herself and performing usual activities, and who has extreme 
pain or discomfort too.	
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INSERT FIGURE 2 

The possible values for probability p were predetermined before the CBM procedure 

started. It was necessary to define in advance the values of p given that, in non-iterative 

methods, the subject was asked a predetermined number of questions independently 

of her responses to previous questions. In order to make matching tasks between the 

five methods as similar as possible, we decided to adopt the same predetermined values 

in iterative and non-iterative methods. In each of the four lotteries, nine different values 

of p were used (see Table II). In iterative methods, subjects were only asked a subset of 

those nine values, while in non-iterative they were asked all the nine values. Indifference 

was not allowed in straight choices (A vs. B; C vs. D) or in RPE. 

INSERT TABLE II 

3.3. Choice-based matching methods 

Five different types of CBM were used: two were iterative and transparent; one was 

iterative but non-transparent; one was non-iterative and transparent, and the last one 

was non-iterative and non-transparent. We describe each of them in turn.5 

Transparent iterative methods (Bisection and Ping-pong) 

The transparent iterative methods we used were Bisection and a modified version of the 

Ping-pong procedure. In both methods, the first value of the matching parameter was 

randomly chosen amongst the nine potential values of p. Assume it was 𝑝+. This 

generated two potential intervals where the indifference point had to be located, 

namely, [0-𝑝+] and [𝑝+-𝑝,-./ ]. For example, in the comparison between lottery (12231, 

																																																								
5	There was another group where we tried to implement the so-called “PEST” method (Bostic et 
al., 1990). However, the programming went wrong and the method turned out being almost 
identical to Ping-pong. The results were very similar to Ping-pong. 
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0.95; Death) and (11111, 𝑝+; Death), we had 𝑝+=0.3. If the respondent chose lottery 

(11111, 0.3; Death), we knew that the next value of p had to be 0.1 or 0.2. If the 

respondent chose lottery (12231, 0.95; Death), the second stimulus had to be one value 

from the set {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. 

The difference between both methods (Bisection and Ping-pong) was how they chose 

the value of p in the subsequent question. Assume the subject preferred lottery (12231, 

0.95; Death) to lottery (11111, 0.3; Death). In the Bisection method, the second value of 

p would be the value closest to the middle point of the interval [𝑝+-𝑝,-./ ], which, in this 

case, would be 𝑝0. In the Ping-pong method, the second value of p would be located at 

the other end of the interval opposite 𝑝+. In this example, it would be 𝑝1. In both cases, 

the process went on until the indifference point was located within one of the ten 

intervals [𝑝2/ − 𝑝4/ ] defined. At this point, the process stopped. The lower limit of the 

interval (𝑝2/ ) was the highest value of p in lottery R (11111, p; Death) for which the 

individual preferred the lottery i to R; and the upper end of the interval (𝑝4/ ) was the 

lowest value of p in lottery R for which the subject preferred the lottery R to i. For 

example, if (12231, 0.95; Death)≻(11111, 0.6; Death) but (12231, 0.95; Death)≺(11111, 

0.7: Death) then 𝑝2/ =0.6 and 𝑝4/ =0.7 so [𝑝2/ − 𝑝4/ ] = [0.6 − 0.7]. 

Hidden Choice-Based Matching method (HCBM) 

The non-transparent iterative procedure used was the HCBM proposed by Fischer et al. 

(1999). The HCBM was applied using the Bisection method but separating the choices 

regarding each particular lottery by the iterations of other lotteries. Thus, subjects made 

one choice from the iteration process belonging to lottery A, then one choice for lottery 
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B, one for lottery C and one for lottery D before returning to the sequence of lottery A.6 

For example, a hypothetical sequence could have been as follows: the first choice 

between (12231, 0.95; Death) and (11111, 0.3; Death), the second choice between 

(11221, 0.3; Death) and (11111, 0.09; Death), the third choice between (22223, 0.8; 

Death) and (11111, 0.56; Death) and the fourth choice between (12221, 0.2; Death) and 

(11111, 0.16; Death)7. Assuming that, in all cases, the reference lottery was preferred, 

the fifth to eighth choices were (12231, 0.95; Death) vs. (11111, 0.2; Death), (11221, 0.3; 

Death) vs. (11111, 0.06; Death), (22223, 0.8; Death) vs. (11111, 0.32; Death) and (12221, 

0.2; Death) vs. (11111, 0.08; Death). 

‘List’ method 

This method, like the following one, is non-iterative, that is, subjects had to respond to 

all possible predetermined choices (𝑝$/  to	𝑝1/ ). The method consisted in a list/table 

containing all the possible choices for each of the matching sequences, which were 

displayed in random order.8 Figure 3 shows a selection of the table that respondents 

saw. 

INSERT FIGURE 3 

Random Binary Choice (RBC) method 

																																																								
6 As Fischer et al. (1999) did in their study, when a sequence converged faster than others, filler 
choices were added at the end of that sequence to avoid the possibility that there were only 
one or two sequences that had not converged at the final stages, thus, making the iterative 
process transparent to the subjects. 
7 In the first sequence of choices, probabilities of the reference lottery (0.3, 0.09, 0.56 and 0.16, 
respectively) were randomly set amongst the nine potential predetermined values in each case. 
8 Presenting choices in a random order is not the usual way of administering multiple price / 
choice lists. Our intention was to design a framing which looked almost identical to the following 
one, RBC, except for the fact that one (List) would be transparent and the other one (RBC) non-
transparent. 
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This method resembled (to some extent) a DCE experiment keeping the “essence” of 

matching, that is, we obtained the indifference point for each subject and each health 

state. RBC can be seen as a mixture between List and HCBM. The method is non-iterative 

(as List), since it presented the nine potential choices to each subject for each of the four 

lotteries. However, unlike List, the method is non-transparent and it used the same 

strategy as HCBM to avoid being transparent, namely, choices corresponding to a 

particular lottery were presented randomly, one at a time and with choices related to 

other lotteries interspersed between them – as in the HCBM procedure. The difference 

between HCBM and RBC is that in RBC the subject was asked all nine choices for each 

lottery while HCBM only asked questions that could not contradict previous choices 

since it is iterative. As has been pointed out, in non-iterative methods (List and RBC) an 

indifference interval [𝑝2/ − 𝑝4/ ] might not be determined instantly if responses are noisy. 

A method to deal with this problem will be explained later. 

3.4. Structure of the sessions 

The sessions began with an introduction to the experiment. The EQ-5D-3L descriptive 

system was briefly explained to the participants and the four health states involved in 

the lotteries were shown. Subjects were then asked to rate the four states plus the 

Death state on a visual analogue scale. 

After that, subjects had to do two types of tasks: choices between paired lotteries (one 

P-bet and one $-bet) and valuations of each lottery by means of the RPE technique. In 

all groups, the first task was to choose between lotteries A and B. Then, subjects in 

groups 1 (Bisection), 2 (Ping-pong), and 4 (List) were asked to do the RPE task of A and 

B, followed by the choice between C and D and RPE of C and D. In groups 3 (HCBM) and 

5 (RBC), subjects started with the two straight choices (A vs. B and C vs. D) and then 



18	
	

continued with the valuations of the four lotteries in the manner that has been 

explained. The same scheme was repeated three consecutive times during the session. 

For groups 1, 2 and 4, the order in which A and B were valued through the RPE method 

was randomly determined, as was the order between C and D valuations. For groups 3 

and 5, the order of appearance of the four lotteries in RPE valuations was set at random. 

3.5. Analysis 

There are, at least, two ways, of analysing the data of this experiment. One is to analyse 

the responses of each round separately. We count the number of preference reversals 

in each round and we see if they vary between methods. It is as if we had three different 

subsamples, one for each round. However, the preference reversal asymmetry is an 

individual phenomenon, so it would be good to find a way of characterizing subjects as 

having or not “true” preference reversal preferences. This is the objective of the second 

approach. It combines all responses that each subject provided in the three rounds to 

characterize subjects’ preferences. We proceed to explain the two approaches. 

3.5.1. Counting Preference Reversals 

Within each pair of lotteries i and j, a choice-matching discrepancy (a preference 

reversal) exists when i≻j in a straight choice, but RPE valuations imply that i≺j. Since we 

did not derive an exact indifference value for the lotteries but only an indifference 

interval [𝑝2/ − 𝑝4/ ], we need to define the procedure to estimate the choice implicit in a 

RPE task. One option is to assume that the indifference value is the middle point of the 

indifference interval. Another option is to compare the indifference intervals and 

assume that the RPE valuation task reveals a preference for i or j only when the two 

intervals do not overlap. For instance, when a RPE task implies that i≻j if 𝑝2/  > 𝑝4
; . If 𝑝2/  

and 𝑝4
; overlap, no direction of preference can be established.  
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3.5.2. Classifying subjects. 

When preferences are imprecise, some individuals may respond differently when the 

same question is asked several times at different moments in the course of an 

experimental session. In our case, subjects may sometimes choose A (C) and sometimes 

B (D), and the probabilities elicited in RPE very often overlap due to preference 

imprecision. Taking that into account, we proceed as follows. We use the three straight 

choices between each pair of lotteries (i, j) of each subject and we define as “truly 

preferring one lottery in choice” those who chose one lottery at least twice. We call 

“strongly consistent” those who chose the same lottery in each of the three rounds and 

“weakly consistent” those who chose the same lottery twice. This leads to a 

classification of subjects in four groups depending on whether they were strongly or 

weakly consistent and whether they prefer lottery i or lottery j.  

It is more complicated to decide when a subject truly prefers one lottery or the other 

with the valuation (RPE) task. We use the notion of “stochastic indifference” (SI) 

developed by Loomes and Pogrebna (2016) to do that. SI may be derived from a series 

of repeated valuation tasks counting the number of times that one option is chosen 

against the other. For example, assume that the subject has to respond to a series of 

choices between lottery A:(12231, 0.95; Death) and the reference lottery R:(11111, p; 

Death), for p = 0.1, 0.2, …, 0.8, 0.9 (see Table II) three times. Assume that the subject 

has well-defined (deterministic) preferences and she always chooses lottery A for any 

value of p≤0.6 and always chooses the R-gamble when p≥0.7. In that case, the 

indifference interval would be (0.6, 0.7) and the indifference point could be set in the 

middle point of this interval, that is, 0.65. This subject would choose lottery A in 18 of 

the 27 choices between A and R. Assume now that the subject has imprecise (stochastic) 
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preferences. She always chooses lottery A for p≤0.4 and always lottery R for p=0.9. For 

p=0.5 and p=0.6 she chooses lottery A twice and for p=0.7 and p=0.8 she chooses lottery 

A just once. Overall, she chooses A in 18 of the 27 potential choices. We then say that 

her stochastic indifference point is also 0.65, as in the deterministic case.  

In general, the stochastic indifference point can be estimated as 

𝑆𝐼(𝑖) = 1
2D 𝑝$/ + 1 3D G𝑝H/ − 𝑝HI$/ J𝐿/ 

Where 𝑝$/  is the lowest possible value of p in the R gamble (i.e. 0.1 for lottery A, 0.03 for 

lottery B, 0.08 for lottery C and 0.02 for lottery D); G𝑝H/ − 𝑝HI$/ J is the gap between the 

values of p in each R gamble (which coincides with its lowest value, that is, 0.1, 0.03, 

0.08 and 0.02, respectively for lotteries A, B, C and D) and 𝐿/ is the number of times that 

the subject chooses lottery i (0 < 𝐿/ < 27). In the example just provided, since 𝐿/ = 18, 

SI(A) = 	0.05	 +	0.1 3D × 18 = 0.65. 

The above method can be immediately applied to non-iterative methods, since all 

subjects had to respond to all (i.e.27) binary choices. In the case of iterative methods 

subjects did not respond to all 27 binary choices since once the subject responded to 

one choice, all potential questions involving dominance were excluded. To estimate SI 

for iterative methods, we assume that when a participant chose the lottery i (j) against 

R: (11111, p; Death) for a certain value of p = p’, she would also have chosen i (j) for any 

p < p’. And, conversely, if a participant chose the reference gamble R, for a given value 

of p = p’’, she would also have chosen R for any p>p’’. In summary, using the concept of 

Stochastic Indifference we split the subjects into those who truly preferred one lottery 

or the other in RPE. 

In summary, subjects could belong to one of eight potential groups generated by three 

two-level factors: a) if they prefer one lottery or the other in choice, b) if they prefer one 
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lottery or the other in valuation, c) if they are strongly – choose one lottery 3 times - or 

weakly - choose one lottery 2 times - consistent in choice. The prediction here is that 

those who are weakly consistent will make more preference reversals than those with 

better defined preferences.   

 

4. RESULTS 

4.1. Round by round analysis 

We present the results of each round separately in Tables III to V. The total number of 

preference reversals was 129 in the first round (Table III), 74 in the second round (Table 

IV) and 76 in the third round (Table V) so there seems to be an element of learning in 

our subjects, at least between the first and the second round (the rate of preference 

reversals falls from 29 % in round 1 to 16 % in rounds 2 and 3). However, in spite of the 

reduction in the number of preference reversals, they are still highly asymmetric for 

Bisection, Ping-pong and List in the same direction, namely, the P-bet being more highly 

preferred in valuation than in choice. This coincides with the results in Butler and 

Loomes (2007). Even in the third round (see Table V), where the lower number of 

preference reversals could be interpreted as evidence of better formed preferences, the 

ratios were 18:0 (Bisection), 17:1 (Ping-pong) and 19:0 (List) in favour of the P-bet. That 

is, an impressive 54:1 in favour of the P-bet in valuation vs. choice. However, HCMB and 

RCB ratios were only 9:5 and 6:1, respectively (p=0.42 and p=0.13, McNemar exact 

binomial test, 2-sided) for a total of 15:6.  

INSERT TABLE III 

INSERT TABLE IV 

INSERT TABLE V 
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In summary, for Bisection, Ping-pong and List, the results are in agreement with the 

evidence in Butler and Loomes (2007), that is, the P-bet is more highly preferred in 

matching than in choice.  

The common element of the two methods where preference reversals almost 

disappeared (HCBM and RBC) is that they are non-transparent: one is iterative and the 

other is not. It seems that, when subjects are not aware that each choice is part of a 

sequence, they make each decision using the same principles that they use in straight 

choices. The method that leads to most discrepancies between valuation and choice is 

List. It seems that this presentation makes the matching attribute even more salient in 

the valuation task, and probabilities are even more overweighted. These results seem 

to support the Task Goal Hypothesis of Fischer et al. (1999) as an explanation of 

preference reversals between choice and matching.  

We can see that the results are quantitatively (but not qualitatively) different for pairs 

A-B and C-D. There are more preference reversals in the pair C-D than in A-B. However, 

the results are qualitatively similar. Transparent methods produce a ratio 23:0 for pair 

A-B and 31:0 for pair C-D. Non-transparent methods produce a ratio 5:3 for pair A-B and 

10:3 for pair C-D. Pair C-D clearly reproduces the pattern observed in Butler and Loomes 

(2007), namely, the P-bet more highly preferred in matching than in choice. This gives 

rise to a large number of preference reversals and it is in this context where the effect 

of non-transparent methods can be better observed. For pair A-B, we can also observe 

the pattern described in Butler and Loomes (2007) but to a lesser degree. For this 

reason, the “correcting” effect of non-transparent methods is less important for pair A-

B. 
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4.2 Aggregate analysis 

The preference reversal asymmetry is a phenomenon that applies to individuals. 

Therefore, we allocate individuals to one of eight groups according to the relationship 

between valuation and choice following the principles presented in the methods section 

(see 3.5.2.). Table VI shows the results for each valuation method and Table VII presents 

these results according to the degree of consistency of the subjects in their choices 

(strong vs. weak) and adding together the figures of transparent (Bisection, Ping-pong, 

List) and non-transparent (HCBM, RBC) methods. The main results are: 

INSERT TABLE VI 

INSERT TABLE VII 

1. The relative number of preference reversals is different depending on the degree 

of consistency of subjects, which we take as a proxy for imprecision. Among 

subjects classified as “strongly consistent”, in the case of pair A-B there are 17 

participants out of 194 (8.8%), with ‘true’ preference reversal preferences. They 

prefer one lottery in each of the three choices but give a higher value to the other 

lottery in valuation. The ratio is 16:1 in the direction expected, namely, the P-bet 

more favoured in valuation than in choice. If we focus on those with less precise 

preferences (i.e. “weakly consistent”), in the case of pair A-B there are 15 

participants out of 56 (26.8%), with ‘true’ preference reversal preferences (three 

times more than those “strongly consistent”) and the asymmetry persists (12:3). 

In the case of pair C-D those percentages are 17.8% (ratio 34:0) for those 

“strongly consistent” and 37.3% for the “weakly consistent” (ratio 21:1). In 

summary, imprecision seems to have a very strong effect on preference 

reversals. 
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2. The List method stands out as the method that clearly produces most preference 

reversals. For all the 50 subjects who followed this procedure, the percentage of 

preference reversals is 20 % in pair A-B (ratio 10:0) and 38% in pair C-D (ratio 

19:0). Even for the consistent subjects the percentages are very high, namely, 

25% (ratio 9:0) and 34% (ratio 13:0), respectively for pairs A-B and C-D. 

3. When we compare transparent (Bisection, Ping-pong and List) and non-

transparent (HCBM and RBC) methods the frequency of preference reversals is 

larger for non-transparent methods. For the pair A-B, we have that 14.0% of 

subjects reverse their preferences in transparent methods and 11.0% in the case 

of non-transparent methods. For the pair C-D, those percentages are 29.3% for 

transparent methods and 12.0% for non-transparent. It is true that the 

transparent methods are penalized for the inclusion of the List method. If we 

only compare Bisection + Ping-Pong vs. HCBM + RBC, for the pair A-B the total 

number of subjects with preference reversal preferences is the same (i.e. 11) 

with the asymmetric ratio of 9:2 in both cases. No difference here. However, for 

the pair C-D, there is a clear difference. The total number of subjects with 

preference reversal preferences is 25 (ratio 25:0) for the transparent methods 

and 12 for non-transparent (ratio 11:1). This confirms that using non-transparent 

methods the number of preference reversals is reduced. 

 

5. CONCLUSIONS 

The main objective of this paper was to understand better the mechanisms that 

generate preference reversals and how to avoid/reduce that phenomenon. Our main 

result is that two explanations of preference reversals, presented at the beginning of 
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the paper, are complementary. First, subjects that are more consistent in repeated 

choices produce less preference reversals. As far as we know, this is the first paper to 

explore the role of imprecision as an explanation of preference reversals in health. 

However, even when we focus only on strongly consistent subjects, the asymmetric 

pattern of preference reversals continues when transparent methods are used. 

Methods based on non-transparent choices reduce the rate of preference reversals for 

both strongly and weakly consistent subjects. This seems to support the explanation of 

preference reversals based on the Task-Goal hypothesis. It is evident in our results that 

this finding is more compelling with pair C-D than with pair A-B, which suggests that the 

propensity for asymmetric reversals to occur may depend on the particular pairs 

involved. A key difference between pairs A-B and C-D is that, in straight choices, a 

majority of subjects (about 60%) chose the P-bet over the $-bet in the first case, whereas 

with pair C-D more than 60% of the sample chose the $-bet over the P-bet, which makes 

it easier to find the expected asymmetry. This shows that it is more difficult to 

investigate preference reversals when outcomes are health states than when they are 

money. If outcomes are monetary, it is easier to design lotteries with some common 

features, for example, with similar expected value. We have tried to devise lotteries with 

similar expected utilities, but we have used population averages in order to do that. 

However, the preferences of our subjects can be different from those averages. The 

important point is that in those pairs (like C-D) where preference reversals are more 

abundant, we have shown that both imprecision and the transparency of the method 

are relevant to explain preference reversals. 

What are the implications of these results for preference elicitation methods in health? 

One is that matching methods should try to hide, as much as possible, the goal of the 
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task. In that way, the subject seems to treat each choice in the iteration process 

independently from the rest, without being influenced by past choices or other 

considerations. Furthermore, the results of HCBM suggest that it may not be necessary 

to abandon iterative methods and move to non-iterative ones, like RBC (that is, Discrete 

Choice Experiments), to avoid compatibility effects. This is an interesting finding since 

iterative methods are more efficient (require fewer questions) than non-iterative. Our 

results highlight the importance of the distinction between transparent and non-

transparent methods. This distinction is not new, but we do not think that the vast 

majority of researchers who use matching methods, like Time Trade-Off or Standard 

Gamble, are aware of the potential relevance of using non-transparent methods. It is 

not uncommon to find papers arguing that they use CBM because “it leads to fewer 

inconsistencies than directly asking subjects for their indifference values” (Bleichrodt, 

Gao, & Rohde, 2016, p. 220) without mentioning the difference between transparent 

and non-transparent CBM. It is as if they assume that all CBM produce fewer 

inconsistencies. This paper suggests that this is not the case. Our results show that 

moving from standard matching to sequences of binary choices is not enough to avoid 

the problems of standard matching. If we want to use CBM methods to estimate utilities 

for health states, non-transparent methods seem to reduce biases present in 

transparent methods, reducing/avoiding compatibility effects and making choice and 

matching more similar. 

The implication of our results is more complicated in the case of imprecision. While 

biases due to compatibility can be reduced using different techniques (i.e. non-

transparent methods), imprecision cannot be addressed with such a “simple” change. 

The only solution here seems to be to help subjects to increase the degree of precision. 
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This is not easy in the case of the evaluation of health states. In spite of that, since 

preference imprecision seems to have an effect on how people respond to survey 

questions in the health domain, it is important to have an idea of the degree of 

imprecision involved in subject’s responses.  
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TABLES 
 
 
Table I. Lotteries used in the study. 

 Pair 1 EU* Pair 2 EU* 

P-bet A: (12231, 0.95; Death) 0.21 C: (22223, 0.8; Death) 0.12 

$-bet B: (11221, 0.3; Death) 0.24 D: (12221, 0.2; Death) 0.14 
* Expected Utility according to Spanish tariff: U(12231)=0.219; U(11221)=0.816; U(22223)=0.141; 
U(12221)=0.682. 
 
 
  



	

 
Table II. Reference gambles in Probability Equivalent questions. 

 A: (12231, 0.95; D) B: (11221, 0.3; D) C: (22223, 0.8; D) D: (12221, 0.2; D) 

R: 

(11111, 0.1; D) 
(11111, 0.2; D) 
(11111, 0.3; D) 
(11111, 0.4; D) 
(11111, 0.5; D) 
(11111, 0.6; D) 
(11111, 0.7; D) 
(11111, 0.8; D) 
(11111, 0.9; D) 

(11111, 0.03; D) 
(11111, 0.06; D) 
(11111, 0.09; D) 
(11111, 0.12; D) 
(11111, 0.15; D) 
(11111, 0.18; D) 
(11111, 0.21; D) 
(11111, 0.24; D) 
(11111, 0.27; D) 

(11111, 0.08; D) 
(11111, 0.16; D) 
(11111, 0.24; D) 
(11111, 0.32; D) 
(11111, 0.40; D) 
(11111, 0.48; D) 
(11111, 0.56; D) 
(11111, 0.64; D) 
(11111, 0.72; D) 

(11111, 0.02; D) 
(11111, 0.04; D) 
(11111, 0.06; D) 
(11111, 0.08; D) 
(11111, 0.10; D) 
(11111, 0.12; D) 
(11111, 0.14; D) 
(11111, 0.16; D) 
(11111, 0.18; D) 

 
 
  



	

 
Table III. Direct choices vs. choices implied by the valuation task. Round 1. 

 

Pair (A,B) n=225 (1) Pair (C,D) n=225 (2) 

Choice 

Valuation McNemar 
(p-value) (3) Choice 

Valuation McNemar 
(p-value) (3) A≻B B≻A C≻D D≻C 

Bisection 
A≻B 24 4 

0.7518 
C≻D 15 1 

0.0019 
B≻A 6 16 D≻C 14 20 

Ping-pong 
A≻B 27 3 

0.2278 
C≻D 18 1 

0.0019 
B≻A 8 12 D≻C 14 17 

HCBM 
A≻B 25 4 

0.7518 
C≻D 11 2 

0.0704 
B≻A 6 15 D≻C 9 28 

List 
A≻B 17 0 

0.0002 
C≻D 10 0 

<0.0001 
B≻A 16 11 D≻C 25 9 

RBC 
A≻B 12 0 

0.0412 
C≻D 7 2 

0.6831 
B≻A 8 11 D≻C 6 16 

(1) Due to inconsistencies in valuation, it was not possible to obtain the indifference interval in 6 cases 
in the List group and in 19 subjects in the RBC group. (2) The indifference interval could not be identified 
in 6 occasions in the List group and in 19 cases in the RBC group. (3) McNemar’s test 2-sided. 

 
  



	

 
Table IV. Direct choices vs. choices implied by the valuation task. Round 2. 

 

Pair (A,B) n=235 (1) Pair (C,D) n=239 (2) 

Choice 

Valuation McNemar 
(p-value) (3) Choice 

Valuation McNemar 
(p-value) (3) A≻B B≻A C≻D D≻C 

Bisection 
A≻B 28 2 

0.2888 
C≻D 19 0 

0.0009 
B≻A 6 14 D≻C 13 18 

Ping-pong 
A≻B 35 1 

1.0000 
C≻D 22 0 

0.0026 
B≻A 0 14 D≻C 11 17 

HCBM 
A≻B 28 2 

1.0000 
C≻D 14 2 

0.6831 
B≻A 3 17 D≻C 4 30 

List 
A≻B 26 0 

0.0233 
C≻D 18 0 

0.0003 
B≻A 7 8 D≻C 15 13 

RBC 
A≻B 23 0 

0.2420 
C≻D 15 1 

0.3711 
B≻A 3 18 D≻C 4 23 

(1) Due to inconsistencies in valuation, it was not possible to obtain the indifference interval in 9 cases 
in the List group and in 6 subjects in the RBC group. (2) The indifference interval could not be identified 
in 4 occasions in the List group and in 7 cases in the RBC group. (3) McNemar’s test 2-sided. 

 
 
  



	

 
Table V. Direct choices vs. choices implied by the valuation task. Round 3. 

 

Pair (A,B) n=236 (1) Pair (C,D) n=228 (2) 

Choice 

Valuation McNemar 
(p-value) (3) Choice 

Valuation McNemar 
(p-value) (3) A≻B B≻A C≻D D≻C 

Bisection 
A≻B 30 0 

0.0133 
C≻D 20 0 

0.0044 
B≻A 8 12 D≻C 10 20 

Ping-pong 
A≻B 31 1 

0.0771 
C≻D 23 0 

0.0044 
B≻A 7 11 D≻C 10 17 

HCBM 
A≻B 29 2 

0.6171 
C≻D 12 3 

0.3428 
B≻A 2 17 D≻C 7 28 

List 
A≻B 25 0 

0.0133 
C≻D 15 0 

0.0026 
B≻A 8 9 D≻C 11 12 

RBC 
A≻B 25 1 

0.6171 
C≻D 17 0 

0.2482 
B≻A 3 15 D≻C 3 20 

(1) Due to inconsistencies in valuation, it was not possible to obtain the indifference interval in 8 cases 
in the List group and in 6 subjects in the RBC group. (2) The indifference interval could not be identified 
in 12 occasions in the List group and in 10 cases in the RBC group. (3) McNemar’s test 2-sided. 

 
 
  



	

 
Table VI. Analysis of Preference Reversals at the individual level (n=250). 

 
Choice 

Valuation McNemar 
(p-value) (1) Choice 

Valuation McNemar 
(p-value) (2) A≻B B≻A C≻D D≻C 

Bisection 

3A 23 1 

0.4497 

3C 12 0 

0.0015 
2A 5 1 2C 7 0 
2B 3 1 2D 5 0 
3B 2 14 3D 7 19 

Ping-pong 

3A 27 0 

0.1336 

3C 15 0 

0.0009 
2A 6 0 2C 6 0 
2B 3 2 2D 6 1 
3B 1 11 3D 7 15 

HCBM 

3A 26 0 

0.3711 

3C 9 0 

0.1306 
2A 1 1 2C 4 1 
2B 3 5 2D 3 4 
3B 1 13 3D 3 26 

List 

3A 18 0 

0.0044 

3C 13 0 

<0.0001 
2A 13 0 2C 6 0 
2B 1 0 2D 6 0 
3B 9 9 3D 13 12 

RBC 

3A 20 0 

0.2207 

3C 16 0 

0.0736 
2A 7 1 2C 4 0 
2B 2 1 2D 1 5 
3B 3 16 3D 4 20 

Shaded cells show individuals who are “strongly consistent”, in the sense that they always prefer the 
same lottery in all the three straight choices. 
(1) McNemar’s test 2-sided. Figures in rows 3A and 2A have been merged, as well as rows 2B and 3B, 
to obtain the p-values. (2) McNemar’s test 2-sided. Figures in rows 3C and 2C have been merged, as 
well as rows 2D and 3D, to obtain the p-values. 
 

 
	
	 	



	

	
Table VII. Preference Reversals in strongly and weakly consistent subjects (*). 

  
Choice 

Valuation Rate of 
PR (%) 

 

Choice 

Valuation Rate of 
PR (%) A≻B B≻A C≻D D≻C 

Transparent (1) 

Strong 
A≻B 68 1 

11.3 Strong 
C≻D 40 0 

23.9 
B≻A 12 34 D≻C 27 46 

Weak 
A≻B 24 1 

22.9 Weak 
C≻D 19 0 

45.9 
B≻A 7 3 D≻C 17 1 

Total 
A≻B 92 2 

14.0 Total 
C≻D 59 0 

29.3 
B≻A 19 37 D≻C 44 47 

Non- 
transparent (2) 

Strong 
A≻B 46 0 

5.1 Strong 
C≻D 25 0 

9.0 
B≻A 4 29 D≻C 7 46 

Weak 
A≻B 8 2 

33.3 Weak 
C≻D 8 1 

22.7 
B≻A 5 6 D≻C 4 9 

Total 
A≻B 54 2 

11.0 Total 
C≻D 33 1 

12.0 
B≻A 9 35 D≻C 11 55 

TOTAL 
Strong 

A≻B 114 1 
8.8 Strong 

C≻D 65 0 
17.8 

B≻A 16 63 D≻C 34 92 

Weak 
A≻B 32 3 

26.8 Weak 
C≻D 27 1 

37.3 
B≻A 12 9 D≻C 21 10 

(*)See main text for definitions. 
(1) Transparent methods include Bisection, Ping-pong and List. (2) Non-transparent methods include HCBM 
and RBC. 

	

	

	 	



	

 
FIGURES 
 
Figure 1. Example of a direct choice task (Lottery A vs. Lottery B). 

 
 
 
  



	

 
Figure 2. Example of a RPE question. 

 
 
 
  



	

 
Figure 3. Detail of a set of choices in a matching sequence in Group 4 (List procedure). 

 
 
  



	

 
APPENDIX 
 
Results assuming that a preference is implied by the valuation task (RPE) when 
intervals do not overlap 
 

Table A1. Direct choices vs. choices implied by the valuation task. Round 1. 

 

Choice 

Valuation McNemar 
(p-value) (2) 

Choice 

Valuation McNemar 
(p-value) (2) 

A≻B B≻A A≈B(1) C≻D D≻C C≈D(1)  

Bisection 
A≻B 23 0 5 

0.1336 
C≻D 15 1 0 

0.0159 
B≻A 4 8 10 D≻C 10 15 9 

Ping-pong 
A≻B 26 2 2 

0.2888 
C≻D 18 0 1 

0.0026 
B≻A 6 8 6 D≻C 11 15 5 

HCBM 
A≻B 24 0 5 

0.2482 
C≻D 10 2 1 

0.4497 
B≻A 3 11 7 D≻C 5 22 10 

List 
A≻B 16 0 1 

0.0015 
C≻D 10 0 0 

<0.0001 
B≻A 12 9 6 D≻C 19 7 8 

RBC 
A≻B 11 0 1 

0.2482 
C≻D 7 2 0 

1.0000 
B≻A 3 11 3 D≻C 0 14 7 

(1) Cases in which preference could not be inferred from the RPE responses, since indifference intervals 
for each lottery overlap. (2) McNemar’s test 2-sided. 

 
Table A2. Direct choices vs. choices implied by the valuation task. Round 2. 

 

Choice 

Valuation McNemar 
(p-value) (2) 

Choice 

Valuation McNemar 
(p-value) (2) 

A≻B B≻A A≈B(1) C≻D D≻C C≈D(1)  

Bisection 
A≻B 27 0 3 

0.0736 
C≻D 18 0 1 

0.0736 
B≻A 5 13 2 D≻C 5 13 13 

Ping-pong 
A≻B 34 1 1 

1.0000 
C≻D 22 0 0 

0.0077 
B≻A 0 8 6 D≻C 9 16 3 

HCBM 
A≻B 27 2 1 

1.0000 
C≻D 12 1 3 

0.4795 
B≻A 3 13 4 D≻C 1 23 10 

List 
A≻B 26 0 0 

0.0736 
C≻D 17 0 0 

0.0026 
B≻A 5 7 3 D≻C 11 9 8 

RBC 
A≻B 23 0 0 

1.0000 
C≻D 14 1 0 

1.0000 
B≻A 1 16 4 D≻C 0 17 10 

(1) Cases in which preference could not be inferred from the RPE responses, since indifference intervals 
for each lottery overlap. (2) McNemar’s test 2-sided. 



	

 

 
Table A3. Direct choices vs. choices implied by the valuation task. Round 3. 

 

Choice 

Valuation McNemar 
(p-value) (2) 

Choice 

Valuation McNemar 
(p-value) (2) 

A≻B B≻A A≈B(1) C≻D D≻C C≈D(1)  

Bisection 
A≻B 29 0 1 

0.4795 
C≻D 20 0 0 

0.0233 
B≻A 2 9 9 D≻C 7 12 11 

Ping-pong 
A≻B 29 0 3 

0.0736 
C≻D 23 0 0 

0.0233 
B≻A 5 7 6 D≻C 7 15 5 

HCBM 
A≻B 27 2 2 

0.4795 
C≻D 12 2 1 

0.6831 
B≻A 0 17 2 D≻C 4 24 7 

List 
A≻B 25 0 0 

0.0233 
C≻D 14 0 1 

0.0077 
B≻A 7 7 3 D≻C 9 9 5 

RBC 
A≻B 25 1 0 

1.0000 
C≻D 17 0 0 

1.0000 
B≻A 0 12 5 D≻C 0 14 9 

(1) Cases in which preference could not be inferred from the RPE responses, since indifference intervals 
for each lottery overlap. (2) McNemar’s test 2-sided. 

	


