
A novel approach for analysis of attack graph

Yousefi, Mohammadmehdi; Mtetwa, Nhamoinesu; Zhang, Yan; Tianfield, Huaglory

Published in:
Proceedings of 2017 IEEE International Conference on Intelligence and Security Informatics

DOI:
10.1109/ISI.2017.8004866

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Yousefi, M, Mtetwa, N, Zhang, Y & Tianfield, H 2017, A novel approach for analysis of attack graph. in
Proceedings of 2017 IEEE International Conference on Intelligence and Security Informatics. IEEE.
https://doi.org/10.1109/ISI.2017.8004866

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293883595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ISI.2017.8004866
https://researchonline.gcu.ac.uk/en/publications/2a6c1411-71cb-4e00-b011-5bcfbfeaa3fa
https://doi.org/10.1109/ISI.2017.8004866


A Novel Approach for Analysis of Attack Graph  
Mehdi Yousefi, Nhamo Mtetwa, Yan Zhang, and Huaglory Tianfield  

CCIS Department, Glasgow Caledonian University  
Glasgow, United Kingdom 

E-mail: {mehdi.yousefi, nhamoinesu.mtetwa, yan.zhang, h.tianfield}@gcu.ac.uk 
 
 

Abstract— Attack graph technique is a common tool for the 
evaluation of network security. However, attack graphs are 
generally too large and complex to be understood and interpreted 
by security administrators. This paper proposes an analysis 
framework for security attack graphs for a given IT 
infrastructure system. First, in order to facilitate the discovery of 
interconnectivities among vulnerabilities in a network, multi-host 
multi-stage vulnerability analysis (MulVAL) is employed to 
generate an attack graph for a given network topology. Then a 
novel algorithm is applied to refine the attack graph and generate 
a simplified graph called a transition graph. Next, a Markov 
model is used to project the future security posture of the system. 
Finally, the framework is evaluated by applying it on a typical IT 
network scenario with specific services, network configurations, 
and vulnerabilities.  

Keywords— cyber security; security metrics; vulnerability 
assessment; attack graph  

I. INTRODUCTION  

    We live in a connected digital world whose connectivity is 
provided by enterprise networks that grow both in size and 
complexity [1]. The security of systems and services that rely 
on these networks for day-to-day operations is critical. 
Vulnerabilities exist in these enterprise networks due to 
weaknesses in technical design, configuration, and security 
policies. These vulnerabilities expose the networks to severe 
risks. Attackers can take advantage of these vulnerabilities and 
compromise the systems for malicious purposes.  
    Securing enterprise networks against security threats is an 
active area of research. Traditional methods based on instinct 
and experience is not sufficient for network protection because 
security management is becoming more and more complex 
and sophisticated. Almost everyday new vulnerabilities 
emerge making networks more vulnerable to intruders. The 
combination of different vulnerabilities enables attackers to 
stage multi-step attacks that are very difficult to identify and 
defend against [2]. These attacks can be highly sophisticated 
and current security countermeasure techniques may not be 
able to handle their complexity. 
     In this paper, a metric based security framework is 
proposed to evaluate the overall security impact of software 
vulnerabilities on a given network. First, we employ MulVAL 
[3] to find all the attack paths in the network. Second, we 
propose an algorithm to refine the attack graph to produce a 
transition graph which is used in the analysis part of the 
framework and makes it easy to understand and analyze the 
attack graph for monitoring purposes. We then use CVSS1 to 

                                                           
1 https://www.first.org/cvss 

calculate transition probabilities for the transition graph [1] 
and apply Absorbing Markov Chain to predict attacker 
behavior [4].  
    The rest of the paper is organized as follows: in section II, 
we review some work in this field. In section III, the details of 
the framework and network topology and algorithm are 
presented. In section IV, we give an example to evaluate the 
framework. Finally, in section V, we compare the work with 
similar work in the field and conclude the paper.  

II. LITERATURE REVIEW 

    Cyber vulnerability assessment is “the process of identifying 
the vulnerabilities in a system and prioritizing them according 
to their severity”2. It helps to identify these weaknesses in order 
to apply proper patches [5]. In [6-8], the authors provide a 
standard security evaluation baseline which does not include 
quantitative measurements. To address this problem in [9], 
CVSS is developed by NIST as a standard composite scoring 
system model which is usable and understandable by security 
practitioners. It considers each of vulnerabilities as an isolated 
entity. If we have multiple vulnerabilities, CVSS has no 
foresight of exploitable possible interrelationships between the 
vulnerabilities. 
    Further work was done in [10-19], to address the 
aforementioned problem. The attack graph technique is a 
common tool for the evaluation of network security. It has been 
developed to automatically identify multi-stage attacks in 
enterprise networks. 
In [3, 15, 19-24], the authors focus on attack graph generation 
and improving the complexity of employed algorithms.  The 
main advantages of these research works are that they consider 
interrelationships between vulnerabilities in the enterprise 
network. However, attack graphs are too large and complex to 
be understood and interpreted by security administrators. To 
address this problem various approaches have been introduced 
in [17, 26-29]. These approaches try to improve the 
visualization of an attack graph through abstraction [17], data 
reduction [25], and user interaction [29]. 
    Different attack graph methods draw all the possible attack 
paths, but still, it is necessary to combine them with a sort of 
metric to measure the validity and possibility of each path. In 
other words, there is a need to establish security frameworks 
that are able to measure the security risk in enterprises 
objectively.  

                                                           
2 https://oval.mitre.org/ 



III. SECURITY FRAMEWORK USING ATTACK GRAPH AND 

MARKOV MODEL 

    The proposed framework includes the following steps. The 
first step is to collect information about the current state of the 
network. This includes a list of known vulnerabilities and the 
configuration of the network including services and access 
rules. “Open Vulnerability Assessment Language” (OVAL) is 
used to gather information about vulnerabilities and services in 
the network. The second step is to identify the correlations 
between vulnerabilities by generating attack graph. It helps to 
consider the interdependencies between vulnerabilities in the 
system based on network connectivity. MulVAL is used for 
generating the attack graph. MulVAL is open source and the 
complexity of the attack graph generation grows between O(n2) 
and O(n3) [2]. Attack graphs are important tools to analyze the 
security of the network based on existing vulnerabilities [1-3]. 
Then we refine the attack graph and generate transition graph. 
The final step is to use the transition graph to apply the 
Absorbing Markov Chain which ranks the vulnerabilities in 
terms of importance. 

A. Algorithm to Refine Attack Graph 

    Attack graph can be too large and complex. We propose an 
algorithm to refine the attack graph into a transition graph. 
This graph shows all the possible attacker’s movements 
between vulnerabilities and it is easy to understand and 
interpret. Details of our algorithm are described in Algorithm 
and Processes 1- 4. The interrelationship between processes is 
shown in Fig.1.  
 

 
Fig. 1.  Flowchart of the proposed Algorithm 

 
    The output of MulVAL includes ‘input.txt’,‘Vertices.CSV’, 
‘ARCS.CSV’, and ‘AttackGraph.txt’. The ‘input.txt’ is the 
input file for the MulVAL and includes the configuration of 
the network including the network services, network 
connectivity and a list of vulnerabilities. The ‘Vertices.CSV’ 
includes all vertices in attack graph and the ‘ARCS.CSV’ 

includes all the edges between vertices. The ‘AttackGraph.txt’ 
is attack graph in text format.  
   In Algorithm, Vt (line 16) is the vertices of the transition 
graph and Et (line 15) is edges for the transition graph. 
 

Algorithm   Refining the attach graph  

1: procedure transitionGraph  
2:       lineofinputFile  =  Read(input.txt)   
3:       linesofArcsFile  =  Read(ARCS.CSV)      
4:       linesofVerticesFile  =  Read(Vertices.CSV)  
5:       linesofAttackFile  =  Read(AttackGraph.txt)  
6:      V =  defineVertices(linesofVerticesFile) 
7:       E =  defineEdges(linesofArcsFile) 
8:       attackGoals  =  defineRootNodes(linesofAttackFile) 
9:       leaves  =  defineLeaves(linesofVerticesFile) 
10:       attackerLocation  =  defineAttackerLoc(linesofVerticesFile) 
11:       G =  defineDirectedGraph(V, E) 
12:       pathsVt  =  definePathsvulExists(G,attackGoals, leaves) 
13:       pIncludeVstoGoals = defineArchsvPaths(pathsVt) #tempPath  
14:       edgestoNGoalV = defineArchsvPaths(pathsVt) #et 
15:       Et = edgestoNGoalV +    

      defineArchstoGoals(pIncludeVstoGoals,       
          attackGoals) + defineAttackerFirst Steps(linesOfVerticesFile ,   

                    pathsVt, attackerLocation) 
16:       Vt = attackerLocation + attackGoals + {leaves if vulExist =   

      True} 
17:       G2 = nx.DiGraph() 
18:       G2.add_nodes_from(Vt) 
19:       G2.add_edges_from(Et) 
20:       showGraph(G2) 
21: End procedure

 
    Process 1 (line 12, Algorithm, definePathsvulExists()) 
returns all the paths between attack goals and leaves which 
include vulnerabilities (vulExist = True). In this process, we 
use an improved depth first search algorithm from networkx 
library. It generates all simple paths in the graph from source 
to target vertices (Process 1, line 5, all_simple_paths(G, 
source, target)).  
 

Process 1 Finding the paths between attack goals and leaves that include 
vulnerability 

1: procedure definePathsvulExists(G, attackGoals, leaves) 
2:        allPaths =  Ø   
3:        For i = 1 to   length(attackGoals) do 
4:                 For j= 1 to length(leaves) do 
5:                            allPaths = allPaths + nx.all_simple_paths(G,  

                           leaves[j], attackGoals [i]))    
6:                End For 
7:        End For 
8:        vPaths =  { ∀ Path ∈  allPaths | path.vulExists =    

       True} 
9: End procedure 

 

     
    Process 2 (Algorithm, line 13, 14) returns edges between 
leaf nodes that contain a vulnerability and it also returns paths 
that include nodes with an edge to the attack goals. 
           

Process 2 Finding edges between leaves with vulExists = True 

1: procedure defineArchsvPaths(pathsVt)       
2:        et = Ø   
3:        tempPaths = pathsVt 
4:        For i=1 to length(vPaths) do 
5:              X = vPaths.remove(vPaths(i)) 
6:              For j=1 to length(X) do 



7:                     If  vPaths[i] ⊆  X[j]  then 
8:                           et = et + (X[j].leaf.number ,vPaths[i].leaf.number) 
9:                           tempPath = tempPath.remove(X[j]) 
10:                    End  If 
11:              End  For 
12:      End  For 
13:      return et, tempPath 
14:   End procedure 

 

    Process 3 (Algorithm, line 15), uses the second output of 
Process 2 and finds edges to the attack goals.  
 

  Process 3 Finding edges to the attack goals 

1: procedure defineArchstoGoals(pIncludeVstoGoals, attackGoals) 
2:       et = Ø   
3:       For i=1 to length(pIncludeVstoGoals) do 
4:                For j=1 to length(attackGoals) do 
5:                       If  j != length(attackGoals)Then 
6:                            If tempPaths[i].leaf.number > attackGoals[j] and  

                                tempPaths[i].leaf.number  <  attackGoals[j+1]   
                                             then 

7:                                  et = et + (tempPaths[i].leaf, attackGoals[j]) 
8:                            End If 
9:                       Else If j == length(attackGoals) then 
10:                                    et = et + (tempPaths[i].leaf, attackGoals[j]) 
11:                        End  If 
12:                        End  If 
13:                End  For 
14:          End  For 
15: End procedure 

 

 
    Process 4 (Algorithm, line 15), finds the attacker’s first 
possible steps and related edges for the transition graph.  
 

Process 4 Finding the attacker first possible steps and related edges for the 
transition graph 

1: procedure defineAttackerFirstSteps(linesOfVerticesFile, pathsVt, 
attackerLocation) 

2:       For all item in linesOfVerticesFile do 
3:                 If  item includes “hacl” and “internet”  then 
4:                      tempList = tempList + item 
5:                 End If 
6:       End For 
7:       For all item in tempList do 
8:                  O1 =find the first occurrence of ‘(‘ 
9:                  O2 = find the third occurrence of ‘,’ 
10:                   tempList2 = tempList2 + string between O1 and O2 
11:       End For 
12:       For all item in tempList2 do 
13:                 For item2  in pathsVt do 
14:                          If item2.find(item)Then 
15:                                firstSteps = firstSteps+item.number 
16:                          End If 
17:                  End For 
18:       End For 
19:       For all item in firstSteps do 
20:                firstPSteps= firstPSteps + (attackerLocation , item) 
21:       End For 
22: End procedure 

 

B. Applying Markov Model to Predict Attacker Behaviour  

    Reinforcement learning technique can be used for 
quantitative security evaluation of large-scale enterprise 
networks. One such reinforcement learning technique is 
Absorbing Markov Chains. This model can be applied to 
problems that satisfy two conditions: 1) the problem must 

have at least one absorbing state. A state is called absorbing if 
once that state is entered, it is impossible to leave. 2) From 
each non-absorbing state (transient state), it must be possible 
to go to an absorbing state with finite steps. In attack graph, 
vulnerabilities are considered as states. If a vulnerability is not 
an ultimate attck goal, the attacker use it as stepping stone to 
reach the ultimate goal. This vulnerability is considered as a 
non-absorbing state. Absorbing states are the ultimate 
attacker’s goals. When attacker compromises the goal state, 
they will stay there till the administrator applies proper 
countermeasures. In this work we apply Absorbing Markov 
Chain [4] assuming the attacker is located on the Internet and 
chooses vulnerabilities to reach their goal based on 
maximizing the probability of their success.  
    A transition matrix for an absorbing Markov Chain is a 
standard form if the rows and columns are labeled so that all 
the non-absorbing states precede all the absorbing states. Any 
standard form can be partitioned into four sub-matrices:  

                                        









I

RQ
P

0
                               (1) 

    Here Q  is a matrix of transition states; R is a matrix of 
absorbing states, I is the identity matrix and 0 is a zero 
matrix. For an absorbing Markov chain, the matrix N  or so-
called Fundamental matrix provides a valuable insight to 
predict future attacker’s behavior. The matrix N is the inverse 
of matrix QI  : 

                           1)(  QIN                              
    Here ݊௜௝ of ܰ gives the expected number of times an 
attacker visited transient state ݏ௝ if the attacker starts in the 
transient state	ݏ௜.  
    Let ݐ௜  be the expected number of steps that attacker needs 
to take before compromising the security of the network; 
given the fact that attacker starts in state	ݏ௝.  
                                       cNt                                         (3)                 
    Where ܿ  is a column vector all of whose entries are 1. Let   
ܾ௜௝ be the probability that an attacker will compromise the 
network in state ݏ௝ if attacker starts in the transient state	ݏ௜. Let  
  be the matrix with entries ܾ௜௝ then ܤ
                                        RNB                                     (4)   
  

IV. EXAMPLE TO EVALUATE THE FRAMEWORK  

A. Topology and System Configuration 

    The network topology is shown in Fig. 2. There are five 
different services including a web server and a file server in the 
same subnet, a Citrix and a VPN server in the same subnet and 
a Comm server and a dataHistorian excel in the same subnet. It 
has also two workstations running Acrobat and Internet 
Explorer. There are two firewalls including perimeter and 
internal firewalls. The network connectivity in this topology is 
based on firewall rules described below. (i)The attacker is 
located on the Internet and has access to the servers as follows: 
the web server, VPN server, Citrix server and Comm server 
through the HTTP protocol and HTTP port. (ii)There is 



bidirectional connectivity between web server and other 
machines including file server, work station through the HTTP 
protocol and HTTP port. (iii)There is bidirectional connectivity 
between VPN server and other machines including Citrix 
server, work station through the HTTP protocol and HTTP 
port. (iv)There is a bidirectional access between Comm server 
and data Historian through HTTP protocol and HTTP port. 
(v)The file Server and workstation have access to each other 
through NFS protocol and NFS port.  
    There are four different vulnerabilities in the topology Fig. 2. 
Vulnerabilities are recognized by unique identifiers. These 
identifiers are assigned by the National Vulnerability Database 
(NVD)3.  
    The Citrix server contains a vulnerability named ‘CVE-
2010-0490’. This is a weakness in Internet Explorer (IE) 6, 7 
and 8 with the possibility that remote intruder can execute 
arbitrary code on the target machine. The VPN Server contains 
‘CVE-2010-0492’ that is related to IE 8 with the possibility 
that attacker can execute arbitrary code on the target machine. 
The Comm Server contains ‘CVE-2010-0483’ which is related 
to VBScript in Windows. When IE is used the attacker can 
execute arbitrary code on the target machine. The dataHistorian 
mainframe contains ‘CVE-2010-0494’. This vulnerability is  
  

 
Fig. 2. Network Topology 

       
related to IE 6, 7, and 8. The attacker can conduct Cross-site 
scripting attack. Table 1 summarized the vulnerabilities in the 
system. 

Table 1: Vulnerabilities in the Topology 

List of 
Vulnerabilities 

Vulnerabilities and Associated Machines 
Machine Vulnerability ID (NVD) 

1 citrixServer CVE-2010-0490 

2 vpnServer CVE-2010-0492 

3 commServer CVE-2010-0483 

4 dataHistorian Excel CVE-2010-0494 

                                                           
3 https://nvd.nist.gov/ 

B. Generating Attack Graph and Transition Graph 

    We use MulVAL to generate the attack graph. Fig. 3 shows 
the attack graph along with description of nodes in the graph. 
There are three different vertices in the attack graph. The 
square vertices (e.g. nodes 5, 16 and 32 in Fig. 3) are related to 
system configuration. For example firewall rules that let web 
server be accessible from the Internet or the buggy software 
on a machine. The diamond vertices (e.g. nodes 3, 12, and 25 
in Fig. 3) represent potential privileges or access that an 
attacker can obtain in the system, e.g., code execution 
privilege on the web server. The elliptical vertices (e.g. nodes 
4, 11, and 26 in Fig. 3)  link preconditions to postconditions. 
As an example, it is necessary for an attacker to have access to 
a machine that has a vulnerability, to be able to exploit the 
vulnerability and obtain privileges. 

 

 
 

Fig. 3. Attack Graph 
1,"execCode(citrixServer,user)","OR",0 
2,"RULE 3 (remote exploit for a client program)","AND",0 
3,"accessMaliciousInput(citrixServer,victim_2,ie)","OR",0 
4,"RULE 22 (Browsing a malicious website)","AND",0 
5,"attackerLocated(internet)","LEAF",1 
6,"hacl(citrixServer,internet,httpProtocol,httpPort)","LEAF",1 
7,"inCompetent(victim_2)","LEAF",1 
8,"hasAccount(victim_2,citrixServer,user)","LEAF",1 
9,"vulExists(citrixServer,'CVE-2010-    
     0490',ie,remoteClient,privEscalation)","LEAF",1 
10,"execCode(commServer,user)","OR",0 
11,"RULE 3 (remote exploit for a client program)","AND",0 
12,"accessMaliciousInput(commServer,victim_1,windows_2000)","OR",0 
13,"RULE 22 (Browsing a malicious website)","AND",0 
14,"hacl(commServer,internet,httpProtocol,httpPort)","LEAF",1 
15,"inCompetent(victim_1)","LEAF",1 
16,"hasAccount(victim_1,commServer,user)","LEAF",1 
17,"vulExists(commServer,'CVE-2010- 
       0483',windows_2000,remoteClient,privEscalation)","LEAF",1 
18,"execCode(dataHistorian,root)","OR",0 
19,"RULE 2 (remote exploit of a server program)","AND",0 
20,"netAccess(dataHistorian,httpProtocol,httpPort)","OR",0 
21,"RULE 5 (multi-hop access)","AND",0 
22,"hacl(commServer,dataHistorian,httpProtocol,httpPort)","LEAF",1 
23,"networkServiceInfo(dataHistorian,mountd, 
       httpProtocol,httpPort,root)","LEAF",1 
24,"vulExists(dataHistorian,'CVE-2010- 
      0494',mountd,remoteExploit,privEscalation)","LEAF",1 
25,"execCode(vpnServer,user)","OR",0 
26,"RULE 3 (remote exploit for a client program)","AND",0 
27,"accessMaliciousInput(vpnServer,victim_5,openvpn)","OR",0 
28,"RULE 22 (Browsing a malicious website)","AND",0 
29,"hacl(vpnServer,internet,httpProtocol,httpPort)","LEAF",1 
30,"inCompetent(victim_5)","LEAF",1 
31,"hasAccount(victim_5,vpnServer,user)","LEAF",1 
32,"vulExists(vpnServer,'CVE-2010-0492',openvpn,remoteClient, 
      privEscalation)","LEAF",1



    This attack graph is refined with the proposed algorithm and 
the result is presented in Fig. 4. As it can be seen, the 
transition graph only includes the attacker location, vertices 
that contain vulnerabilities and attack goals. This simplified 
graph can be easily interperted by security administrators. We 
use this graph to generate the transition matrix for absorbing 
markov chain. 

 
 
 

         
Fig. 4. Refined Attack Graph 

 

C. Results and Analysis 

    To analyze the security of the topology in Fig. 2, the 
following questions are of interest. If the attacker starts in a 
specific transient state, then: 
First, what is the number of times that the attacker visits each 
transient state? Second, what is the number of steps before the 
attacker compromise the network? Third, what is the 
probability that the attacker reach their goal if they start from a 
specific state? 
    Fig. 5 shows the number of times the attacker visited a 
transient state when they start from a specific transient state. 
As it can be seen if an attacker is in S5 (Internet), attacker visit 
S9, 0.28 times, S17, 0.16 times, and 0.44 and 0.28 times S24 
and S32 respectively. Here, based on the result, S24 is visited 
more frequently by the attacker and the security administrator 
should address this vulnerability with higher priority. If the 
attacker is in S9, S24, and S32, it is not possible to go to any 
other transient state except one of the goal states. For S17 the 
attacker can visit S24 once. It is because, if the attacker aims 
to reach the attack goal, first they should compromise S24. 
 

 
Fig. 5. Number of times attacker visits each transient state 

     

    Fig. 6 demonstrates the number of steps the attacker takes 
from a transient state to compromise one of the attack goals. If 
the attacker starts from S5, the numbers of steps are 2.16 to 
reach one of the attack goals. If the attacker goes to S9, or S24 
or S32 from S5, then the number of steps is 1 to compromise 
the attack goals. But, if the attackers go to S17 from S5, then it 
takes 2 steps to reach the attack goal. Based on the results, the 
way to S17 takes longer to compromise the network. 
Therefore, vulnerabilities in S9, S24, and S32 have higher 
priority to tackle. 

 
Fig. 6. Steps are taken until the attacker compromises the network 

	

				Fig. 7 shows the probability of absorption in one of the 
attack goals. If the attacker starts from S5, there are three 
different options to compromise the network including S1, S18, 
and S25. Attacker reaches S1 or S25 with the probability of 
0.28 (28%) and to S18 with the probability of 0.44 (44%). If 
the attacker chooses to go from S5 to S9, the only reachable 
attack goal from S9 is S1; therefore, the probability of 
absorption in S1 is 1(100%). It is the same for other states as 
eventually all the states will be absorbed in one of the attack 
goals. 

Based on what we have observed, the result provides 
valuable information for security administrators to make 
informed decisions. For example, in our experiment it takes 
more steps to compromise S18, but, attackers spent more time 
in S24 which is the only way to reach S18. Also, the 
probability of absorption when attacker wants to compromise 
S18 is highest among other attack goals. Based on what we 
have discussed even reaching S18 needs more steps but it is 
easier for the attacker to compromise S18.    

 
Fig. 7. Probability of absorption in one of the attack Goals 

Attacker Location: 5 
Vertices include vulnerability: 9, 17, 24, 32 
Attacker Goals: 1, 18, 25 



V.      DISCUSSION AND CONCLUSION  

    There are approaches to reduce the complexity of attack 
graph [17, 25-29]. These approaches try to improve the 
visualization of attack graph through abstraction, data 
reduction, hierarchical aggregation and user interaction. 
Compared to these works our algorithm simply removes all 
the redundant information from the attack graph and only 
keeps minimum necessary information which is the nodes 
containing vulnerabilities and feasible interconnectivity 
between them. This simplification makes our approach 
suitable for monitoring tools and it can be augmented by 
parallel processing to scale to large enterprise networks. 
Another advantage of this simplified graph is that it could be 
used as transition graph for analytics techniques like Markov 
Model. In [4], the Absorbing Markov Chain is used for 
analytics and their focus is on employing a temporal metric to 
make their framework a dynamic security analysis, but, in this 
paper, our focus mostly is on the algorithm to refine the attack 
graph.  
    In this work, we have proposed a framework to assess the 
security of the computer networks. The main contribution of 
this paper is a novel algorithm to refine the attack graph. 
Attack graphs inherently are large and complex and difficult to 
interpret. This algorithm simplifies attack graph and makes it 
suitable for monitoring purposes in security operation centers 
and it could be used to generate transition matrix for Markov 
Model.  

REFERENCES 

 
[1] X. Ou and A. Singhal, Quantitative security risk assessment of enterprise 

networks, 1st ed. New York: Springer, 2012.  

[2] Ou, X., Boyer, W. F., & McQueen, M. A. (2006, October). A scalable 
approach to attack graph generation. In Proceedings of the 13th ACM 
conference on Computer and communications security (pp. 336-345). 
ACM. 

[3] Ou, X., Govindavajhala, S., & Appel, A. W. (2005, July). MulVAL: A 
Logic-based Network Security Analyzer. In USENIX security. 

[4] Abraham, S., & Nair, S. (2015). A predictive framework for cyber 
security analytics using attack graphs. arXiv preprint arXiv:1502.01240. 

[5] Kissel, R. (Ed.). (2011). Glossary of key information security terms. 
Diane Publishing. 

[6] Ferraiolo, K. (2000). The Systems Security Engineering Capability 
Maturity Model.  

[7] Stoneburner, G., Hayden, C., & Feringa, A. (2001). Engineering 
principles for information technology security (a baseline for achieving 
security). BOOZ-ALLEN AND HAMILTON INC MCLEAN VA. 

[8] Grance, T., Hash, J., Stevens, M., O'Neal, K., & Bartol, N. (2003). SP 
800-35. Guide to Information Technology Security Services. 

[9] https://www.first.org/cvss. Web page accessed on May 15, 2015 

[10] Dawkins, J., & Hale, J. (2004, April). A systematic approach to multi-
stage network attack analysis. In Information Assurance Workshop, 
2004. Proceedings. Second IEEE International (pp. 48-56). IEEE. 

[11] Dewri, R., Poolsappasit, N., Ray, I., & Whitley, D. (2007, October). 
Optimal security hardening using multi-objective optimization on attack 
tree models of networks. In Proceedings of the 14th ACM conference on 
Computer and communications security (pp. 204-213). ACM. 

[12] Homer, J., Zhang, S., Ou, X., Schmidt, D., Du, Y., Rajagopalan, S. R., & 
Singhal, A. (2013). Aggregating vulnerability metrics in enterprise 

networks using attack graphs. Journal of Computer Security, 21(4), 561-
597. 

[13] Ingols, K., Lippmann, R., & Piwowarski, K. (2006, December). Practical 
attack graph generation for network defense. In Computer Security 
Applications Conference, 2006. ACSAC'06. 22nd Annual (pp. 121-130). 
IEEE. 

[14] Jajodia, S., & Noel, S. (2010). Advanced cyber attack modeling analysis 
and visualization. GEORGE MASON UNIV FAIRFAX VA. 

[15] Jajodia, S., Noel, S., & O’Berry, B. (2005). Topological analysis of 
network attack vulnerability. In Managing Cyber Threats (pp. 247-266). 
Springer US. 

[16] Li, W., Vaughn, R. B., & Dandass, Y. S. (2006). An approach to model 
network exploitations using exploitation graphs. Simulation, 82(8), 523-
541. 

[17] Lippmann, R. P., & Ingols, K. W. (2005). An annotated review of past 
papers on attack graphs (No. PR-IA-1). MASSACHUSETTS INST OF 
TECH LEXINGTON LINCOLN LAB. 

[18] Saha, D. (2008, October). Extending logical attack graphs for efficient 
vulnerability analysis. In Proceedings of the 15th ACM conference on 
Computer and communications security (pp. 63-74). ACM. 

[19] Sheyner, O., Haines, J., Jha, S., Lippmann, R., & Wing, J. M. (2002). 
Automated generation and analysis of attack graphs. In Security and 
privacy, 2002. Proceedings. 2002 IEEE Symposium on (pp. 273-284). 
IEEE. 

[20] Jajodia, S., & Noel, S. (2010). Topological vulnerability analysis. 
In Cyber situational awareness (pp. 139-154). Springer US. 

[21] Ritchey, R. W., & Ammann, P. (2000). Using model checking to 
analyze network vulnerabilities. In Security and Privacy, 2000. S&P 
2000. Proceedings. 2000 IEEE Symposium on (pp. 156-165). IEEE. 

[22] Ammann, P., Wijesekera, D., & Kaushik, S. (2002, November). 
Scalable, graph-based network vulnerability analysis. In Proceedings of 
the 9th ACM Conference on Computer and Communications 
Security (pp. 217-224). ACM. 

[23] Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., 
Artz, M., & Cunningham, R. (2006, October). Validating and restoring 
defense in depth using attack graphs. In Military Communications 
Conference, 2006. MILCOM 2006. IEEE (pp. 1-10). IEEE. 

[24] Noel, S., & Jajodia, S. (2005, December). Understanding complex 
network attack graphs through clustered adjacency matrices. 
In Computer Security Applications Conference, 21st Annual (pp. 10-pp). 
IEEE. 

[25] Homer, J., Varikuti, A., Ou, X., & McQueen, M. (2008). Improving 
attack graph visualization through data reduction and attack 
grouping. Visualization for computer security, 68-79. 

[26] Huang, H., Zhang, S., Ou, X., Prakash, A., & Sakallah, K. (2011, 
December). Distilling critical attack graph surface iteratively through 
minimum-cost sat solving. In Proceedings of the 27th Annual Computer 
Security Applications Conference (pp. 31-40). ACM. 

[27] Lippmann, R. P., Ingols, K. W., Scott, C., Piwowarski, K., Kratkiewicz, 
K., Artz, M., & Cunningham, R. (2005). Evaluating and strengthening 
enterprise network security using attack graphs. Lexington, 
Massachusetts October. 

[28] Noel, Steven, and Sushil Jajodia. "Managing attack graph complexity 
through visual hierarchical aggregation." Proceedings of the 2004 ACM 
workshop on Visualization and data mining for computer security. 
ACM, 2004. 

[29] Williams, L., Lippmann, R., & Ingols, K. (2008). An interactive attack 
graph cascade and reachability display. In VizSEC 2007 (pp. 221-236). 
Springer Berlin Heidelberg. 

 

 

 

 

 

 


