
On-line monitoring and analysis of the dielectric loss in cross-bonded HV cable system

Yang, Yang; Hepburn, Donald M.; Zhou, Chengke; Wenjun, Zhou; Jiang, Wei; Tian, Zhi

Published in:
Electric Power Systems Research

DOI:
10.1016/j.epsr.2017.03.036

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Yang, Y, Hepburn, DM, Zhou, C, Wenjun, Z, Jiang, W & Tian, Z 2017, 'On-line monitoring and analysis of the
dielectric loss in cross-bonded HV cable system', Electric Power Systems Research, pp. 89–101.
https://doi.org/10.1016/j.epsr.2017.03.036

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293883016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.epsr.2017.03.036
https://researchonline.gcu.ac.uk/en/publications/f929bee6-7fa3-46aa-b9d5-b6de38bbf7bd
https://doi.org/10.1016/j.epsr.2017.03.036


 

1 

 

On-line Monitoring and Analysis of the Dielectric Loss in Cross-bonded HV Cable system 

Yang Yang
1
*, Donald M. Hepburn

1
, Chengke Zhou

1
, Wenjun Zhou

2
, Yuchuan Bao

3
 and Zhi Tian

3
 

1 School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK, G4 0BA 

2 School of Electrical Engineering, Wuhan University, Wuhan, China, 430072 

3 Wuhan Power Supply Company, China State Grid, Wuhan, China, 430022 

*Corresponding author (Tel.: +0044-747-771-2999; Email: yang.yang@gcu.ac.uk) 

Abstract 

Dielectric loss has long been recognized as one of the most important indicators of cable insulation 

health. Although huge efforts have been made in the past to measure the dielectric loss of cable circuits, 

there has been no report of any successful on-line techniques for the purpose. This paper proposes a new 

on-line insulation dielectric loss monitoring method, based on separation of currents collected from the 

co-axial cables connecting the cable sheathes and the cable link boxes. The principle and theoretical 

foundation of the method are demonstrated. MATLAB simulations, based on the real cable parameters in 

a 110 kV cable tunnel in China, indicate the error of the proposed method is less than 1×10
-3 

%. The 

criteria for determining the relative dielectric loss in cable segments, based on the leakage current 

separation results, are demonstrated at the end. Initial results and analysis of implementation of the 

proposed method in the real world 110 kV cable tunnel are presented. 

Keywords: on-line monitoring; leakage current; dielectric loss; XLPE; cross bonding; three-phase 

1. Introduction 

Cross-bonded high voltage cable systems are widely adopted for long-distance power transmission and 

distribution in urban networks. Typical cross-bonded cable systems are usually implemented in major 

sections. Each major section has 9 cross-bonded minor sections. In comparison with single-end-grounded 

cable systems or both-end-grounded cable systems, a cross-bonded cable system is grounded at both ends 

of major section with cross bonding or interconnection of the minor cable section sheaths of the three 

phases to reduce or eliminate the effect of the induced voltage in the sheath and to reduce the sheath 

circulating currents. 

However, the interconnection of the sheath creates differences between the on-line insulation monitoring 

methodology used in short-distance and long-distance power cables. Conventional off-line measurements 

utilize bridge methods to calculate the dielectric loss (DL) factor values [3] or phase difference between 

operating voltage vector and leakage current vector to compute DL factor. However, these methods have 

several drawbacks and cannot be applied in on-line monitoring. Firstly, under cross-bonding connection, 

sheath currents are a combination of the leakage currents from different minor sections and the 

unbalanced circulating current [7]. The unbalanced circulating currents result from differences in section 

lengths, unbalanced laying and unbalanced load currents [8]. Consequently, it is hard to detect the pure 

leakage current of each minor section for the calculation of DL angle. Secondly, for ease of installation 

and to avoid moisture intrusion, co-axial link cables are used for connecting the sheaths from joints to 

link boxes [1]. But this results in the current sensor clamped on the co-axial link cables detecting the 

vector sum of two sheath currents. Finally, for safety and operational reasons, it is usually difficult to 

detect the operational voltage directly at the terminals or joints. In addition, the voltage signals from the 

potential transformer (PT) in substations are usually not the same as the voltages at the terminals or joints 

[9]. And it is hard to quantify the difference. 

Bing Pang and et al. in article [5] proposed an on-line DL factor monitoring method to determine the 

faults in minor sections of a major cross-bonded cable section. The method required acquisition of 
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voltage signals. As mentioned above, it is difficult to obtain when the cable circuit is in operation. 

Massimo Marzinotto and et al. in article [6] proposed on-line measurement of the sheath-to-ground 

current to detect cable sheath faults. Although this offers the possibility of detecting sheath faults in a 

cross-bonded cable system, it cannot reflect the insulation conditions. 

Consequently, a new method to address these issues is proposed in this paper by measuring the current at 

the co-axial cables to determine the relative dielectric loss. In the cross-bonded major section, 12 clamp-

type current sensors are installed at the co-axial link cables. The proposed Leakage Current Separation 

Method (LCSM) aims at distinguishing the leakage currents from the sheath currents based on the 12 

detected currents. The purpose of relative DL among three phases, based on the results of LCSM, is used 

to determine the relative insulation condition without acquiring the operational voltage signals. 

The remainder of the paper is organized as follows  

In Section 2, the theoretical background of the cross-bonded cable system connections and the currents in 

the sheath are introduced. In Section 3, the proposed Leakage Current Separation Method to differentiate 

leakage currents from sheath currents is explored by MATLAB simulations. In Section 4, the diagnosis 

of relative DL among three phases based on the results from LCSM is presented. In addition, a set of 

knowledge rules are given. In Section 5, a case study is discussed by analysing the on-line monitoring 

data from a 110 kV cross-bonded cable installed in a cable tunnel in China. In Section 6, the conclusions 

and the limitations are discussed. 

2. Typical cross-bonded major section 

2.1 The structure of the cross-bonded cable system investigated 

Long distance power transmission by high voltage (HV) cables usually utilizes the series connection of 

several cross-bonded major sections. A typical cross-bonded major section is presented in Fig. 1 [4].  

Section 1 Section 2 Section 3

JA1 JA2TA1

Co-axial 

cable

A1 A2 A3

B1 B2 B3

C1 C2 C3

TB1

TC1

JB1

JC1

JB2

JC2

TA1

TB1

TC1

G1 J1 J2 G2
 

Fig. 1. A typical major section of a cross-bonded cable system 

In Fig. 1, the major section consists of 9 minor sections named as A1, A2, A3, B1, B2, B3, C1, C2 and 

C3 in this work. The core conductor of a phase is connected contiguously, e.g. phase A runs through 

sections A1, A2 and A3. The sheaths of minor sections are cross-connected at cable joints, i.e. JA1, JB1, 

JC1, JA2, JB2 and JC2. The co-axial link cables connect the metal sheaths to the link boxes. The 

interconnections of the sheaths are implemented inside the link boxes, J1 and J2. The metal sheaths at 

both ends of a major section are directly connected to ground in the grounding boxes, G1 and G2. 

Fig. 2 shows a typical link box with co-axial cable connections applied in the cross-bonded sheath 
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connection. In many parts of China, co-axial cables are used to bring the metal sheath conductors to the 

link boxes for ease of installation. Considering link box J1 from Fig.1, as indicated in Fig. 2, the sheath 

of A1 is connected to that of B2; B1 is connected to C2; C1 is connected to A2. Similarly, in link box J2 

the connections would be: A2 connects to B3; B2 connects to C3; C2 connects to A3. Under normal 

conditions, when the voltages across the Over-Voltage Limiters (OVLs) are less than 50 V, the conductor 

clips in each link box are open-circuited. As a result, the sheath connections would be A1-B2-C3 (loop 1), 

B1-C2-A3 (loop 2) and C1-A2-B3 (loop 3). A simplified diagram of the cross-bonded sheath connection 

is shown in Fig. 3. 

A2

B2

C2

Current sensor

Coaxial cable

A1

A2

B1

B2 C2

C1

Overvoltage limiter

Internal conductor clip

Internal conductor of coaxial cable

External conductor clip

External conductor of coaxial cable

A1

C1

Conductor of cable

Metal sheath

Insulation

B1

 

Fig. 2. A typical link box with co-axial cables connection 

A1

B1

C1

A2

B2

C2

A3

B3

C3

Loop 1

Loop 2

Loop 3

 

Fig. 3.  The simplified cross-bonded sheath connections 

2.2. Leakage currents 

In typical cross-bonded cable systems, both ends of the metal sheath in a major section are grounded, as 

shown schematically in Fig 4(a). Subsequently, the leakage current would split into two components 

flowing to both directions in the metal sheath, as red arrows move. Fig 4(b) shows the lumped circuit 

model. UX is the operational voltage in the core conductor in phase X (where, X stands for the symbol of a 

phase, i.e., A, B or C); IXn is the leakage current through the insulation of minor section Xn (n = 1, 2, 3); 

CXn is the equivalent insulation capacitance in the minor section Xn; RXn is the equivalent insulation 
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resistance in the minor section Xn. ZmLXn is the equivalent metal sheath impedance towards the power 

supply side, while ZmRXn is the equivalent metal sheath impedance towards the load side. ILXn is the 

leakage current component flowing to the earthing point at the power supply side; IRXn is the leakage 

current component flowing to the earthing point near the load side. 

Core conductor

Insulation

Metal sheath

UX

 

(a) Leakage current distributed paths (red arrows) 

Xn

CXn

ZmRXn

ILXn IRXn

ZmLXn

UX

IXn RXn

M

N

 

(b) Lumped circuit for leakage current flowing through the minor section Xn 

Fig. 4. Leakage current paths and model for an XLPE insulated minor section 

Fig. 4(b) indicates that the vector sum of the leakage current components, ILXn and IRXn, is equal to the 

leakage current vector of minor section Xn, as presented in Equation (1). 

 Xn LXn RXn I I I  (1) 

2.3. Circulating currents 

The HV cross-bonded cable system is grounded at both ends of each major section for safety reasons. 

However, it creates the loops for circulating currents. When the vector sum of induced voltages, such as 

uSA1, uSB2 and uSC3 in metal sheath loop 1, are not zero, due to unbalanced section lengths or unbalanced 

installation type, there will be circulating current, Im1, as shown in Fig. 5. 
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Im1A1

B2

C3

uSA1 ZmA1

uSB2 ZmB2

uSC3 ZmC3

Re Rg

 

Fig. 5. The equivalent circuit of circulating current in sheath loop 1 

The equations for the initial circulating currents shown in Fig. 5 are presented in Equation (2).  

 
1 2 3

1

1 2 3

SA SB SC
m

mA mB mC e gR R

 


   

u u u
I

Z Z Z
 (2) 

Where, uSXn is the induced voltage in the sheath of the minor section Xn (X stands for A, B or C; n=1, 2, 

3). This representation is also suitable for other two sheath loops. 

As indicated in Equation (2), the circulating current is mainly dependent on the induced voltages in metal 

sheath and the impedances of the sheath loop. In addition, induced voltages are subject to the 

configuration of the major cable section, load currents and installation type. For a defined layout of a 

cross-bonded cable system, induced voltages in sheaths are mainly influenced by load currents. 

2.4. Sheath currents 

As presented in Sections 2.2 and 2.3, the sheath current is composed of leakage currents and circulating 

currents. Based on Fig. 1, Fig. 4 and Fig. 5, the superimposed currents in the simplified cross-bonded 

sheath system are presented in Fig. 6. 

Im1

Im1

Im1

Im3

Im2Im3

Im2Im3

Im2

A1

B1

C1

A2

B2

C2

A3

B3

C3

ILA1 IRA1

ILB1 IRB1

ILC1 IRC1

ILA2 IRA2

ILB2 IRB2

ILC2 IRC2 ILC3 IRC3

ILB3 IRB3

ILA3 IRA3

I11

I21

I31

I12

I22

I32

I33

I13

I23

I24

I34

I14

 

Fig. 6. The superimposed currents in the simplified cross-bonded sheath system 
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Where, referring to Fig.1, in sheath loop 1, I11 is the sheath current through the terminal TA1; I12 is the 

sheath current through the joint JA1; I13 is the sheath current through the joint JB2; I14 is the sheath 

current through the terminal TC2. In sheath loop 2, I21 is the sheath current through the terminal TB1; I22 

is the sheath current through the joint JB1; I23 is the sheath current through the joint JC2; I24 is the sheath 

current through the terminal TA2. In sheath loop 3, I31 is the sheath current through the terminal TC1; I32 

is the sheath current through the joint JC1; I33 is the sheath current through the joint JA2; I34 is the sheath 

current through the terminal TB2. 

The sheath currents (Ipq, where p, q= 1, 2 or 3) at different points in loops 1, 2 and 3, assuming that 

positive current is from the power supply side to the load side, are presented in Equations (3) - (14). 

 11 1 2 3 1LA LB LC m    I I I I I  (3) 

 12 1 2 3 1RA LB LC m    I I I I I  (4) 

 13 1 2 3 1RA RB LC m    I I I I I  (5) 

 14 1 2 3 1RA RB RC m    I I I I I  (6) 

 21 1 2 3 2LB LC LA m    I I I I I  (7) 

 22 1 2 3 2RB LC LA m    I I I I I  (8) 

 23 1 2 3 2RB RC LA m    I I I I I  (9) 

 24 1 2 3 2RB RC RA m    I I I I I  (10) 

 31 1 2 3 3LC LA LB m    I I I I I  (11) 

 32 1 2 3 3RC LA LB m    I I I I I  (12) 

 33 1 2 3 3RC RA LB m    I I I I I  (13) 

 34 1 2 3 3RC RA RB m    I I I I I  (14) 

2.5. Co-axial cables and detected currents 

Fig. 7 is the practical connection of the cross-bonded cable system with 12 current sensors installed. Fig. 

8 shows an expanded view of link box J1 and the currents detected by current sensor I2a.Owing to the 

application of co-axial cables to connect joints and link boxes, a current sensor clamped on any co-axial 

cable will detect the vector sum of two different sheath currents, as presented in Fig. 8. 

A1 A2 A3

B1 B2 B3

C1 C2 C3

I1a I1b I1c I2a I2b I2c I3a I3b I3c I4a I4b I4c
 

Fig. 7. The installation of 12 current sensors in the major section 
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A2

Current sensor

Coaxial cable

A1

A2

B1

B2 C2

C1

A1

I12 I32

JA1

Current sensor 

I2a

 

Fig. 8. The currents detected by the current sensor I2a at the port of link box J1 

Fig. 8 indicates that the core of the co-axial cable, on which the current sensor I2a is clamped, connects to 

the metal sheath of A1, while the sheath of the co-axial cable connects to the metal sheath of A2. I2a is 

the vector sum of I12 in sheath loop 1 (comprised of A1-B2-C3) and I32 in sheath loop 3 (comprised of 

C1-A2-B3). 

As presented in Fig. 7 and Fig. 8, all the currents detected by the 12 current sensors can be expressed by 

the sheath currents, as presented in Equations (15) – (26). 

 1 11a I I  (15) 

 1 21b I I  (16) 

 1 31c I I  (17) 

 2 12 32a  I I I  (18) 

 2 22 12b  I I I  (19) 

 2 32 22c  I I I  (20) 

 3 33 23a  I I I  (21) 

 3 13 33b  I I I  (22) 

 3 23 13c  I I I  (23) 

 4 24a I I  (24) 

 4 34b I I  (25) 

 4 14c I I  (26) 

Based on Equations (3) – (14) and (15) – (26), the currents detected by the 12 current sensors installed on 

the co-axial link cables can be expressed by a combination of circulating currents and leakage current 

components. 

3. Leakage current separation method 
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3.1. Leakage current separation method principle 

Section 2 outlined the complex relationship between of the sheath currents and the detected currents in a 

cross-bonded major section. In order to acquire the leakage current from each minor section, Leakage 

Current Separation Method (LCSM) is proposed. The schematic of the principle is presented in Fig. 9. 

UA
A2

IA2

Im3ILA2 IRA2

IRC1 ILB3

I32 I33

 

Fig. 9. Example: the schematic of the LCSM principle in minor section A2 

Equation (27) indicates that the leakage current, IA2, can be expressed by the sheath currents, I32 and I33, 

as presented in Fig. 6, Equations (12) and (13). 

 2 3 3 1 2 3 3

3 3

2

2 3

2 2

( ) ( )1I I I I I I I I

I I I

I I

     

 

  

 

RC LA LB m RC RA LB m

A LA RA

 (27) 

This deduction is suitable for other 8 sections, as presented in Equations (28) – (35). 

 1 11 12=I I IA  (28) 

 2 12 13I I I B  (29) 

 3 13 14I I I C  (30) 

 1 21 22=I I IB  (31) 

 2 22 23=I I IC  (32) 

 3 23 24=I I IA  (33) 

 1 31 32=I I IC  (34) 

 2 33 34=I I IB  (35) 

3.2. Improved LCSM results considering co-axial cables 

In a cross-bonded cable system that uses six-import link boxes, it is possible to implement the leakage 

current separation for each minor section, as presented in Section 3.1. However, the utilization of the co-

axial cables for connecting the joints and the link boxes makes it impossible to acquire the individual 

sheath currents. The detected currents should follow the principles and results in Section 2.5, as 

presented in Equations (15) – (26). 

Although it is impossible to acquire the individual leakage current of each minor section, the current 

vector difference (e.g. I1BA) can be derived from the detected currents (e.g. I1b, I2b and I1a), as presented in 

Equation (36). Equation (36) is derived from Equations (28), (31), (16), (19) and (15). 
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21 2

1 1 1

1 2 1

2 12 11

21 22 11 12( ) ( )

( )

I I

I I I I

I

I I I

I I

I

I

   





  



BA B A

b b a

 (36) 

This is also applicable to the other 8 vector differences, as presented in Equations (37) – (44): these are 

derived from (27) – (35) and (15) – (26). 

 1 1 1 1 2 1I I I I I I   CB C B c c b  (37) 

 1 1 1 1 2 1I I I I I I   AC A C a a c  (38) 

 2 2 2 2 3I I I I I  BA B A a b  (39) 

 2 2 2 2 3I I I I I  CB C B b c  (40) 

 2 2 2 2 3I I I I I  AC A C c a  (41) 

 3 3 3 3 4 4I I I I I I   BA B A a b a  (42) 

 3 3 3 3 4 4I I I I I I   CB C B b c b  (43) 

 3 3 3 3 4 4I I I I I I   AC A C c a c  (44) 

Where, InXY is the vector difference between the leakage currents of the minor section Xn and Yn (X and 

Y stands for the different phases, e.g. A, B or C; n= 1, 2, 3). 

O

IAn

ICn

IBn

InBA

InCB

InAC

 

Fig.10. The vector diagram of the leakage currents and the leakage current vector differences 

As shown in Fig. 10, InBA is the vector difference between leakage currents IBn and IAn, InCB is the vector 

difference between ICn and IBn and InAC is the vector difference between IAn and ICn. 

Consequently, based on the detected currents from the 12 installed current sensors, the leakage current 

components can be separated from the sheath currents. The circulating currents are offset by the LCSM. 

Leakage current vector differences would be applied for further analysis. 

3.3. Simulation of improved LCSM 

In order to verify the improved LCSM (Equations (36) – (44)), simulations are carried out in MATLAB, 

based on the models presented in Fig. 11 and Fig. 12. The magnitudes of the phase voltages (UA, UB and 

UC) are 63.5 kV (the phase-to-phase voltage is 110 kV). The phase difference among the operating 

voltages is 2π/3. The earthing resistance near the power supply side is assumed to be 4 Ω. The earthing 

resistance near the load side is assumed to be 10 Ω. The manufacturer provides the factory parameter for 



 

10 

 

the XLPE insulated cables showing that the metal sheath impedance is 0.0426 Ω/km (20 °C), the initial 

insulation capacitance is 0.226 μF/km (20 °C), and the initial dielectric loss factor tan δ is 0.08%. The 

lengths of the three sections are, respectively, 425 m, 477 m and 536 m: these values replicat those in a 

practical cable network. The source resistances are 0.0001 Ω due to MATLAB requirement. And two set 

of simulations are presented. The induced voltages in the metal sheaths change with the RLC load 

parameters, as presented in Table 2 and 3. 

 

Fig. 11. The simulation model in MATLAB Simulink derived from Fig. 7 

 

Fig. 12. The subsystem of minor section A1 derived from Fig. 4 

Table 1. Load information used in the two simulations (Y grounded) 

Case Load information 

1 P=20 MW, Q=0 Mvar  

2 P=20 MW, Q=8 Mvar 

Table 2. The set of the induced voltages in sheaths in two simulations 

Case 
Parameter of the induced voltages in the sheath (V) 

uSA1 uSA2 uSA3 uSB1 uSB2 uSB3 uSC1 uSC2 uSC3 

1 
(-1.68    

-5.74i) 

(-4.64 

+2.67i) 

(+5.21

+5.45i) 

(-4.13 

+2.37i) 

(+4.64

+4.85i) 

(-2.12  

-7.25i) 

(+4.13

+4.32i) 

(-1.89  

-6.45i) 

(-5.21 

+3.00i) 

2 
(-1.81    

-6.19i) 

(-4.99 

+2.87i) 

(+5.61

+5.87i) 

(-4.45 

+2.55i) 

(+5.00

+5.22i) 

(-2.28  

-7.81i) 

(+4.45

+4.66i) 

(-2.03  

-6.95i) 

(-5.61 

+3.23i) 

The induced voltages in sheaths calculation are based on the calculation in article [26]. 



 

11 

 

Two set of the simulations based on Table 1 and Table 2 indicate that the change of load currents with 

the induced voltages have no effect on the leakage currents. 

It should be noted that the temperature effect on the insulation of the load current has not been 

considered in the simulations. Assuming that the temperature effects are consistent across all cables, then 

when the temperature changes the insulation parameters, the LCSM results can also reflect the variations. 

Fig. 14 presents the waveforms of leakage currents of the minor sections A1and B1. IA1 and IB1 are the 

currents acquired from the insulation impedance branch directly (e.g. the ZA1 branch shown in Fig. 12). 

I1b, I2b and I1a are the currents acquired by the installed current sensors (shown in Fig. 11). 

 

(a) The theoretical result of leakage current vector difference between minor section A1 and B1 

 

(b) The detected currents and the improved LCSM result for I1BA 

Fig. 14. Example: the comparison results of I1BA 

The comparison of the data presented in Fig. 14 (a) and (b) indicates that the magnitude and phase of 

(I1b- I2b- I1a) and I1BA are nearly the same: the degree of difference is listed in Table 3. The results 

presented in Table 3 demonstrate that the method is applicable for all minor sections in the cross-bonded 

major section. 
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In Table 3, the expected results denote the results from the definition, i.e. the expected result of I1BA is the 

vector difference between IB1 and IA1 (I1BA = IB1-IA1). Improved LCSM results denote the results from 

leakage current separation (I1BA = I1b-I2b-I1a). 

Table 3. The comparison between the improved LCSM results and the expected results 

Deduced current 
Improved LCSM RMS results 

(A) 

Expected RMS results 

(A) 
Error (%) 

I1BA |I1b-I2b-I1a|=3.1286397 |IB1-IA1|=3.1286327 2.23×10
-4

 

I1CB |I1c-I2c-I1b|=3.1287618 |IC1-IB1|=3.1287528 2.87×10
-4

 

I1AC |I1a-I2a-I1c|=3.1285671 |IA1-IC1|=3.1285376 9.42×10
-4

 

I2BA |I2a-I3b|=3.5110974 |IB2-IA2|=3.5110830 4.10×10
-4

 

I2CB |I2b-I3c|=3.5113462 |IC2-IB2=3.5113418 1.24×10
-4

 

I2AC |I2c-I3a|=3.5112081 |IA2-IC2|=3.5111955 3.58×10
-4

 

I3BA |I3a-I4b+I4a|=3.9457919 |IB3-IA3|=3.9457772 3.71×10
-4

, 

I3CB |I3b-I4c+I4b|=3.9460412 |IC3-IB3=3.9460248 4.15×10
-4

 

I3AC |I3c-I4a+I4c|=3.9458874 |IA3-IC3|=3.9458766 2.72×10
-4

 

 

As presented in Table 3, the difference between the improved LCSM results (Equations (36) – (44)) and 

the expected results is less than 1×10
-3

 %. As this is the simulation in normal condition, the expected 

deduced current maganitudes in the same section (e.g. I1BA, I1CB and I1AC) are the same, as the length and 

the insulation impedance are assumed to be the same. The maximum RMS difference between deduced 

currents (e.g. I1BA, I1CB and I1AC) in the same section is less than 0.01 %. This work verifies the feasibility 

of separating the leakage current components from the detected currents by the LCSM. It should be noted 

that the proposed separation method is not confined to the cross-bonded system analysed above. 

4. Relative DL angle based on the leakage current vector differences 

In operational power cable transmission systems, as mentioned in Section 1, it is hard to get the operating 

voltage from the power cable directly due to the safety issues. If the voltage signals are detected from 

substations, there will be unmeasurable difference between the detected voltage signal and the voltage at 

the cable terminals or the joints. 

A method based on a comparison of leakage current vector difference is proposed to determine the 

relative change of DL, instead of the absolute value. This solves the challenge of situations where 

measuring the reference voltage vector is not possible. 

The DL factor can be expressed by the equivalent insulation resistance and insulation capacitance, as 

shown in Equation (45). 

 
1

tan



RC

 (45) 

Where, R is the equivalent insulation resistance; C is the equivalent insulation capacitance and  is the 

angular frequency. 

Any change of the insulation impedance (R and C) affects the DL factor, as presented in Equation (45). 

In Fig. 15, the operating voltage vector is assumed to be unchanged as a reference line. The leakage 

current vector would change due to the change of dielectric loss angle, from  to ’. 
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Fig. 15. The vector diagram of the DL angle during the insulation deterioration 

It was noted in [2] and [18] that, as a result of moisture deterioration in XLPE insulation, DL factor 

shows an increasing trend due to the decrease of the insulation resistance. In other insulation 

deterioration, such as thermal deterioration [19], mechanical deterioration [25], oxidation deterioration 

[24], radiation deterioration and electrical deterioration [23], the indications are that insulation 

capacitance does not change much during the deterioration. Increase in the DL angle results from 

decrease in the insulation resistance, such as in the case of water tree aging due to moisture deterioration. 

The change of the leakage current vector can be applied to the assessment of the insulation condition. 

Larger DL angle and larger leakage current magnitude indicates poorer insulation condition. When this 

judgement is applied to the three-phase condition, the reference voltage can be avoided. Fig. 16 indicates 

that the changes in the DL angles results in changes in the leakage current vectors (IA, IB and IC) and also 

to changes in the leakage current vector differences (IBA, ICB and IAC).  

O

IA0

IC0

IC IB0

IB

IA

IAC

ICB

IBA

 

Fig. 16. Relative changes of DL angles leading to the changes in the leakage current vector differences 

Table 4 presents a set of rules to assess the insulation condition, based on the leakage current vector 

differences. The rules were developed from the simulations in MATLAB, based on the assumptions 

shown below. 

 The insulation materials of three phases are the same type. 

 The variation of DL angle is due to the change in insulation resistance. 

Table 4 transfers the vector length relationship to a DL angle relationship. The relative insulation 

condition is based on the order of DL angles among three phases in the first column of Table 4. These 



 

14 

 

criteria could provide a rapid qualitative description of the relative insulation condition. 

Table 4. Simulation results and the criteria for the relative insulation condition among three phases 

Order of DL angles 

among three phases 
Vector length order Relative insulation condition 

δB < δC < δA 

δC < δB < δA 
IAC > ICB > IBA Phase A is the worst 

δA < δC < δB 

δC < δA < δB 
IBA > IAC > ICB Phase B is the worst 

δB < δA < δC 

δA < δB < δC 
ICB > IBA > IAC Phase C is the worst 

δA < δB < δC 

δA < δC < δB 
IBA > ICB > IAC Phase A is the healthiest 

δB < δC < δA 

δB < δA < δC 

 

ICB > IAC > IBA Phase B is the healthiest 

δC < δB < δA 

δC < δA < δB 
IAC > IBA > ICB Phase C is the healthiest 

 

In Table 4, when the RMS values of the leakage current vector differences accord with the relationship, 

IAC > ICB > IBA, this is an indication that the dielectric loss angle of A is larger than that of B and C, 

although the relationship between the DL angle of B and of C is uncertain (δB < δC < δA or δC < δB < δA). 

Thus, the indication is that “the relative deterioration in phase A is the worst”. 

The process outlined in Sections 3 and 4 could be implemented as an on-line monitoring system for 

insulation condition, as present in Fig. 17. To verify the feasibility of application in practical systems, 

this method has been applied in a 110-kV cross-bonded cable in a tunnel, as discussed in Section 5. 

12 Current sensors 

installed at the link 

cables

Improved LCSM
Leakage current 

vector differences

Relative DL among 

three phases

Insulation condition 

diagnosis

 

Fig. 17. The flowchart of on-line monitoring dielectric loss in cross-bonded HV cable system 

5. Case study 

The on-line monitoring system based on the proposed plan was applied to a 110-kV XLPE power cable 

tunnel in Wuhan, China. The lengths of the three sections in the major section were 425 m, 477 m and 

536 m, as discussed in Section 3.3. Due to the expenditure issues, there were only 6 current sensors 

installed at the co-axial cables connected to the link boxes, J1 and J2. Data was collected from December 

2014 to July 2016. The sampling rate was 100 MS/s. The sampling length was 2 s, and the sampling 

interval was 6 min, i.e. there were 240 sample points every day. 

5.1. Detected currents 

Fig. 18 shows the raw data from the current sensors I2a, I2b, I2c, I3a, I3b and I3c, corresponding to those in 

Fig. 7. Fig. 18(a) is the data collected on 15
th
 December, 2014; Fig. 18(b) is the data collected on 26

th
 

March, 2015; Fig. 18(c) is the data collected on 23
rd

 May, 2015; Fig. 18(d) is the data collected on 13
th
 

September, 2015; and Fig. 18(e) is the data collected on 7
th
 June, 2016. 
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(a) The detected current RMS values on 15
th
 December, 2014 

 

(b) The detected current RMS values on 26
th
 March, 2015 

 

(c) The detected current RMS values on 23
rd

 May, 2015 
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(d) The detected current RMS values on 13
th
 September, 2015 

 

(e) The detected current RMS values on 7
th
 June, 2016 

Fig. 18. The RMS values of currents detected by the current sensors 

In Fig. 18, each of the figures presents the RMS values of 6 detected currents detected from the co-axial 

cables connected to J1 and J2. It should be noted that the detected currents are all the waveforms rather 

than the RMS values, which are calculated for reporting here. Fig. 18 displays several characteristics 

which are presented below. 

Firstly, the layout of the studied major section was not symmetrical. The length of each sub-section in 

this major section was different: sub-sections 1, 2 and 3 had the lengths of 425m, 477m and 536m 

respectively. The three-phase single-core cables were laid in a flat configuration and the load currents of 

the three phases were unbalanced. These factors lead to an imbalance in the induced voltage in the sheath 

loops, causing the relatively high circulating currents. 

Secondly, due to the unequal circulating currents in different sheath loops, there is a big difference 

among the different detected currents, e.g. the data on 7
th
 June 2016 indicated that I2a> I2b> I2c. 

Thirdly, because of the daily fluctuation of load currents, there were big variances in detected currents 

over the course of a day. As discussed in Section 2.3, the circulating currents, which are the main 
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components of the sheath currents, are influenced by the load currents. 

Fourthly, due to the seasonal fluctuation of load currents (winter in December, spring in March and May, 

summer in June and autumn in September for this location), the ranges of the detected currents vary 

considerably. The maximum measured current in December was over 50 A, while the maximum 

measured current in April and May was just 30 A. The load currents in spring and autumn in this location 

were similar. 

Finally, the detected currents I2x were a little bit higher than I3x (x stands for a, b and c) due to the ground 

resistance near the source side being smaller than that near load side. Consequently, leakage currents 

components were flowing more to the source side. 

5.2. Improved LCSM results 

Based on the on-line measured data, the leakage current vector differences were deduced by the 

improved LCSM. The results would be influenced by the fluctuation of the operation voltage, Ux, as 

presented in Fig. 4. Based on regulation GB 12326-2008, the National Standard in China which is in 

accordance with IEC standard, the system voltage fluctuation is prescribed to be less than 2% at the 

voltage level 110 kV. So, to describe the relative aging over the course of a day, the average value was 

used to offset the influence of the voltage fluctuation, as presented in Fig. 19. 

Fig. 19(a) is the calculated data for 15
th
 December, 2014; Fig. 19(b) is the calculated data for 26

th
 March, 

2015; Fig. 19(c) is the calculated data for 23
rd

 May, 2015; Fig. 19(d) is the calculated data for 13
th
 

September, 2015; Fig. 19(e) is the calculated data for 7
th
 June, 2016. 

 

(a) The RMS values of leakage current vector differences on 15th December, 2014 
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(b) The RMS values of leakage current vector differences on 26
th
 March, 2015 

 
(c) The RMS values of leakage current vector differences on 23

rd
 May, 2015 

 
(d) The RMS values of leakage current vector differences on 13

th
 September, 2015 



 

19 

 

 
(e) The RMS values of leakage current vector differences on 7

th
 June, 2016 

Fig. 19. Comparison of the RMS values of leakage current vector differences 

It should first be noted that, as the fluctuation of the operational voltage might lead to a variation in the 

results, the average RMS values from the 24-hours collection were used for comparison purpose. 

Secondly, in the majority of cases, the relationship among I2BA, I2CB and I2AC satisfied the condition that 

I2BA > I2AC > I2CB. However, some data did not meet the situation, e. g. at 08:36 on 26
th
 March, 2015 and at 

20:54 on 7
th
 June, 2016, the RMS value of I2BA is less than that of I2AC.  

Thirdly, in most of cases, the fluctuation of I2BA, I2CB and I2AC did not exceed ± 2 % of the average RMS 

value of each leakage current vector differences. However, for several points, e. g. at 08:36 on 26
th
 

March, 2015, the fluctuation of the RMS value of I2BA and I2AC was around 3%. This may be the short-

period voltage fluctuation. 

5.3. Analysis and summary 

As indicated in Fig. 19, during the periods analysed, the relationship shown in (46) holds for the majority 

of data the time on all dates. 

 2 2 2BA AC CB
I I I   (46) 

As can be seen, it is better to be apply the mean value of each deduced current to describe the relative 

insulation condition among three phases, to offset the influence of periodic fluctuation. The average 

RMS values for the cross-bonded cable system investigated are presented in Table 5. 

Table 5. Comparison of average values among phases during monitoring period 

Data collected December, 2014 March, 2015 May, 2015 September, 2015 June, 2016 

I2BA (A) 3.1787 3.1841 3.1864 

 

3.1898 

 

3.1910 

 I2CB (A) 3.0739 3.0808 3.0821 

 

3.0856 

 

3.0865 

 I2AC (A) 3.1404 3.1450 3.1476 

 

3.1495 

 

3.1498 

  

As presented in Fig. 20, during the monitoring period from December, 2014 to June, 2016, the 

relationships among I2BA, I2CB and I2AC satisfied the condition that I2BA > I2AC > I2CB. Based on the criteria 

in Table 4, the long-term results indicated that the minor section B2 deteriorated faster than other two 

minor sections in section 2, 
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Fig. 20. The trending of the leakage current vector differences 

Moreover, over the period of the investigation, the average values of deduced currents were increasing. 

I2BA in June, 2016 was 0.39 % higher than in December, 2014. I2AC in June, 2016 was 0.30 % higher than 

in December, 2014. I2CB in June, 2016 was 0.41 % higher than in December, 2014. This indicated that all 

three minor sections had a certain degree of deterioration during the measurement. As previously 

mentioned, the leakage current from B2 grew faster than that from A2 and C2. 

Over the same 18 month period another form of condition assessment, i.e. Partial Discharge (PD) 

monitoring, was carried out in this major section and there was no indication of significant deterioration. 

However, as insulation degradation processes occur over long periods, a long-term observation is needed 

to see whether deterioration is occurring. The long term case study of on-line monitoring of this major 

cable section indicates that it is feasible to use the relative DL to determine the relative insulation 

condition among three phases for a cross-bonded cable system. 

6. Conclusion 

This work proposes a novel method of on-line monitoring of relative insulation condition in a major 

section of a cross-bonded network by the installation of 12 current sensors on the co-axial cables 

connecting link boxes and joints or terminals.  

The novel Leakage Current Separation Method (LCSM) achieves the separation of the leakage currents 

in the cross-bonded system with the application of current sensors to the co-axial cables connecting the 

link boxes and joints.  

The LCSM simulation results indicate that an RLC load had no effect on the leakage current separation 

results. Moreover, variation in the lengths of the cables in different sections had no effect on the accuracy 

of the method. 

The increase in DL angles will lead to the change in leakage current vectors. In addition, the variation of 

the leakage current vectors will lead to the change of the leakage current vector difference. Relative DL 

among three phases method to determine the insulation condition is based on the results of leakage 

current vector difference among three phases. 

The success of the proposed methods in the case study indicates the feasibility of carrying out long term 
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on-line monitoring. Analysis indicates that there is no significant deterioration of the cables under study. 

However, minor section B2 should have more attention paid to it. As the cables are at the start of their 

operational life, continued monitoring will be carried out to ensure cables remain suitable for use. 

The limitation of the work is that diagnosis based on DL has disadvantages in the detection of partial 

deterioration. Some insulation faults that lead to an obvious variation in leakage current could also be 

detected. As such, different on-line techniques should work complementarily to assess insulation 

condition. 
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